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ABSTRACT

THE LINEARIZATION OF V(P)-DOUBLING
CONSTRUCTIONS

FEBRUARY 2022

RONG YIN
B.A., NANKAI UNIVERSITY

M.A., SYRACUSE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kyle Johnson

When an item moves, it is usually pronounced once but in some cases, it is 
pronounced multiple times. So, a question is: What determines whether a moved item gets 
pronounced in only one of its positions or in multiple positions? This dissertation aims at 
providing an answer to this question by designing a linearization process that yields the 
correct phonetic realization of a moved item, with a focus on V(P) movement. In particular, 
this dissertation provides a detailed analysis of how V(P)-doubling cases are linearized and 
thus show how a V(P) ends up being pronounced multiple times.

Regarding the proposed linearization process in this dissertation, following Kusmer 
(2019), I assume that the basic linearization process contains Candidates Generator G, which 
generates a set of precedence relations, and Constraints, which pick the right subset from 
G. As for the Constraints, I adapt the Totality Constraint and the Asymmetry Constraint 
from Kayne (1994), the Anti-re�exivity Constraint from Partee, ter Meulen and Wall (1990), 
and Language Speci�c Constraints from Wilder (1999) and Kusmer (2019). In addition, I 
propose an Ordering Deletion rule that gets rid of redundant precedence relations and a 
Set-to-String algorithm that turns a set of precedence relations into a string. Furthermore, 
I adopt the idea from Fox and Pesetsky (2005) that linearization of precedence relations is 
implemented in a cyclic way. Also, I employ the idea behind Nunes (2004)’s morphological 
reanalysis that a higher level node can be linearized instead of the nodes it contains given 
certain circumstances.

Finally, I present the predictions made by the proposed linearization process, 
which can be evaluated against more data for future research.
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CHAPTER 1

Introduction

1.1 The core of the dissertation

This dissertation focuses on the phonetic realization of a moved item. Speci�cally, this

dissertation aims at answering the question in (1) by providing a linearization process that

yields the correct phonetic realization of a moved item.

(1) What determines whether a moved item gets pronounced in only one of its positions

or in multiple positions?

For instance, in the English example (2), the auxiliary verb can undergoes T
0
-to-C

0

movement and occupies both the T
0

and C
0

position but it is only pronounced in the C
0

position.

(2) T-to-C movement

a. Can she run?

b. *Can she can run?

However, in some cases, a moved item is pronounced multiple times. An example is shown

in (3), where the participle chi-guo ‘eaten’ moves but it must be pronounced twice.

1



(3) Mandarin verb-doubling

a. chi-guo,

eat-asp

Lili

Lili

dique

indeed

meiyou

not

chi-guo

eat-asp

bale.

Guava

‘As for having eaten, Lili indeed hasn’t eaten Guava (but she has seen it

before).’

b. *chi-guo,

eat-asp

Lili

Lili

dique

indeed

meiyou

not

bale.

Guava

Intended: ‘As for having eaten, Lili indeed hasn’t eaten Guava (but she has

seen it before).’

Focusing on verb movement, in addition to the T
0
-to-C

0
movement example in

(2), there are also other verb movement cases where the verb is only pronounced once. For

instance, V
0
-to-v

0
movement in English (4)

1
, and v

0
-to-T

0
movement in Hebrew (5). Note

that these examples are normally referred to as “short/local” head movement.
2

(4) a. Can she see it?

b. CP

TP2

TP1

vP

VP

DP1

it

v1

0

v
0

V
0

see

DP2

she

C1

0

C
0

T
0

can

1
Regarding the arguments for V

0
-to-v

0
movement in English, please see Beck and Johnson (2004), Bale

(2005) and Johnson (2018).

2
Following Pollock (1989), I assume that all head movements are adjunction.
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(5) a. Hebrew

Dani

Dani

menasek

kisses

lif’amim

sometimes

et

acc

dina

Dina

‘Dani kisses Dina sometimes.’ (Doron 1999: 126, ex.3(a))

b. TP2

TP1

vP

vP

VP

DP1

Dina

AdvP

sometimes

T1

0

T
0

v1

0

v
0

V
0

kiss

DP2

Dani

For cases where the moved verb is pronounced multiple times, in addition to

the Mandarin example in (3), another example is the Asp
0
-to-Top

0
movement in Yiddish

(6), where the participle gegessen ‘eaten’ is pronounced twice. In fact, these cases are

normally referred to as verb-doubling, and are found in Yiddish (DavisPrince 1986, Cable

2004), Hebrew (Landau 2006), Vata (Koopman 1986), Mandarin (Cheng 2013), among other

languages. It has been argued in the literature (cf. Koopman (1984), Nunes (2004), Landau

(2006) among others) that these verb-doubling cases involve “long/non-local” movement.

(6) Yiddish

a. Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’ (Cable 2004: 2, ex. 2(a))

3



b. TopP

CP

TP2

TP1

AspP

vP

VP

DP1

�sh

Asp1

0

Asp
0

v1

0

v
0

V
0

T
0

DP2

Max

C
0

has

Top1

0

Top
0

Asp1

0

Asp
0

v1

0

v
0

V
0

As for VP movement, in some cases, the moved VP is pronounced once. An

example is VP-fronting in English (7). I assume in this case that VP moves in a one fell

swoop fashion.
3

3
For ease of presentation, I ignore the vP layer in this example and also in the next Mandarin example in

(8b), which does not a�ect the analysis.
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(7) a. Eaten Guava, Lily indeed has not.

b. TopP2

TopP1

CP2

CP1

TP3

TP2

TP1

VP

NegP

not

T
0

has

AdvP

indeed

DP2

Lily

C
0

Top
0

VP

DP

D
0

Guava

V
0

eaten

However, there are also cases where a VP is pronounced multiple times, which is

shown in (8), where chi-guo bale ‘eaten Guava’ is pronounced twice. I propose that in such

cases, VP moves in a way that contains multiple steps, the structure of which is shown in

(8b).
4

(8) a. Mandarin

Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

4
Reasons for projecting the empty CP layer are discussed in Chapter 6.
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b. TopP2

TopP1

CP

TP3

TP2

TP1

AspP

AspP

eaten Guava

NegP

not

T
0

AdvP

indeed

DP2

Lili

C
0

Top
0

AspP

eaten Guava

Based on my research on the verb movement cases, there seems to be an observa-

tion, which is stated in (9).

(9) It seems that multiple pronunciations of a moved verb can occur in a long distance/non-

local movement, for instance, topicalization movement, as in (6); and a single pro-

nunciation of a moved verb tends to occur in a short distance/local movement, for

instance, T
0
-to-C

0
movement, as in (4).

I suggest that the seemingly “long distance/non-local” topicalization verb movement can be

a case of movement in (10), while the seemingly “short distance/local” T
0
-to-C

0
movement,

V
0
-to-v

0
movement, etc. are cases of movement in (11). In addition, I suggest that the one

fell swoop topicalization VP movement, as in (8), is also a case of movement in (10), while

the movement that consists of multiple steps, as in (7), is also a case of movement in (11).

(10) Movement that happens across di�erent spell-out domains via non-initial positions

in the spell-out domains
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(11) Movement that happens in the same spell-out domain or across di�erent spell-out

domains via the initial positions in the spell-out domains

I propose that if a V(P) moves in the way de�ned in (10), the moved verb will be pronounced

multiple times, and the moved VP can be pronounced multiple times under certain circum-

stances
5

or will lead the linearization to crash; and if a V(P) moves in the way de�ned in

(11), it will be pronounced once. Thus, a brief answer for the question in (1) is presented in

(12).

(12) Multiple Spell-out is prevented except when an item moves across a Spell-out

domain via a non-initial position (10), where Spell-out domain is de�ned in (13).

(13) Spell-out domain

Spell-out domain refers to the constituents that are mapped by Spell-out, where

Spell-out refers to the mapping between syntax and phonology.

Fox and Pesetsky (2005)

Crucially, in this dissertation, I propose a linearization process that aims at

deriving (12). To be more speci�c, following Kusmer (2019), I assume that the basic

linearization process contains Candidates Generator G, which generates a set of precedence

relations, and Constraints, which pick the right subset from G. I propose an Ordering

Deletion rule that gets rid of redundant precedence relations and a Set-to-String algorithm

that turns a set of precedence relations into a string. Furthermore, I adopt the idea from

Fox and Pesetsky (2005) that linearization of precedence relations is implemented in a

cyclic way. Finally, in my analysis, I employ the idea behind Nunes (2004)’s morphological

reanalysis that a higher level node can be linearized instead of the nodes it contains in

some cases, though morphological reanalysis is not adopted in my analysis.

In addition, the linearization process proposed in this dissertation uni�es the

explanation for V-doubling and VP-doubling. First, for both V-doubling and VP-doubling,

5
Details about the circumstances will be discussed in chapter 4.
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the linearization process takes a set of ordering statements and yields a string, which

eventually becomes the output of PF after lexical insertion. The only di�erence is that for

V-doubling, the ordering statements are between words (i.e., X
0
s) but for VP-doubling, the

ordering statements are not only between words but also between words and strings (i.e.,

XPs). In other words, for VP-doubling, the linearization process �rst forms a string out of a

subset of the ordering statements and this string eventually becomes part of the �nal string;

while for V-doubling, the linearization process forms the �nal string without �rst forming

any sub-strings. A more detailed discussion about the linearization process is presented

in chapter 4. In addition, the source of doubling for both V-doubling and VP-doubling

comes from a higher node of the moved item(s) participating in the linearization process.

To be more speci�c, for V-doubling, the higher node dominating all the terminal node(s)

in a moved verb (i.e., the complex verb node formed by moved verb(s)) participates in the

linearization; and for VP-doubling, the higher node dominating all the terminal nodes in a

moved verb phrase (i.e., the phrase-level node) participates in the linearization process. A

more detailed illustration of the linearization of V(P)-doubling cases is in chapter 6.

Note that there are other movement cases, where the moved items are of di�erent

categories from the V(P) movement examples that I have shown so far. For instance, DP

movement and PP movement. Similar to V(P) movement, there are cases where a moved DP

or PP is pronounced once. An English example for DP movement is shown in (14), where

the DP dumplings can only be pronounced once. An English example for PP movement is

shown in (15), where the PP to whom can only be pronounced once. This kind of case is

brie�y discussed in chapter 5.

(14) a. Dumplings she ate.

b. *Dumplings she dumplings ate.

(15) a. To whom does she give the book ?

b. *To whom does she give the book to whom?
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However, di�erent from V(P) movement, there do not seem to be cases where the

moved DP or PP is fully pronounced multiple times. To be more speci�c, for cases where

a DP seems to be pronounced multiple times, it is pronounced as a resumptive pronoun in

one of its positions. An example is shown in (16). It is argued in Sichel (2014) that in (16),

the DP ha-iša ‘the woman’ and the pronoun ota ‘her’ in the direct object position form a

movement chain.

(16) dani

Dani

yimca

will.�nd

et

acc

[ha-iša1

the-woman

še-hu

that-he

mexapes

searches

ota1]

her

‘Dani will �nd the woman he is looking for.’ (Sichel 2014: 659, ex. 3(b))

Due to the fact that a moved DP/PP does not seem to be fully pronounced multiple times, I

assume in this dissertation that the multiple pronunciations of a moved DP/PP (i.e., cases

involving resumptive pronouns) should be treated di�erently from multiple pronunciations

of V(P), and I do not present an analysis for the multiple pronunciations of DP/PP in this

dissertation.

1.2 The theoretical background of linearization and a

preview for the analysis

Before going into the details of the theoretical background of linearization, I start with the

question in (17).

(17) Why is linearization needed?

Hornstein et al. (2005) argues that linearization is needed because phrase markers

are two-dimensional but after phrase markers are sent to PF, the output of PF needs to be

manipulated by the Articulatory-Perceptual (A–P) system, which requires the output of PF

to be one-dimensional. To be more speci�c, phrase markers are two-dimensional in the

sense that their lexical items are organized in terms of the sisterhood (i.e., breadth) and

9



the dominance (i.e., depth) relation; however, the output of PF has to be one-dimensional

(i.e., the output of PF has to be a string of sounds or signs) because the output of PF will be

manipulated by the Articulatory-Perceptual (A–P) system, where the vocal apparatus can

only produce words in a linear, one-dimensional order. Thus, a process is needed to reduce

the dimension of the two-dimensional phrase markers to be a one-dimensional string so

that the output of PF can eventually be manipulated by the A–P system.

Another claim can be found in Fukui and Takano (1998) that syntactic structures

do not provide any information about the linear order of the nodes. This claim follows

Chomsky (1995)’s discussion about bare phrase structure, which states that syntactic

derivations only need Merge and Move (“remerge”) and the syntactic trees do not have

any information about linearization. To be more speci�c, Chomsky (1995) argues that

linearization is a PF phenomenon given that there is no clear evidence showing that LF

needs information about order.

As a quick summary, either from the view that phrase markers are two dimensional

and their dimension needs reducing for them to be uttered, or from the view that syntactic

structures do not provide any information about linear order, linearization is needed to

order syntactic structures. Now, the question is:

(18) What should be included in linearization?

Under the traditional Government and Binding approach, linearization contains

directionality parameters, which specify the order between heads and complements, as

well as the order between speci�ers and the rest of the phrase for a given structure (cf.

Chomsky (1981), Stowell (1981), Koopman (1984), and Travis (1984)). In this way, from

the perspective of Hornstein et al. (2005), linearization adds precedence relations to a

two-dimensional structure, where precedence relations are one-dimensional (i.e., if α

precedes β, α is pronounced before β). From the perspective of Fukui and Takano (1998),

directionality parameters specify the precedence relations for the unordered structures.

10



For instance, to explain the di�erence between (19a) and (19b) that the verb precedes the

object in English but the verb follows the object in Japanese, the directionality parameters

approach states that English is set to have a VO order following the option in (20a) and

Japanese is set to have a OV order following the option in (20b), where the verb is X and

the object is Compl. Thus, the cross-linguistic variation of word order is captured by

the directionality parameters in (20) and the ones in (21), where the order of head and

complement is speci�ed either as (20a) or (20b), and the order of speci�er and the rest

of the phrase is speci�ed either as (21a) or (21b) for a given structure established by the

X’-Theory.

(19) a. Norbert [VP ate bagels].

b. Japanese

Jiro-ga

Jiro-nom

[VP sushi-o

sushi-acc

tabeta].

ate

‘Jiro ate sushi.’ (Hornstein et al 2005: 218, ex. 1 & 2)

(20) a. X’Ñ X Compl

b. X’Ñ Compl X

(Hornstein et al 2005: 220, ex. 3)

(21) a. XPÑ Spec X’

b. XPÑ X’ Spec

(Hornstein et al 2005: 220, ex. 4)

In a later approach by Kayne (1994), linearization still involves generating prece-

dence relations; however, the precedence relations are not added to a given structure by

specifying the parameters but are established by the syntactic relations (i.e., asymmetric

c-command relations) in a syntactic structure under the X’-Theory. For instance, in (22),

V
0

asymmetrically c-commands D
0

(i.e., V
0

c-commands D
0

but D
0

does not c-command

V
0
), so according to Kayne (1994)’s LCA, see precedes it. A more detailed review of Kayne
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(1994)’s Linear Correspondence Axiom (LCA) is in chapter 3 and it is discussed under the

bare phrase structure theory.

(22) VP

DP

D
0

it

V
0

see

Regardless of what is encoded in linearization, being either directionality param-

eters or LCA, both approaches involve adding or generating precedence relations, which

for Hornstein et al. (2005) enable the two-dimensional phrase markers to be manipulated

by the A–P system as a one-dimensional object, or for Fukui and Takano (1998) provide

linearization information at PF.

In this dissertation, I also adopt the idea that precedence relations are needed in

linearization. In fact, later on, when I introduce cyclic linearization of Fox and Pesetsky

(2005) in chapter 5, it can be seen that cyclic linearization also depends heavily on infor-

mation about precedence relations. Note that despite both the directionality parameters

approach and LCA involving precedence relation, they do di�er in the speci�c content

of precedence relations. In the earlier approaches, (20) and (21) are used to specify the

precedence relations; however, precedence relations do not seem to be de�ned very clearly.

For instance, since English is set to have the parameter in (20a), in structure (23), see is the

head and the book is the complement and head should precede its complement, but what

does it mean by see preceding the book? One can imagine two situations in (24).
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(23) VP

DP

NP

N
0

book

D
0

the

V
0

see

(24) a. see precedes the, see follows book

b. see precedes the, see precedes book

When one says head precedes complement, one means (24b), but the head-complement

parameter statement in (20a) does not explicitly state (24b). Thus, in order to be explicit and

speci�c about the ordering between lexical items, one needs a set of precedence relations

that specify the ordering relations between lexical items. For instance, there should be a set

of precedence relations that states see precedes the, see precedes book and the precedes book.

In fact, this is what is implemented in Kayne (1994) and in this dissertation, I follow Kayne

(1994) and include such sets of explicit and speci�c precedence relations in linearization.

Now that I have presented that linearization needs not only precedence relations,

but a set of precedence relations that specify the ordering relations between items, the

question is:

(25) What properties should a set of precedence relations have?

Kayne (1994) proposes that the linearization of lexical items should subject to the following

conditions:

(26) a. All vocabulary items in the phrase marker p must be in the linearization of p.

(Totality)

b. For all vocabulary items, a and b in p, the linearization of p cannot include

both a ă b and b ă a. (Antisymmetry)
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c. For all vocabulary items, a, b, c in p, if the linearization of p includes a ă b

and b ă c then it must include a ă c. (Transitivity)

In this dissertation, following Kayne (1994), I adopt the view that a linearization of items

should have the Totality and Antisymmetry property, and in addition, I follow Partee, ter

Meulen and Wall (1990), and adopt the view that a linearization of items should also have

the Anti-re�exivity property — to put it simply, an item cannot be ordered relative to itself.

Now that the properties of a set of precedence relations are determined, the question is:

(27) How is a set of precedence relations generated?

Although linearization in this dissertation has the same goal of restricting the

precedence relations as Kayne (1994)’s LCA, di�erent from Kayne (1994)’s LCA, I follow

Kusmer (2019) and adopt the view that linearization process contains the Candidates

Generator G and the Constraints, which generate all possible precedence relations but

rule out the illegitimate ones. Regarding the Constraints, I adapt the Totality Constraint

and the Asymmetry Constraint, from Kayne (1994), the Anti-re�exivity Constraint from

Partee, ter Meulen and Wall (1990), and Language Speci�c Constraints from Wilder (1999)

and Kusmer (2019). Note that the Totality Constraint, the Asymmetry Constraint and

the Anti-re�exivity Constraint makes sure that the linearization is consistent and the

Language Speci�c Constraints make sure that linearization yields the correct ordering

of the items. Details of the constraints are presented in chapter 4. Another di�erence

between Kayne (1994)’s LCA and the linearization in this dissertation is that I follow Halle

and Marantz (1993)’s work about distributed morphology, and assume that vocabulary

items are inserted after syntax. Thus, in this dissertation, the terminal nodes in syntax are

X
0

and not vocabulary items. Instead, they are occupied by the morphemes and features

that vocabulary items will appear. Correspondingly, the Candidate Generator and the

Constraints work on X
0

nodes. Speci�cally, I propose that only the highest X
0

nodes can

serve as the input for the Candidate Generator, details of which are discussed in chapter 4.
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As a quick summary, so far, I have discussed that a set of precedence relations is

needed in linearization, what properties a set of precedence relations should have, and

how the linearization in this dissertation yields such sets of precedence relations. However,

I propose that only having precedence relations is not enough; a linguistic representation

of a string is also needed in linearization. To be more speci�c, precedence relations (e.g., A

ă B, A ă C, B ă C) should be further mapped to a string of nodes (e.g., ăS ABC ą), and I

propose a detailed Set-to-String algorithm to implement this mapping process.

Evidence motivating the linguistic representation of a string comes from the fact

that sometimes, prosodic operations need to look at the beginning and ending of a string.

For instance, according to Selkirk (1996), in English, when functional words appear at the

end of a phrase, it cannot have the reduced form, examples for which are shown in (28).

Since the precedence relations do not, at least directly, provide the information about the

boundary of a string, having a linguistic representation of a string at PF in addition to

precedence relations is useful.

(28) a. I don’t know where Ray is. [iz] *[@z] *[z]

b. I can eat more than Ray can. [kæn] *[k@n] *[kn

"
]

(Selkirk 1996: 200, ex. 27)

Once a string of nodes is formed, lexical items can be inserted and the string of

lexical items becomes the output of PF.

Before going to the next section, I use a simple example in (29) to illustrate how

the basic linearization process works in this dissertation under the bare phrase structure

theory (cf. Chomsky (1995, 2000, 2001)).
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(29) TP

TP

VP

V
0

‘

run

T
0

‘

can

D
0

3
rd

, -pl, +fem

In the �rst part of the linearization process, following Kusmer (2019), there are

candidates Generator G and Constraints, where I propose that only maximal X
0

nodes

serve as the input for Candidates Generator G. After imposing Constraints on the sets

generated by Candidates Generator G, linearization yields a set of ordered pairs (30), which

shows the precedence relations between nodes in that structure (the symbol “ă” represents

“precedes”).

(30)

$

’

&

’

%

D0 ă T 0

D0 ă V 0

T 0 ă V 0

,

/

.

/

-

Next, the precedence relations (30) are mapped to a string of nodes (31). This

mapping is implemented in by the Set-to-String algorithm that I propose.

(31) ăS D
0
T

0
V

0
...ą

Finally, following Halle and Marantz (1993)’s work on distributed morphology,

I assume that vocabulary items are inserted after syntax. In the proposed linearization

process, the last step is to form lexical insertion sites (32) for each node in the string, and

vocabulary items are inserted to these sites based on the features encoded in each node,

an example of which is shown in (33). In chapter 5, I explain how this basic linearization

process work in corporation with Fox and Pesetsky (2005)’s cyclic linearization.
6

Note

6
One question about the architecture of this linearization process is how it deals with post-syntactic

operations that rearrange the word order (cf. Embick and Noyer (2001)). One example is Latin conjunction,

shown in (i). Embick and Noyer (2001) argues that (i) involves local dislocation, which is a post-syntactic

operation, that cliticizes the conjunction =que to the �rst syntactic element of the right conjunct (in syntax,
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that for ease of presentation, I do not show the features of each node in the examples in

this dissertation but assume that the features are there and vocabulary items are inserted

based on the corresponding features.

(32) ăS #D
0
##T

0
##V

0
#...ą

(33) she can run

1.3 The phonetic realization of a moved item

Movement is a syntactic operation that causes one item to occupy more than one syntactic

position, and normally, the moved item is only pronounced once. For instance, in the

English example (34) (repeat of example (2)), the auxiliary verb can undergoes T
0
-to-C

0

movement and occupies both the T
0

and C
0

position but it is only pronounced in the C
0

position. Another example from English is in (35), where the verb phrase eating apples

is topicalized and occupies both the VP position and the topic position but it is only

pronounced in its topic position.

(34) T-to-C movement

a. Can she run?

b. *Can she can run?

the conjunct is in between the two constituents but at PF it is cliticized to the �rst syntactic element of the

right conjunct by local dislocation). I will not go into the details of how to solve this problem but I suggest

that following Kusmer (2019), it might be possible that local dislocation could be dealt with by adding more

constraints on the set of precedence relations in addition to the constraints proposed in this dissertation. For

instance, for the Latin conjunction case, there can be a constraint stating that the conjunction has to follow

the �rst syntactic element but precede the rest of the elements of the right conjunct.

(i) a. boni

good

pueri

boys

bonae=que

good=and

puellae

girls

‘good boys and good girls’

b. Syntax: [[boni pueri] que [bonae puellae]]

c. PF: [[boni pueri] [bonae=que puellae]]
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(35) Topicalization

a. Eating apples, I like .

b. *Eating apples, I like eating apples.

Take the English sentence in (2) as an example. Before movement, the structure

of the example is shown in 1
7
. Under the copy theory of movement (cf. Chomsky (1993),

Nunes (2004) among othters), a copy of T
0

is made 2; and then T
0

and C
0

are merged 3.

Finally, the lower copy of T
0

is deleted.

(36)

a. Build the structure

CP

TP2

TP1

VP

V
0

run

T
0

can

DP2

D2

0

she

C
0

b. Make a copy

CP

TP2

TP1

VP

V
0

run

T
0

can

DP2

D2

0

she

C
0

T
0

can

c. Merge T
0
and C

0

CP

TP2

TP1

VP

V
0

run

T
0

can

DP2

D2

0

she

C1

0

C
0

T
0

can

However, in some cases, a moved item is pronounced multiple times. One of these

cases is verb-doubling, which has been argued to be derived by movement, in Yiddish

(DavisPrince 1986, Cable 2004), Hebrew (Landau 2006), and Mandarin (Cheng 2013), among

other languages. An example of V-doubling is shown in (37), where the participle chi-guo

‘eaten’ moves but it must be pronounced twice.
8

7
For ease of presentation, I ignore vP and the base position of the external subject.

8
In this dissertation, I use V-doubling as an umbrella term to refer to V

0
/v

0
/Asp

0
-doubling.
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(37) Mandarin verb-doubling

a. chi-guo,

eat-asp

Lili

Lili

dique

indeed

meiyou

not

chi-guo

eat-asp

bale.

Guava

‘As for having eaten, Lili indeed hasn’t eaten Guava (but she has seen it

before).’

b. *chi-guo,

eat-asp

Lili

Lili

dique

indeed

meiyou

not

bale.

Guava

Intended: ‘As for having eaten, Lili indeed hasn’t eaten Guava (but she has

seen it before).’

Another case, where a moved item is pronounced more than one time, is VP-dou-

bling, which has been argued to be derived by movement, in Yoruba (Manfredi 1993).
9

Later

in this dissertation, I provide new data showing that VP-doubling also exists in Mandarin,

which is also derived by movement. An example of VP-doubling in Mandarin is shown in

(38), where the VP can be pronounced once or multiple times.
10

(38) Mandarin VP-doubling

a. Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

meiyou

not

chi-guo

eat-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

b. ??Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

meiyou

not

.

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

Problems arise if one applies the same operations for deriving the sentence in (2)

to the V(P)-doubling cases in (37a) and (38a): it is unexplained why the lower copy of the

9
Note that I use VP-doubling as an umbrella term to refer to VP/vP/AspP-doubling.

10
The judgement reported for (38b) might vary; one of my consultants can accept it to some extent,

though he notes other alternatives are preferable—for example, he �nds fronting only the object improved in

comparison. I and my other consultant agree on the judgement shown.
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V(P) in V(P)-doubling cases is also pronounced rather than deleted. This dissertation aims

at addressing this problem and provides a linearization process that correctly yields the

phonetic realization of the moved items for cases like (2) (chapter 4) and (35) (chapter 5)

and also for the verb-doubling cases in (37) and (38) (chapter 6).

1.4 PIC, cyclic linearization and my analysis

In this section, I provide a comparison between Chomsky (2000, 2001), with a focus on the

Phase Impenetrability Condition (PIC), and Fox and Pesetsky (2005)’s cyclic linearization,

which I adopt in my analysis, and then provide a comparison between Fox and Pesetsky

(2005)’s cyclic linearization and my analysis.

1.4.1 PIC vs. cyclic linearization

Both Chomsky (2000, 2001) and Fox and Pesetsky (2005) assume that the mapping between

syntax and phonology occurs at various points in the course of the derivation instead

of mapping the whole structure to phonology all at once. However, they di�er in which

syntactic units are mapped, and crucially they have di�erent restrictions on the mapped

syntactic units, which results in di�erent predictions about how movement can happen.

In the following, I start with their di�erences in which syntactic units are mapped, and

then discuss their di�erent restrictions on those syntactic units, and �nally, focus on the

di�erent predictions they make for movement.

Regarding the mapped syntactic units, Chomsky (2000, 2001) proposes that it is

the complements of the phase heads (i.e., v, C) that should be mapped to phonology in

the course of derivation, and refers to the complements of the phase heads as “Spell-out

domains”. Here, phase is de�ned as a syntactic object that is relatively independent in

terms of interface properties in Chomsky (2000).
11

However, Fox and Pesetsky (2005) has a

11
Roughly speaking, based on Chomsky (2000), for LF, a phase should be propositional and based on

Chomsky (2001), for PF, a phase should have a degree of phonetic independence.
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di�erent idea about which syntactic units are mapped — for Fox and Pesetsky (2005), it is

all the material in CP, VP and DP that should be mapped during the derivation and Fox

and Pesetsky (2005) refer to the entire CP, VP and DP as “Spell-out domains.”
12

So, despite

both approaches using the same term “Spell-out domain,” they refer to di�erent syntactic

units.

Take (39) as an example. For Chomsky (2000, 2001), during the derivation, once

vP is built, the complement of v is sent to phonology to be linearized, and then later on

once the CP layer is built, the complement of C is sent to phonology to be linearized, and

this process continues until it reaches the highest CP.
13

For Fox and Pesetsky (2005), once

the lowest DP is built, it is linearized and the ordering statements are stored at PF, and

later on, once the VP is built, it is linearized and the ordering statements are also stored at

PF along with the ordering statements collected from the previous DP Spell-out domain.

So, one can imagine that there is a “pool” of linearization statements at PF, and every time

a Spell-out domain is linearized, ordering statements are added to the pool, and eventually

the pool contains the ordering statements from all the Spell-out domains. This process

continues until it reaches the highest CP.

(39) [CP I [vP [VP wonder [CP which person Mary [vP [VP saw twhich person]]]]]]

Now that I have presented the syntactic units that are mapped in the two ap-

proaches, next I show the di�erent restrictions on the mapped syntactic units between

these two approaches. Chomsky (2000, 2001) proposes the Phase Impenetrability Condition

(40), which restricts the accessibility of the complement of the head in a phase to operations

outside the phase.

12
Note that Sabbagh (2003) argues that PP is also a Spell-out domain and Ko (2005) argues that vP is also a

Spell-out domain.

13
For ease of discussion, I ignore the base position of the subject, which does not a�ect the analysis.
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(40) In a phase α with head H, the domain of H is not accessible to operations outside

α, only H and its edge are accessible to such operations.

Chomsky (2000, 2001)

To be more speci�c, once a phase is constructed in syntax, the domain (i.e., the complement

of the head) in the phase is sent to PF and LF, and it is not accessible to operations (e.g.,

movement) outside the phase. As a result, if the material in the complement of the head

in the current phase needs to move out, it has to move to the edge of the phase �rst in

order to be accessible to this movement operation, assuming that the head that triggers

this movement is out of the current phase (if the complement stays in situ, by the time

that the higher head that triggers the movement of the complement is constructed, the

head can only get access to the edge of the lower phase, but the in situ complement is not

at the edge of the lower phase). Here, the edge of a phase includes the phase head and its

speci�ers and is referred to as “escape hatch” in Chomsky (2000, 2001).
14

An example of

such movement is shown in (41), where “who” in the vP phase needs to move to the edge

of vP in order to move to Spec, CP.

(41) I wonder [CP who Mary [vP saw ]]

Di�erent from the approach in Chomsky (2000, 2001), Fox and Pesetsky (2005)

do not use the notion of “phase” nor do they have the restrictions stated in PIC. Instead,

they propose Order Preservation (42), which states that the linearization information of

each Spell-out domain must be preserved, and they further propose the restriction that

linearization information collected from all the Spell-out domains cannot be contradictory.

14
Evidence supporting successive cyclic movement through Spec, CP and Spec, VP can be found in

literature, such as Brass (1986), Lebeaux (1991) (for CP) and Fox (1999) (for VP).
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(42) Order Preservation

Information about linearization, once established at the end of a given Spell-out

domain, is never deleted in the course of a derivation. The sole function of Spell-

out is to add information.

Fox and Pesetsky (2005)

Recall that once a CP/VP/DP is linearized, the ordering statements are added to a pool

at PF. So, for instance, if an item moves successive-cyclicly (43a), there will be no contra-

dictory ordering statements in the pool; however, if it does not move successive-cyclicly

(43b), the ordering statement “saw ă who” is collected from the VP Spell-out domain

and “who ă saw” is collected in the CP Spell-out domain. Due to Order Preservation,

linearization information presented by both ordering statements should be preserved, and

thus, both of the statements are kept in the pool at PF. However, since these two ordering

statements contradict each other, the linearization process crashes.

(43) a. I wonder [CP who Mary [VP saw ]]

b. *I wonder [CP who Mary [VP saw ]]

As a quick summary, both approaches have restrictions on the mapped syntactic

units/Spell-out domains, but the di�erence is that Chomsky (2000, 2001) proposes PIC,

which restricts the accessibility of the Spell-out domains (i.e., the complement of the head

in a phase) to operations outside the current phase; while Fox and Pesetsky (2005) restricts

that linearization information collected from each Spell-out domains should be preserved

and cannot be contradictory.

The important thing is that their di�erence in the restrictions of the Spell-out

domains lead to di�erent predictions for how movement can happen. For Chomsky (2000,

2001), since the complement of the phase must �rst move to the escape hatch (i..e, the

edge of the current phase) in order to move out, this forces movement to happen in a

successive-cyclic fashion instead of moving in one fell swoop. In contrast, Fox and Pesetsky
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(2005) does not have such escape hatch since they do not have any syntactic restrictions

on the accessibility of the complement of a head, and thus there is no requirement for

an item to move in a successive-cyclic fashion. For Fox and Pesetsky (2005), as long as

the linearization information collected from each Spell-out domain does not cause the

linearization process to crash, movement can happen in a successive-cyclic fashion or a

non successive-cyclic fashion. For instance, the previous case in (43) is an example of how

successive-cyclic movement satis�es the linearization requirement (i.e., no contradictory

linearization information). However, Fox and Pesetsky (2005) also predict that it should

be possible for an item X not to move successive-cyclicly (e.g., a phrase does not have to

move to the edge of a Spell-out domain), as long as all the material preceding the item X

in the Spell-out domain also moves and lands at a higher position than X. Take (44) as an

abstract example. Assuming both βP and αP are Spell-out domains, Y moves directly from

its base position in βP to a higher position in αP without moving to the edge of βP �rst.

However, this does not cause an issue because the item X that precedes Y also moves to αP

and it lands at a position still higher than Y. To be more speci�c, the ordering statement “X

ă Y” is collected in the βP Spell-out domain and in αP, it is still “X ă Y” that is collected

as an ordering statement. Thus, the ordering statements in the pool at PF are consistent

(and in this case they are the same). In this case, Y does not move successive-cyclicly, but

this is predicted to be allowed by Fox and Pesetsky (2005) because the requirement that

there cannot be contradictory linearization information is satis�ed.

(44) [αP X Y [βP tX tY]]

Of course, suppose instead that only Y moved but X did not, as in (45).

(45) [αP Y [βP X tY]]

“X ă Y” would be collected in the βP Spell-out domain but “Y ă X” would be collected in

the αP Spell-out domain. As a result, when both statements are in the pool, they contradict

each other and cause the linearization process to crash. Thus, the key is that an item can
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move in a non successive-cyclic way as long as the material preceding the item also moves.

A concrete example of this is object shift, discussed in chapter 5.

To summarize, in Fox and Pesetsky (2005)’s system, there are two ways that

movement across a Spell-out domain can occur. One way is for an item X to move

successive-cyclicly, and the other is for all the material preceding a moved item X in its

initial Spell-out domain to move if X does not move successive-cyclicly. A more detailed

discussion of Fox and Pesetsky (2005) is presented in chapter 5.

In short, Chomsky (2000, 2001) proposes a notion of phasehood and an accompa-

nying Phase Impenetrability Condition, which forces a moved item to move to an escape

hatch in order to move out of a phase, which results in successive-cyclic movement. In

contrast, Fox and Pesetsky (2005) do not make use of the notion of phasehood but propose

that DP, VP and CP are domains that are mapped from syntax to phonology, and the

ordering statements that are cyclicly collected from them are stored at PF and there cannot

be contradictory linearization information. Two ways of movement that crosses a Spell-out

domain are made possible: one way is for an item to move successive-cyclicly, and the

other is to move both an item X and the material preceding X in its initial Spell-out domain

to a higher Spell-out domain. Both ways ensure the ordering statements that are collected

from the domains are consistent.

1.4.2 cyclic linearization vs. my analysis

In my analysis, following Fox and Pesetsky (2005) instead of Chomsky (2000, 2001), I also

take the perspective that an item does not have to move successive-cyclicly as long as

the linearization requirement is satis�ed. However, my system provides one more way of

deriving movement that crosses a Spell-out domain. This new possibility occurs when an

item moves non-successive-cyclicly without the material preceding it in its initial Spell-out

domain moving, which leads to the moved item being pronounced multiple times. For

instance, in an earlier Yiddish example, repeated below as (46), I argue that the verb moves
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non-successive-cyclically and the material preceding it in the CP Spell-out domain does

not move. This movement gives rise to double pronunciation.

(46) Yiddish

a. Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’ (Cable 2004: 2, ex. 2(a))

b. TopP

CP

TP2

TP1

AspP

vP

VP

DP1

�sh

Asp1

0

Asp
0

v1

0

v
0

V
0

T
0

DP2

Max

C
0

has

Top1

0

Top
0

Asp1

0

Asp
0

v1

0

v
0

V
0

My analysis deals with both ways of deriving movement that crosses a Spell-out

domain discussed in Fox and Pesetsky (2005) and also with long distance movement, such

as the one in (46). It thus provides a more general picture of the mechanism of cyclic

spell-out, with a particular focus on what ordering statements should be kept or deleted

when cyclic spell-out is applied. The technique to implement this is a rule of Ordering

Deletion, which I discuss in more detail in chapter 5.
15

My analysis also provides a detailed view of the linearization process that di�ers

in some respects from the implementation of Fox and Pesetsky (2005)’s cyclic linearization:

15
Note that part of the technique deals with deleting ordering statements, not deleting linearization

information, which still obeys Fox and Pesetsky (2005)’s Ordering Preservation. More discussion about this

is in chapter 5.
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(47) a. My analysis uses a di�erent linearization algorithm that generates sets of

ordered pairs, which includes the Candidates Generator G and the Constraints

following Kusmer (2019). Detailed discussion can be found in chapter 4.

b. Cyclic linearization is applied after the whole syntactic structure is built

instead of at di�erent points in the derivation. Concrete examples of how

this works are discussed in chapter 5.

c. In addition to DP, VP, and CP, the root node is always a Spell-out domain.

d. All the material inside the current Spell-out domain is linearized (in Fox and

Pesetsky (2005), material that is linearized in the previous Spell-out domain

is not linearized again in the current Spell-out domain), and the ordering

statements from all the Spell-out domains are put together by the union

operation, which is discussed in chapter 5.

e. In addition to precedence relations, my analysis also has a string (of nodes)

representation, which is discussed in chapter 4.

To summarize, my analysis details another way that movement crossing a Spell-out domain

can occur, in addition to the two ways proposed in Fox and Pesetsky (2005), and thus

provides a more general way of deciding which ordering statements are kept and which are

deleted when cyclic linearization is applied. In addition, I also provide a detailed account

of the linearization process that di�ers in some ways from Fox and Pesetsky (2005)’s cyclic

linearization.

1.5 Theoretical assumption: HMC

Based on the Head Movement Constraint (cf. Travis 1984), head movement that skips

head(s) (49) is an illegitimate operation. This is true of Germanic languages, however, it

has been shown in the literature (cf. Rivero (1994) Koopman (1984), Roberts (2010) among

others) that there are cases where head movement skips an intermediate head. For instance,

27



Rivero (1994) argues that in Bulgarian, verbs move across auxiliaries in the present perfect

context in main clauses. An example is shown in (48). In this dissertation, I propose that

something similar happens in Yiddish — in the Yiddish verb-doubling constructions, v
0

moves to Top
0

skipping intermediate heads.

(48) Bulgarian

a. Pročel

read

sǔm

I.have

knigata

book.the

‘I have read the book.’

b. *Sǔm Pročel knigata (Rivero 1994: 87, ex. 34)

In addition, Head Movement Constraint states that excorporation (49) is also

illegitimate.

(49) ZP

YP

...Y1

0

Y
0

Z1

0

Z
0

X
0

However, there is also literature (cf. Roberts (2010)) that argues that in some cases, excor-

poration is possible. For instance, Roberts (2010) argues that in the Italian sentence l’ha

vista ‘she/he saw her’, the clitic la excorporates to Aux, which is shown in (50).
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(50) Italian

Aux

Part

vPart

Part

-ta

v

v

vis

Aux

Auxla

(Roberts 2010: 207, ex. 33)

In this dissertation, I assume that excorporation is possible in Yiddish, Hebrew and Man-

darin.

1.6 Theoretical background: Multidominance

In this dissertation, I use the multidominance representation (cf. Engdahl (1980), Gärtner

(1997), Nunes (2001), Starke (2001), Frampton (2004), Citko (2005), Fitzpatrick and Groat

(2005), Johnson (2012), and many others) to model movement, rather than the copy theory

of movement (cf. Chomsky (1993), Nunes (2004)).

Take the English sentence in (51) as an example. Traditionally, to model movement,

the copy theory of movement follows these steps: (i) build up the structure before copying

(52a),
16

(ii) make a copy of T
0

(52b), (iii) merge T
0

and C
0

(52c).

16
For ease of presentation, I ignore vP and the base position of the external subject.
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(51) Can it �y?

(52)

a. Build the structure

CP

TP2

TP1

VP

V
0

�y

T
0

can

DP2

D2

0

it

C
0

b. Make a copy

CP

TP2

TP1

VP

V
0

�y

T
0

can

DP2

D2

0

it

C
0

T
0

can

c. Merge T
0
and C

0

CP

TP2

TP1

VP

V
0

�y

T
0

can

DP2

D2

0

it

C1

0

C
0

T
0

can

However, in the multidominance representation, there is no operation of copying;

it is just one item but merged twice. In both (52) and (53), one �rst builds the structure.

However, unlike the copy theory of movement (52), there is no copy made in multidom-

inance (53b). Instead, T
0

is remerged with C
0

(53c). So, under multidominance, T
0

is

multidominated — T
0

is immediately dominated by both TP1 and C1

0
, and has two sisters

(i.e., VP and C
0
), whereas under the copy theory of movement, the lower copy is immedi-

ately dominated by TP1 with only one sister (i.e, VP) and the higher copy is immediately

dominated by C1

0
with only one sister (i.e., C

0
).

30



(53)

a. Build the structure

CP

TP2

TP1

VP

V
0

T
0

DP2

D2

0

C
0

b. No copy is made

CP

TP2

TP1

VP

V
0

T
0

DP2

D2

0

C
0

c. Remerge T
0
with C

0

CP

TP2

TP1

VP

V
0

T
0

DP2

D2

0

C1

0

C
0

Later in chapter 3, I discuss Nunes (2004)’s analysis, which uses the copy theory

of movement, and I will show why multidominance is a better way to model movement

than the copy theory of movement, especially with respect to the phonetic realization of a

moved item.
17

1.7 The organization of the dissertation

In chapter 2, I introduce V(P)-doubling constructions, showing evidence for the movement

approach, the morphology of the fronted verb and provides a brief introduction of their

pragmatics. In chapter 3, I review Nunes (2004)’s and Landau (2006)’s analysis for the

phonetic realization of a moved item and discuss their problems, where I will also compare

multidominance and the copy theory of movement and show why multidominance is better

at modeling movement. In chapter 4, I present a basic linearization process and discuss

how it works for cases where the moved item is pronounced in only one of its position. In

chapter 5, I introduce Fox and Pesetsky (2005)’s cyclic linearization and update the basic

linearization process by incorporating Fox and Pesetsky (2005)’s cyclic linearization, and

show how the updated linearization process works for cases where the moved item is

17
Note that multidominance is a representation of movement and as such is subject to constraints on

movement dependencies. For instance, remerge a DP to a CP is not possible if the DP is inside a complex

subject.
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pronounced in only one of its positions. In chapter 6, I show how the cyclic linearization

process works for the verb-doubling cases from Hebrew, Yiddish and Mandarin.
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CHAPTER 2

V(P)-doubling constructions

In this dissertation, I focus on verb-doubling constructions with verb fronting and VP-

fronting; and VP-doubling constructions with VP fronting. Examples for verb-doubling

are shown in (1): (1a) shows verb-doubling with verb fronting, where the root verb [k, n,

t] is fronted and doubled; and (1b) shows verb-doubling with VP fronting, where the root

verb [sh, t, f] ‘buy’ and the object et ha-praxim ‘the �owers’ are fronted but only the verb

root [sh, t, f] ‘buy’ is doubled. (2) shows VP-doubling with VP fronting where the verb

phrase jian-guo bale ‘having seen Guava’ is fronted and doubled.

(1) Verb-doubling (Hebrew)

a. Verb-doubling (with verb-fronting)

Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

b. Verb-doubling (with VP-fronting)

Liknot

buy.inf

et

acc

ha-praxim,

the-�owers

hi

she

kanta

buy.pst

‘As for buying the �owers, she bought.’ (Landau 2006: 6, ex. 8)

(2) VP-doubling (Mandarin)

Jian-guo

see-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

jian-guo

see-asp

bale

Guava

‘As for having seen Guava before, Lili indeed hasn’t seen Guava before.’
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In the following sections, I present properties of V(P)-doubling constructions, including

evidence that support a movement account of V(P)-doubling, the in�ections of the fronted

verb and a brief introduction of their pragmatics.

2.1 Evidence for movement

In this section, I discuss evidence supporting the analysis that the fronted verbal material

is derived by movement in V(P)-doubling constructions, which include island e�ects

and obligatory verb-matching. I �rst focus on verb-doubling constructions. Supporting

evidence for movement comes from the facts that verb-doubling constructions show island

e�ects (i.e., if an item moves, the two positions that the moved item is related to are subject

to locality conditions). Take Hebrew as an example, a sentence is marginally degraded

when the (V)P upstairs is across a wh-island (4); a complex NP (5), a subject-island (6) or an

adjunct clause (7); however, V(P) fronting is permitted across �nite clause boundaries(3),

which is typical for A-bar movement.
1

(3) Finite clause

a. V fronting

Lenakot,

clean.infl

nidme

seems

li

to.me

[še-Rina

that-Rina

amra

said

[še-Gil

that-Gil

kvar

already

nika

cleaned

et

acc

ha-xacer]].

the-yard

‘As for cleaning, it seems to me that Rina said that Gil had already

cleaned the yard.’

1
Note that the English translations for V(P)-doubling cases are sentences that start with “as for V(P)”, and

“as for V(P)” is base-generated, not derived from moving from downstairs. Thus, these English sentences

with “as for V(P)” are not sensitive to islands.
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b. VP fronting

Lenakot,

clean.infl

et

acc

ha-xacer,

the-yard

nidme

seems

li

to.me

[še-Rina

that-Rina

amra

said

[še-Gil

that-Gil

kvar

already

nika]].

cleaned

‘As for cleaning the yard, it seems to me that Rina said that Gil had

already cleaned.’

(4) Wh-island

a. V fronting

??Likro,

read.infl

ša’alti

asked.1.sg

[matay

when

Gil

Gil

kvar

already

kara

read

et

acc

ha-sefer].

the-book

‘As for reading, I asked when Gil had already read the book.’

b. VP fronting

??Likro

read.infl

et

acc

ha-sefer,

the-book

ša’alti

asked.1.sg

[matay

when

Gil

Gil

kvar

already

kara].

read

‘As for reading the book, I asked when Gil had already read.’

(5) Complex NP island

a. V fronting

*Likro,

read.infl

Gil

Gil

daxa

rejected

et

acc

ha-te’ana

the-claim

[še-hu

that-he

kvar

already

kara

read

et

acc

ha-sefer].

the-book

‘As for reading, Gil rejected the claim that he already read the book.’

b. VP fronting

*Likro

read.infl

et

acc

ha-sefer,

the-book

Gil

Gil

daxa

rejected

et

acc

ha-te’ana

the-claim

[še-hu

that-he

kvar

already

kara].

read

‘As for reading the book, Gil rejected the claim that he already read.’

(6) Subject island

a. V fronting

*Likro,

read.infl

[še-yevakšu

that-will.ask.3.pl

me-Gil

from-Gil

še-yikra

that-will.read.3.sg

et

acc

ha-sefer]

the-book

za

it

ma’aliv.

insulting

‘As for reading, that they would ask Gil to read the book is insulting.’
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b. VP fronting

*Likro

read.infl

et

acc

ha-sefer,

the-book

[še-yevakšu

that-will.ask.3.pl

me-Gil

from-Gil

še-yikra]

that-will.read.3.sg

za

it

ma’aliv.

insulting

‘As for reading the book, that they would ask Gil to is insulting.’

(7) Adjunct island

a. V fronting

*Likro,

read.infl

nifgašnu

met.1.pl

[axarey

after

še-kulam

that-everybody

kar’u

read.3.pl

et

acc

ha-sefer].

the-book

‘As for reading, we have met after everybody read the book.’

b. VP fronting

*Likro

read.infl

et

acc

ha-sefer,

the-book

nifgašnu

met.1.pl

[axarey

after

še-kulam

that-everybody

kar’u].

read.3.pl

‘As for reading the book, we have met after everybody read.’

(Landau 2006: 43, ex. 23-26)

Additionally, the movement analysis is compatible with the facts that mismatch

between the verb roots is not allowed. This phenomenon is also referred to as the absence

of any genus-species e�ects (Cable, 2004). To be more speci�c, under the movement

analysis, it is the same item that occupies multiple positions, so there should not be a

mismatch between the verbs. However, under the base-generation analysis, it should be

possible for a mismatch between the V(P)s upstairs and downstairs, where the two V(P)s

have a genus-species relation. For instance, in (8), the verb root upstairs is ‘travel’ and the

verb root downstairs is ‘�y’. The mismatch of the two verb roots in (8) makes the sentence

ungrammatical. If the V(P) fronting is derived by base-generation, (8) should have been

possible, given that ‘travel’ and ‘�y bears a genus-species relation and thus, semantically

the sentence is possible (i.e., it is semantically possible to say the English counterpart of

the sentence).
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(8) Hebrew

*Letayel

travel.inf

le-amerika,

to-America

tasti

�y.1.sg.pst

le-nyu-york

to-New-York

‘As for traveling to America, I �ew to New York.’ (Bleaman 2021: 6, ex. 11(a))

In contrast, consider the previous Hebrew examples in (1), the verb roots upstairs

and downstairs match and the sentences are grammatical. Note that the verb upstairs and

downstairs can have di�erent in�ections. For instance, in (1), the verb upstairs is in the

in�nitival form but the verb downstairs is in the �nite form. More discussions about the

in�ectional forms of the verb upstairs are in the next section. The important point is that

whatever is moved should match in the higher and lower position. In the case of (1), it is

the verb root that moves, so the verb roots upstairs and downstairs should match.

Having shown evidence supporting a movement analysis for verb-doubling con-

structions, in the following, I present evidence supporting a movement analysis for VP-

doubling constructions using data from Mandarin. VP-doubling in Mandarin also shows

island e�ects. (9) shows that VP fronting is not blocked by a �nite clause boundary, which

is expected for A-bar movement. In contrast, examples in (10) show that the VP-doubling

constructions are sensitive to di�erent kinds of islands.

(9) Finite clause boundary

Jian-guo

see-asp

bale,

Guava

wo

1.sg

zhidao

know

[Lili

Lili

kending

de�nitely

mei

not

jian-guo

see-asp

bale].

Guava

‘As for having seen Guava before, I know Lili de�nitely hasn’t seen Guava.’

(10) a. Wh-island

*Xihuan

like

bale,

bale

Lili

Lili

wen

ask

[weishenme

why

Moli

Moli

bu

not

xihuan

like

bale].

bale

‘As for liking Guava, Lili asks why Moli does not like Guava.’

b. Complex NP island

*Xihuan

like

bale,

bale

Lili

Lili

fouding-le

deny-asp

[Moli

Moli

bu

not

xihuan

like

bale

bale

de

DE

chuanyan].

rumor

‘As for liking Guava, Lili denies the rumor that Moli does not like Guava.’
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c. Adjunct island

*Jian-guo

see-asp

bale,

Guava

[zai

prep

Lili

Lili

mei

not

jian-guo

see-asp

bale

Guava

zhiqian],

before

ta

3.sg

zui

most

xihuan

like

xigua

watermelon

‘As for having seen Guava before, before Lili has not seen Guava, she likes

watermelon the most.’

d. Coordination island

*Jian-guo

see-asp

bale,

Guava

Lili

Lili

[mei

not

chi-guo

eat-asp

bale]

Guava

bingqie

and

[mei

not

jian-guo

see-asp

bale].

Guava

‘As for having seen Guava before, Lili has not eaten Guava before and has

not seen Guava before.’

e. Relative clause island

*Xihuan

like

bale,

Guava

wo

1.sg

jian-guo

see-asp

[bu

not

xihuan

like

bale

Guava

de

DE

ren]

people

‘As for liking Guava, I have seen people who do not like Guava.’

In addition, in Mandarin, VP-doubling also requires lexical identity. Both zou

and chui have very similar meaning ‘to bash/punch’, and both yonlide and shijinde have

roughly the same meaning “�rmly/heavily”. However, both the verbs and adverbs have to

be identical upstairs and downstairs to make the sentence grammatical.
2

(11) a. * Yonglide

�rmly

zou,

bash

wo

1.sg

dique

indeed

mei

not

shijinde

heavily

chui

punch

‘As for bashing �rmly, I indeed did not punch heavily.’

b. * Yonglide

�rmly

zou,

bash

wo

1.sg

dique

indeed

mei

not

yonglide

�rmly

chui

punch

‘As for bashing �rmly, I indeed did not punch �rmly.’

2
Note that in (11), the VP that is used for testing the identity condition consists of an adverb and a verb.

It is worth pointing out that the lexical identity test is not applicable to the Mandarin data, where the VPs

contain a verb and an object. The reason is that Mandarin has the so-called “dangling topic” constructions,

where the topic is base-generated (cf. Chafe (1976)), which makes it possible for the VPs upstairs and

downstairs to be di�erent. For instance, in 2, the verbs upstairs and downstairs are di�erent and so are the

objects. Thus, for VPs that have a verb and an object, I only resort to island tests (10a)-(10e). As for why

“dangling topic” is not an option for the VPs in (11), I leave it as an open question.

(ii) Chao

Fry

fangbianmian,

instant.noodles

wo

1sg

dique

indeed

jingchang

often

yong

use

henduo

a.lot.of

you

oil

‘As for frying instant noodles, I indeed often use a lot of oil.’
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c. * Yonglide

�rmly

zou,

bash

wo

1.sg

dique

indeed

mei

not

shijinde

heavily

zou

bash

‘As for bashing �rmly, I indeed did not bash heavily.’

d. Yonglide

�rmly

zou,

bash

wo

1.sg

dique

indeed

mei

not

yonglide

�rmly

zou

bash

‘As for bashing �rmly, I indeed did not bash �rmly.’

So far, I have shown evidence supporting the analysis that the fronted verb or VP

in V(P)-doubling constructions is derived by movement. In the next section, I discuss the

possible forms of in�ections of the verb upstairs.

2.2 The morphology of the fronted verb

In V(P)-doubling constructions, the fronted verb can be in the in�nitive form (12), in the

nominalized form (13) or with aspectual marking (14). Based on the typological study of

V(P)-doubling in Hein (2018), the fronted material can be V(P), v(P), or Asp(P) but material

higher than Asp(P) is not found. For instance, tense marking is not found on the fronted

verb.
3
. In Chapter 6, I will show how the morphology of the fronted verb is derived.

(12) In�nitive (Hebrew)

a. Likro,

read.inf

hu

3.sg

kara

read

et

acc

ha-sefer.

the-book

‘As for reading, he read the book.’

b. Likro

read.inf

et

acc

ha-sefer,

the-book

Gil

Gil

kara.

read

‘As for reading the book, Gil read.’ (Landau 2006: 50, ex. 37(a)-(b))

(13) Nominalized (Yoruba)

a. Rí-rà

nmlz-buy

ni,

foc

Ajé

Aje

ra

buy

ìwé.

paper

‘It is a buying that Aje {is doing/did} to {a book/books} [i.e., he didn’t steal

it/them].’

3
I leave it as an open question regarding why material higher than Asp(P) (e.g., T(P)) is banned from

moving to the topic/focus position in V(P)-doubling constructions.
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b. Rí-rà-ìwé

nmlz-buy-paper

ni,

foc

Ajé

Aje

ra

buy

ìwé.

paper

‘It is book-buying that Aje {is doing/did} [i.e., he didn’t go yam-selling].’

(Manfredi 1993: 20, ex. 46(a)-(b))

(14) Aspect (Yiddish)

a. Gegessen,

eat.pftv

hot

has

Maks

Max

gegessen

eat.pftv

�sh.

�sh

‘As for having eaten, Max has eaten �sh.’

b. Gegessen

eat.pftv

�sh,

�sh

hot

has

Maks

Max

gegessen.

eat.pftv

‘As for having eaten �sh, Max has eaten (them).’

(Cable 2004: 2, ex. 2(a)-(b))

2.3 The pragmatics of V(P)-doubling

In this dissertation, I do not provide a detailed analysis for the pragmatics of V(P)-doubling,

but provide a brief introduction about the pragmatic contexts where V(P)-doubling is

used. Crosslinguistically, V(P)-doubling constructions have either a topic (e.g., Hebrew,

Yiddish and Portuguese, etc.) or a focus (e.g., African and Caribbean Creole languages, etc.)

interpretation. An example for the topic interpretation is shown in (15a); and an example

for the focus interpretation is shown in (15b), where axerim ‘others’ is focused.

(15) Hebrew

a. lihyot

to.be

zamin,

available

Gil

Gil

lo

not

tamid

always

haya.

was

‘As for being available, Gil wasn’t always.’

(Landau 2006: 10, ex. 18(a))

b. le-Rina

to-Rina

yeš

there.is

xuš

sense

humor,

humor

aval

but

licxok

to.laugh

hi

she

coxeket

laughs

rak

only

al

on

axerim.

others

‘Rina has a sense of humor, but as for laughing, she will only laugh on others.’

(Landau 2006: 10, ex. 16(a))
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In this chapter, I provide a detailed discussion of the verb doubling constructions.

In the next chapter, I discuss the previous analyses for the phonetic realization of a moved

item and provide an introduction to multidominance, which I use in the proposed analysis.
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CHAPTER 3

Previous analyses

In this chapter, I provide background information for the V(P)-doubling cases. Speci�cally,

I discuss two previous analyses for verb-doubling: one from Nunes (2004) in section 3.1

and the other from Landau (2006) in section 3.2.

3.1 Nunes (2004)

Nunes (2004) provides both an analysis for cases where the moved item is only pronounced

in one of its positions, and an analysis for the verb-doubling constructions under the copy

theory of movement. Note that Nunes (2004) does not provide an analysis for VP-doubling

constructions. In section 3.1.1, I provide a brief introduction to Kayne (1994)’s Linear

Correspondence Axiom (LCA), which is adopted in Nunes (2004). In section 3.1.2, I present

Nunes (2004)’s analysis for cases where the moved item is only pronounced once. In section

3.1.3, I discuss Nunes (2004)’s analysis for cases where the moved item is pronounced mul-

tiple times. In section 3.1.4, I pose some problems for Nunes (2004)’s analysis and provide

a brief preview of how these problems are dealt with in my analysis. Finally, in section

3.1.5, I compare the copy theory of movement and the multidominance representation

of movement and show why multidominance is better at modeling movement given the

technics used in Nunes (2004)’s analysis.
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3.1.1 Kayne (1994)’s Linear Correspondence Axiom

Kayne (1994) proposes Linear Correspondence Axiom that maps a syntactic structure to

precedence relations (i.e., a set of ordered pairs); speci�cally, he proposes that asymmetric

c-command in the syntactic structure maps into linear precedence. LCA is de�ned in (1).
1

Kayne (1994) de�nes c-command in (2).

(1) Linear Correspondence Axiom

Let X, Y be nonterminals and x, y terminals such that X dominates x and Y dominates

y. Then, if X asymmetrically c-commands Y, x precedes y.

(2) α c-commands β i� α and β are categories and every category that dominates α

dominates β, and α excludes β.

(3) A category α excludes β i� no segment of α dominates β.

(4) α dominates β if every segment of α contains β.

The de�nition of category and segment are shown in (5) (cf. May (1985) and Chomsky

(1986)).

(5) A category is the set of α0
in (6) such that each αi+1

0
is a projection of αi

0
, or the set

of αP in (7) such that each αPi+1 is a projection of αPi. Each αi

0
or αPi is a segment

of that category.

(6) αn

0

...αi+1

0

...αi

0

...

(7) αPn

...αPi+1

...αPi

...

Take (8) as a concrete example. In this case, There are four categories, which are

shown in Table 3.1.

1
Note that this section is largely based on Johnson (2004).
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(8) read it

(9) VP

DP

D
0

it

V
0

read

Category Segments in the category

{V
0
} V

0

{VP} VP

{DP} DP

{D
0
} D

0

Table 3.1: Categories and Segments

V
0

c-commands D
0

because (i) they are both categories, (ii) every category that

dominates V
0

also dominates D
0

(i.e., VP dominates V
0

and D
0
), and (iii) V

0
excludes D

0

(i.e., all the segments of category V
0

(i.e., V
0
) do not dominate D

0
). However, D

0
does not

c-command V
0

because despite the fact that (i) they are both categories and (ii) D
0

excludes

V
0
, there exists the category DP that dominates D

0
but does not dominate V

0
. In this sense,

V
0

asymmetrically c-command D
0
. The relevant dominance and exclusion relations are

shown in (10) and (11).

(10) a. The category {VP} dominates V
0

and D
0
.

b. The category {DP} dominates D
0
.

(11) a. The category {V
0
} excludes VP, DP and D

0
.

b. The category {D
0
} excludes DP, VP and V

0
.

Thus, based on LCA, the terminal node read, which is dominated by the non-terminal node
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V
0
, precedes the terminal node it, which is dominated by the non-terminal node D

0
,which

is shown in (12). “A ă B” means A precedes B.

(12) {read ă it}

In addition, Kayne (1994) proposes that the linear ordering that LCA yields should

have three de�ning properties, which are formulated by Johnson (2016) in (13). These

conditions require that all the vocabulary items in the sentence should be linearized and

the linearization should be consistent. In Kayne (1994) and Nunes (2004), vocabulary items

are the same as terminal nodes.

(13) a. All vocabulary items in the phrase marker p must be in the linearization of p.

(Totality)

b. For all vocabulary items, a and b in p, the linearization of p cannot include

both a ă b and b ă a. (Antisymmetry)

c. For all vocabulary items, a, b, c in p, if the linearization of p includes a ă b

and b ă c then it must include a ă c. (Transitivity)

In the case of (8), it satis�es the Totality Condition because all the vocabulary items (i.e.,

read and it) are ordered. It satis�es the Antisymmetry Condition because there is no

contradictory orderings. It trivially satis�es the Transitivity Condition because there is

only one ordering statement in (8).

Another concrete example, which involves speci�ers, is shown in (14). The struc-

ture of it is shown in (15). For ease of presentation, I ignore vP and the base-generated

position of the agent. A summary of the a-symmetric c-command relations are shown in

Table 3.2.
2

The categories and segments are summarized in Table 3.3.

2
Note that under LCA, all the non-terminal nodes (i.e., TP2, TP1, DP, D

0
, T

0
, VP, V

0
) are linearized, so

Table 3.2 is not exhaustive. However, this table contains all the necessary asymmetric c-command relations,

and the asymmetric c-command relations that are left out do not add any information to this table.
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(14) She can run.

(15) TP2

TP1

VP

V
0

run

T
0

can

DP

D
0

she

Non-terminal nodes Asymmetrically command Non-terminal nodes

DP Asymmetrically command {TP
1
, TP

2
}

T
0

Asymmetrically command V
0

Table 3.2: Asymmetric c-command

Category Segments in the category

{TP1, TP2} TP1, TP2

{DP} DP

{D
0
} D

0

{VP} VP

{T
0
} T

0

{VP} VP

{V
0
} V

0

Table 3.3: Categories and Segments

The relevant dominance and relations shown in (16) and (17).
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(16) a. The category {DP} dominates D
0
, she

b. The category {TP1, TP2} dominates T
0
, VP, V

0
, run, can

c. The category {VP} dominates V
0
, run

(17) a. The category {DP} excludes {TP1, TP2} (i.e., no segment of the category {DP}

dominates {TP1, TP2}).

b. The category T
0

excludes V
0
.

Note that DP c-commands {TP1, TP2} because (i) they are both categories, (ii) every

category that dominates DP also dominates {TP1, TP2} (i.e., this is trivially satis�ed because

there is no category that dominates DP — the category {TP1, TP2} does not dominate DP

because there exists a segment TP1 that does not dominate DP), and (iii) DP excludes {TP1,

TP2}. However, {TP1, TP2} does not c-command DP because despite the fact that (i) they

are both categories, (ii) every category that dominates {TP1, TP2} also dominates DP, {TP1,

TP2} does not exclude DP (i.e., there is a segment of the category {TP1, TP2} (i.e., TP2) that

dominates DP). Thus, DP asymmetrically c-commands {TP1, TP2}. The precedence relations

are shown in (18).

(18)

$

’

&

’

%

she<can

she<run

can<run
,

/

.

/

-

The set of precedence relations in (18) satis�es the Totality Condition because

all the vocabulary items (i.e., she, can, run) are in the set; it satis�es the Antisymmetry

Condition because there is no contradictory ordering statements; and it satis�es the

Transitivity Condition because the set does have the ordering statement she ă run when

the set has she ă can and can ă run.

Finally, I show how LCA works for head movement cases (19). A summary of the

a-symmetric c-command relations are shown in Table 3.4. The categories and segments

are summarized in Table 3.4.
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(19) a. run it

b. vP

VP

DP

D
0

it

V
0

run

v1

0

v
0

[+v
0
]

V[copy]

0

run[copy]

Non-terminal nodes Asymmetrically command Non-terminal nodes

{v
0
, v1

0
} Asymmetrically command V

0
, DP, D

0

{V[copy]

0
} Asymmetrically command {v

0
, v1

0
}, V

0
, D

0
, DP

{V
0
} Asymmetrically command D

0

Table 3.4: Asymmetric c-command

Category Segments in the category

{vP} vP

{v
0
, v1

0
} v

0
, v1

0

{V[copy]

0
} V[copy]

0

{VP} VP

{V
0
} V

0

{DP} DP

{D
0
} D

0

Table 3.5: Categories and Segments

The relevant dominance and relations shown in (20) and (21).
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(20) a. The category {vP} dominates v
0
, v1

0
, V[copy]

0
, VP, V

0
, DP, D

0
, run[copy], [+v

0
],

run, it

b. The category {VP} dominates V
0
, DP, D

0
, run, it

c. {v
0
, v1

0
} dominates [+v

0
].

d. The category {DP} dominates D
0
, it

(21) a. The category {V[copy]

0
} excludes {v

0
, v1

0
} (i.e., no segment of the category

{V[copy]

0
} dominates {v

0
, v1

0
}).

b. The category {v
0
, v1

0
} excludes VP.

c. The category {V
0
} excludes D

0
.

Note that V[copy]

0
asymmetrically c-commands {v

0
, v1

0
}. V[copy]

0
c-commands {v

0
,

v1

0
} because (i) they are both categories, (ii) every category that dominates V[copy]

0
, namely

vP, dominates {v
0
, v1

0
} (note that {v

0
, v1

0
} does not dominate V[copy]

0
because there is the

segment v1

0
that dominates V[copy]

0
), and (iii) V[copy]

0
excludes {v

0
, v1

0
}. However, {v

0
, v1

0
}

does not c-command V[copy]

0
because despite the fact that (i) they are both categories, (ii)

everything that dominates {v
0
, v1

0
} (i.e., vP) dominates V[copy]

0
, {v

0
, v1

0
} does not exclude

{V[copy]

0
} (i.e., there exists the segment v1

0
that dominates V[copy]

0
).

Based on the asymmetric c-command relations, the precedence relations are shown

in (22). A string representation of the precedence relations is run[copy] [+v0] run it. Note that

under LCA, both of the copies (i.e., run and run[copy]) are linearized. In the next section, I

present Nunes (2004)’s analysis for how only one of the copies ends up being pronounced.

(22)

$

’

’

’

’

&

’

’

’

’

%

run[copy]<r`v0s

run[copy]<run

run[copy]<it

r`v0s<run

r`v0s<it

run<it
,

/

/

/

/

.

/

/

/

/

-

49



3.1.2 A moved item being pronounced once

In this section, I review Nunes (2004)’s analyses for the phonetic realization of a moved

item. Take (23) as an example, where the moved item “dumplings” occupies two positions

but is pronounced in only one of its positions. The structure for (23) is shown in (24).

For ease of presentation, I ignore vP, the base-generation position of the subject, and the

morphology under T
0
; in addition, only terminal nodes that do not correspond to empty

morphology are ordered in this example. Note that this simpli�cation does not a�ect the

analysis.

(23) Dumplings, I like x

(24) TopP

TopP

TP

TP

VP

DP1

NP1

N1

0

dumplingsi

D1

0

H

V
0

like

T
0

H

DP2

D2

0

I

Top
0

H

DP3

NP2

N2

0

dumplingsi

D3

0

H

LCA takes the structure in (24) as the input and yields a set of ordered pairs in (25).

(25)

$

’

’

’

’

&

’

’

’

’

%

dumplingsi ă I

dumplingsi ă like

dumplingsi ă dumplingsi

I ă like

I ă dumplingsi

like ă dumplingsi
,

/

/

/

/

.

/

/

/

/

-
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Under the copy theory of movement, there are two copies of the moved item: dumplingsi

under the node N1

0
and dumplingsi under the node N2

0
. Nunes (2004) proposes that for the

Antisymmetry Condition, the two dumplingsi are treated the same in the sense that if a set

of ordered pairs contains both dumplingsi ă a and a ă dumplingsi, where dumplingsi are

copies, the set is considered to violate the Antisymmetry Condition. Thus, since the set in

(25) indeed contains dumplingsi ă I and I ă dumplingsi, the set violates the Antisymmetry

Condition. Note that the two dumplingsi are treated di�erently by the Totality Condition

because Nunes (2004) proposes that both the dumplingsi under N1

0
and the dumplingsi

under N2

0
should be linearized. In addition to the three conditions in (13), Nunes (2004) also

assumes that a linear ordering should obey the Irre�exivity Condition, which is de�ned in

(26). Given that Nunes (2004) assumes that the two copies of dumplingsi are treated the

same by the Irre�exivity Condition, the set (25) also violates the Irre�exivity Condition.

(26) If xRy, then x is di�erent from y.

(Partee, ter Meulen and Wall 1990)

However, according to Nunes (2004), despite the fact that the set violates the

Antisymmetry Condition and Irre�exivity Condition, the linearization process does not

crash. Instead, a deletion process is trigged at PF, and this deletion process removes one of

the copies in the linearization process, which will change the set of ordered pairs to (27) or

(28). Both (27) and (28) satisfy the conditions in (13) and (26) — both get rid of paradoxical

ordering statements (i.e., dumplingsi ă I and I ă dumplingsi) and remove the statement

where the two copies are ordered to each other (i.e., dumplingsi < dumplingsi).

(27)

$

&

%

dumplingsi ă I

dumplingsi ă like

I ă like
,

.

-

(28)

$

&

%

I ă like

I ă dumplingsi

like ă dumplingsi
,

.

-
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So, there are two possible outcomes: (i) Dumplings, I like, where dumplingsi under N2

0
is

spelled out and dumplingsi under N1

0
is deleted; and (ii) I like dumplings, where dumplingsi

under N1

0
is spelled out and dumplingsi under N2

0
is deleted. Nunes (2004) further proposes

a mechanism that determines which copy is to be deleted. According to Nunes (2004), the

structure in (24) has a topic force and this topic force has to be realized by pronouncing

the DP that is associated with it — in this case, DP3; without realizing the topic force the

derivation fails. In this sense, since the topic force is only realized in (i) Dumplings, I like,

where dumplingsi is linearized high not (ii) I like dumplings, where dumplingsi is linearized

low, (i) should be the outcome, where “dumplings” is pronounced in the topic position. So,

(27) is the �nal precedence relations for the structure in (24).

Remember that in the previous section, in example (19) run it, the deletion process

is triggered because the precedence relations violate the Anti-symmetry Condition. To be

more speci�c, the set of precedence relations (repeated below in (29)) contain both run[copy]

ă [+v
0
] and [+v

0
] ă run. After deleting the lower copy of run, the sentence is linearized as

run [+v0] it (30), instead of run [+v0] run it.

(29)

$

’

’

’

’

&

’

’

’

’

%

run[copy]<r`v0s

run[copy]<run

run[copy]<it

r`v0s<run

r`v0s<it

run<it
,

/

/

/

/

.

/

/

/

/

-

(30)

$

’

&

’

%

run[copy]<r`v0s

run[copy]<it

r`v0s<it
,

/

.

/

-

As a short summary, pronouncing a moved item in all its positions fails the

linearization process due to the violation of the Antisymmetry Condition and the Irre�ex-

ivity Condition. However, Nunes (2004) proposes that the violations can be resolved by a

deletion process that can remove a moved item in all but only one of its syntactic positions

in the linearization process. As for in which position a moved item should get pronounced

depends on the particular formal feature of the copies; in the case of example (23), the topic
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force is the particular formal feature that prevents the higher copy to be deleted. In general,

Nunes (2004) proposes that it is always possible for a moved item to get pronounced

in all its syntactic positions, but the violation of the Antisymmetry Condition and the

Irre�exivity Condition forces a deletion process at PF, which results in the moved item

being pronounced in only one of its positions.
3

3.1.3 A moved item being pronounced multiple times

Regarding cases where multiple copies are spelled out in head movement, Nunes (2004)

proposes the mechanism of morphological reanalysis, where the higher copy is fused to

be part of a larger head. To be more speci�c, in Nunes (2004), it is assumed that all the

terminal nodes get linearized, unless morphological reanalysis is applied to two terminal

nodes they become one single node and enter the linearization process as a whole. In

the following, I use the Vata data in (31) as an example to illustrate how morphological

reanalysis works. The structure of the Vata data given in Nunes (2004) is shown in (32).

Following Nunes (2004), I also ignore the subject and the object in this case and only focus

on the V
0
-to-Foc

0
movement; and in addition, I assume that the verb moves directly to

Foc
0

due to the fact that T
0

is already occupied by the auxiliary verb following Koopman

(1984) and Nunes (2004).

(31) Vata

li

eat

O

s/he

da

pfv-aux

saka

rice

li

eat

‘S/he has eaten rice.’ (Koopman 1984: 38, ex. 50(b))

3
According to Nunes (2004), a derivation where a moved item is spelled out in all its positions is more

economical than a derivation where a moved item is spelled out in some but not all of its positions because

everything else being equal, an operation of deleting a moved item in a position is needed when a moved

item is not spelled out in a position; this increases the overall number of operations and thus makes the

derivation less economical.
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(32) FocP

TP

TP

VP

...V
0

eat

has

...

Foc1

0

Foc
0

V
0

eat

In (32), there are two copies of V
0
: one in VP and the other in Foc1

0
. Nunes (2004) claims

that Foc1

0
obligatorily undergoes morphological reanalysis, where the two terminal nodes

(i.e., V
0

and Foc
0
) under Foc1

0
is reanalyzed as one terminal node, which is marked as

#Foc1

0
#, which is shown in (33).

(33) FocP

TP

TP

VP

...V
0

eat

has

...

#Foc1

0
#

Foc
0

V
0

eat

Nunes (2004) proposes that if two terminal nodes undergo morphological reanalysis, they

can no longer be linearized (i.e., they cannot be seen by the linearization process); instead,

the complex head composed by the two terminal nodes will be linearized. In this sense, in

(33), only the lower copy of V
0

in VP will be linearized. The higher copy of V
0

in #Foc1

0
#

and Foc
0

will not be linearized but #Foc1

0
# will be linearized, despite the fact that V

0
and
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Foc
0

are terminal nodes. And so this avoids a violation of Antisymmetry and Irre�exivity.

To summarize, morphological reanalysis keeps one of the copies invisible from

linearization and allows only one of the copies and the complex head that contains the

other copy to enter linearization. Unlike the two copies that are treated as the same

item/node (i.e., V
0
) in the linearization, the complex head and the lower copy are distinct

nodes (i.e., #Foc1

0
# and V

0
) and thus, will not result in paradoxical orderings. For instance,

after morphological reanalysis, there will be ordering statements like li ‘eat’ (#Foc10#) ă da

‘has’ and da ‘has’ ă li ‘eat’ (V0) but they are not contradictory. If morphological reanalysis

is not applied, there will be ordering statements like li ‘eat’ (V0) ă da ‘has’ and da ‘has’ ă

li ‘eat’ (V0), which are contradictory.

3.1.4 Problems

So far, I have presented the analysis in Nunes (2004) that explains cases where the moved

item is pronounced in one of its positions and cases where the moved item is pronounced in

multiple positions. However, there is one problem with Nunes (2004), especially regarding

morphological reanalysis, which is it is not predictable which complex verb can undergo

morphological reanalysis and which cannot. For instance, morphological reanalysis cannot

apply to V
0
-to-T

0
movement since if it can, it should predict that verb-doubling happens

for V
0
-to-T

0
movement, which is not true. Note that this problem is also pointed out

in Nunes (2004), but the solution is to stipulate that for some complex verbs (e.g., Foc
0
),

morphological reanalysis must apply but for some verbs (e.g., T
0
), either morphological

reanalysis does not apply or it applies but the terminal nodes inside the complex head

should still not be linearized. Thus, a more explanatory solution is needed for under what

conditions verb-doubling occurs.

In addition, Nunes (2004) proposes that morphological reanalysis should only

be applied to heads but not maximal projections, which predicts that VP-doubling is not

possible. However, VP-doubling is indeed found, for instance, in Yoruba (Manfredi (1993))
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and Mandarin. So, an analysis for VP-doubling is needed.

In my analysis, regarding the verb-doubling constructions, di�erent from Kayne

(1994) and Nunes (2004) where the terminal nodes are linearized, I propose that only the

highest X
0

nodes are linearized and I also propose an Ordering Deletion rule that gets rid

of redundant ordering statements. Regarding the VP-doubling constructions, I employ the

idea behind morphological reanalysis that a higher level of node is linearized instead of

the lower ones under certain circumstances, but with a di�erent technique.

Finally, in Nunes (2004), the goal of the deletion process is to get rid of the ordering

statements that contain the copy which does not end being pronounced. However, in Nunes

(2004), the deletion process does not delete ordering statements but deletes copy(s) in a

chain. The problem is it is unclear what “deletes copy(s)” means here. To be more speci�c,

it cannot be the case that the copy, as part of the structure, is deleted in syntax since the

complete structure is needed to get interpreted at LF. In this sense, by saying “deletes

copy(s)”, it actually means ignoring the copy/part of the structure when linearization

happens. In my analysis, I propose a linearization process, where only linearizing one of

the copies is a structural decision, which is forced by the Language Speci�c Constraints.

The details of the Language Speci�c Constraints are discussed in chapter 4.
4

3.1.5 Copy theory vs. Multidominance

In Nunes (2004), two stipulations are made in the analysis: (i) the two copies are treated

the same by the Antisymmetry Condition and the Irre�exivity Condition but treated as

di�erent terms by the Totality Constraint
5
; and (ii) when one of the copy precedes but

the other follows the same item, there is a violation of the Antisymmetry Condition, and

when two copies are ordered relative to each other, there is a violation of the Irre�exivity

4
My analysis does not predict the “scattered deletion” cases in Nunes (2004), where part of the head and

part of the trace get deleted, instead of the whole head or the whole trace being deleted. However, it is

possible that these cases are not derived by deletion, but by items moving independently. In this dissertation,

I do not go into the details of these cases, but leave it for future research.

5
In Nunes (2004), the two copies are treated as di�erent terms by the Totality Constraint, which forces

both of the copies to be linearized.
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Condition; so a deletion process is triggered to delete one of the copies to avoid the

violations. Both of these stipulations can be removed if one adopts the multidominance

representation of movement, which uses the remerge operation (cf. Engdahl (1980), Gärtner

(1997), Nunes (2001), Starke (2001), Frampton (2004), Citko (2005), Fitzpatrick and Groat

(2005), Johnson (2012), and many others). Take (23) Dumplings, I like as an example. A

multidominance representation of it is shown in (34).

(34) TopP

TopP

TP

TP

VP

DP1

NP1

N1

0

dumplings

D1

0

H

V
0

like

T
0

H

DP

D2

0

I

Top
0

H

In (34), instead of making a copy of DP1, DP1 is remerged with TopP, so there is only one

phrase DP1 but occupies two di�erent positions: the sister of V
0

and the sister of TopP. So,

the �rst stipulation that there are two indistinguishable copies is removed; instead there is

only one term (i.e., DP1) in the structure. In (34), if the linearization process evaluates the

moved item DP1 in both of its positions, Antisymmetry arises because dumplings will be

ordered by LCA to precede like, (DP1 being the sister of TopP) but also follow like (DP1

being the sister of V
0
). This creates a violation of the Antisymmetry Condition. The full

precedence relations are shown in (35). Note that since there is only one item (i.e., DP1),

the linearization algorithm will not produce dumplingsi ă dumplingsi so that this set does

not violate the Irre�exivity Condition.
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(35)

$

&

%

dumplingsi ă I

dumplingsi ă like

I ă like

I ă dumplingsi

like ă dumplingsi
,

.

-

However, unlike the copy theory of movement, since the moved item is multidom-

inated — there is only one term of the moved item in the structure — only linearizing the

moved item in one of its positions will satisfy all the conditions (i.e., the Antisymmetry

Condition, the Irre�exivity Condition and the Totality Condition). Speci�cally, without

resorting to the deletion process proposed in Nunes (2004), the linearization algorithm

can yield the precedence relations in either (36) or (37), depending on which position the

moved item is linearized under. In other words, in the multidominance representation, a

moved item can be linearized in one of its positions or in multiple positions, but in order

to satisfy all the conditions, the moved item can only be linearized in one of its positions.

(36)

$

&

%

dumplingsi ă I

dumplingsi ă like

I ă like
,

.

-

(37)

$

&

%

I ă like

I ă dumplingsi

like ă dumplingsi
,

.

-

As for how to get the moved item pronounced in its higher position, solutions can be

found in Johnson (2012) and Wilder (1999), among others. I do not go into the details of

the solutions here but I have a detailed discussion about a solution in chapter 4, where I

present the proposed basic linearization algorithm.

As a quick summary, it can be seen that using the multidominance representation

can get rid of the stipulations made in Nunes (2004) but still keeps the crucial idea that

linearizing a moved item in all of its positions can cause Antisymmetry and Irre�exivity

problems, so the moved item can only be linearized in one of its positions. As for which

position should the moved item be linearized, this is a separate question but can be solved
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by putting some constraints in the linearization process, which I will show how this can

be done using the multidominance representation in chapter 4.

3.2 Landau (2006)

Landau (2006) provides a di�erent view from Nunes (2004)’s regarding why movement

normally results in a term being pronounced in only one of its syntactic positions. Landau

(2006) claims that it is always preferred not to pronounce a moved item in any of its

positions unless there is some force that requires a moved item to be pronounced in one

or more of its positions. Notice that the preference of always not pronouncing a moved

item in any of its positions in Landau (2006) is opposite to the preference for always

pronouncing a moved item in all of its positions in Nunes (2004).

According to Landau (2006), there are two principles that determine the (non-)pro-

nunciation of a moved item, which are listed in (38a) and (38b). The “up to P-recoverability”

in (38a) indicates that P-recoverability always overrides economy (i.e., deleting all chain

copies).

(38) a. Economy of Pronunciation

Delete all chain copies at PF up to P-recoverability.

b. P-Recoverability

In a chain ăX1...X2...Xną, where some Xi is associated with phonetic content,

Xi must be pronounced.

According to Landau (2006), Xi is “associated with phonetic content” if Xi has a high pitch

accent or Xi supports an a�x that cannot stand alone.

Take (23) as an example: “dumplings” in the topic position is associated with a

high pitch accent which is imposed by the topic head Top
0
, and thus economy is overridden

and “dumplings” in the topic position gets pronounced; however, “dumplings” in the logical

object position is not associated with any high pitch accent, nor does it host an a�x. Thus,
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“dumplings” in the logical object position gets deleted due to economy (i.e., pronouncing as

few copies as possible). Notice that though Landau (2006) also uses the word “economy”, it

is di�erent from Nunes (2004)’s notion of “economy”. In Landau (2006), “economy” means

“say as little as possible” which corresponds to the assumption that all chain copies tend to

be not pronounced; while in Nunes (2004), “economy” means “use as few operations as

possible” which corresponds to the assumption that all chain copies tend to be pronounced

(i.e., not pronouncing a chain copy involves a deletion process and thus a derivation is less

economical when more copies are not pronounced/deleted).

However, Landau (2006)’s economy principle seems to be problematic when

considering ellipsis. To be more speci�c, if the economy principle (i.e., say as little as

possible) is true, it should be predicted that whenever ellipsis is possible, it should be

forced. However, ellipsis is an optional process, and thus the economy principle does not

seem to be supported.

In addition, for the Hebrew example in (39), according to Landau (2006), the

highest copy “liknot” has a high pitch accent imposed by Top
0

and the lower copy “kanta”

needs to support the tense a�x, so they are both associated with intrinsic phonetic content

and get pronounced. The structure of Hebrew V-fronting is shown in (40). However,

the Mandarin data in (41) poses problems for Landau (2006)’s analysis: though it can be

explained why the verb “xihuan” in the topic position is pronounced, it is unclear why

the verb “xihuan” downstairs is also pronounced. To be more speci�c, in the Mandarin

example (41), regarding the higher copy, it should be pronounced since it has a high pitch

accent imposed by Top
0
, which is similar to the Hebrew data in (39); however, according

to Landau (2006), the copy in VP should not have been pronounced since it does not have

high pitch accent nor need to support an a�x.
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(39) Hebrew V-fronting

liknot,

to-buy,

hi

she

kanta

bought

et

acc.

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

(40) TopP

TopP

TP

TP

VP2

VP1

DP

the �owers

V
0

buy

DP

she

T
0

T
0

V
0

buy

DP

she

Top
0

VP4

VP3

DP

the �owers

V
0

buy

DP

she

(41) Mandarin verb doubling

xihuan,

like

ta

3sg.

dique

indeed

hen

very

xihuan

like

jiaozi

dumplings

‘As for liking, she indeed likes dumplings a lot.’

For the same logic, the Mandarin data in (42) cannot be explained either if the repeated

VPs are derived by movement. To be more speci�c, assuming that VP moves to spec-TopP,

the whole VP downstairs should not have been pronounced since none of the material in

the VP downstairs in (42) has a high pitch accent or needs to support an a�x.

(42) Mandarin repeated Object

xihuan

like

jiaozi,

dumplings

ta

3sg.

shi

shi

hen

very

xihuan

like

jiaozi

dumplings

‘As for very liking, she indeed likes a lot.’

As a quick summary, Landau (2006)’s analysis for the (non-)pronunciation of the

copies mainly consists of two principles: Economy of Pronunciation and P-Recoverability.
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Regarding the principle of Economy of Pronunciation, Thoms (2010) has argument against

it; and for the principle of P-Recoverability, it does not seem to extend to the Mandarin data

very easily without further stipulations. In my analysis, I adopt the structures proposed in

Landau (2006) but will not employ the analysis.
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CHAPTER 4

The basic linearization process

I assume that the basic linearization process contains the Candidates Generator G and

the Constraints following Kusmer (2019), in addition to which, I propose the algorithm

Set-to-String that turns a set into a string. So, a linearization of p, where p represents

a phrase marker, is a set of ordered pairs and a conversion of that set to a string by the

Set-to-String algorithm.

4.1 Candidates Generator G and Constraints

In this section, I present the Candidates Generator G and the Constraints, and illustrate how

they work by applying them on concrete examples. I start with the Candidates Generator

G, which is de�ned in (1).

(1) Candidates Generator G

The Candidates Generator G is a function that maps all Maximal X
0

Nodes of a

phrase p to all possible sets of ordered pairs, where Maximal X
0

Nodes are X
0
s that

are not dominated by another Y
0

node.
1

Take (2) as an abstract example, there are four X
0

nodes in (2): N
0
, M

0
, M1

0
and Q

0
. Only

M1

0
and Q

0
are Maximal X

0
Nodes: both M1

0
and Q

0
are X

0
nodes and are not dominated

1
G(p) does not generate the empty set.
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by another β0
node; while despite that both M

0
and N

0
are X

0
nodes, M

0
and N

0
are

dominated by another β0
node, namely M1

0
. Thus, only M1

0
and Q

0
serve as the input for

the Candidates Generator G.

(2) MP

QP

Q
0

M1

0

M
0

N
0

In the following, I use some concrete examples to show how the Candidates Generator G

works. I start with the structure in (3).

(3) TP2

TP1

T
0

can

DP

D
0

she

The Maximal X
0

Nodes in (3) are D
0

and T
0
. The Candidates Generator G takes D

0
and T

0

as the input and yields all possible sets of ordered pairs, which are shown in (4).
2

(4) G(n) =

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

tD0

ă D0

u

tT 0

ă T 0

u

tD0

ă T 0

u

tT 0

ă D0

u

tD0

ă D0, T 0

ă T 0

u

tD0

ă D0, D0

ă T 0

u

tD0

ă D0, T 0

ă D0

u

tT 0

ă T 0, D0

ă T 0

u

tT 0

ă T 0, T 0

ă D0

u

tD0

ă T 0, T 0

ă D0

u,

tD0

ă D0, T 0

ă T 0, D0

ă T 0

u

tD0

ă D0, T 0

ă T 0, T 0

ă D0

u

tD0

ă D0, D0

ă T 0, T 0

ă D0

u

tT 0

ă T 0, D0

ă T 0, T 0

ă D0

u

tD0

ă D0, T 0

ă T 0, D0

ă T 0, T 0

ă D0

u

,

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

-

The four columns in (4) include sets that have one ordered pair (e.g., {D
0 ă D

0
}),

two ordered pairs (e.g., {D
0 ă D

0
, T

0 ă T
0
}), three ordered pairs (e.g., {D

0 ă D
0
, T

0 ă T
0
,

2
In (4), there are 4 distinct singleton sets (i.e., tD0 ă D0u, tT 0 ă T 0u, tD0 ă T 0u, tT 0 ă D0u), and the

rest of the sets must contain at least two ordered pairs from the singleton sets. So, the number of all possible

sets of ordered pairs is calculated as: C(4, 1) + C(4, 2) + C(4, 3) + C(4, 4), which is 2
4
-1 (i.e., the sum of all

possible combinations of n distinct things is 2
n
, and 2

n
-1 is the sum that excludes the empty set, where n

distinct things here correspond to 4 distinct ordered pairs)
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D
0 ăT

0
}) and four ordered pairs (e.g., {D

0 ă D
0
, T

0 ă T
0
, D

0 ă T
0
, T

0 ă D
0
}), respectively.

Notice that among the sets that are generated by G in (4), only {D
0 ă T

0
} gives the right

linearization (i.e., she can). The other sets are illegitimate.

Next, I introduce the Constraints, which will eliminate the illegitimate sets of

ordered pairs generated by G. Before going into the details of the Constraints, I would like

to discuss di�erent types of illegitimate sets generated by G, which should be eliminated by

the Constraints. The representative examples for each illegitimate type of sets are shown

in (5a) - (5d).

(5) a. {D
0 ă D

0
}

b. {D
0 ă D

0
, D

0 ă T
0
}

c. {D
0 ă T

0
, T

0 ă D
0
}

d. {T
0 ă D

0
}

1. Missing orders. For instance, in (5a), D
0

and T
0

are not ordered.

2. Nodes being ordered relative to themselves. For instance, in (5a) and (5b), D
0

is or-

dered relative to itself. Since in an utterance, a vocabulary item cannot precede/follow

itself, a linearization like the one in (5a) and (5b) will fail to generate an utterance.

3. Paradoxical orders. For instance, in (5c), the orders T
0 ă D

0
and D

0 ă T
0

are con-

tradictory. Since in an utterance, a vocabulary item cannot precede/follow another

vocabulary item at the same time, a linearization like the one in (5c) will fail to

generate an utterance.

4. Wrong orders. For instance, in (5d), there is an ordering between T
0

and D
0
, but it is

the wrong one. D
0

should have preceded T
0
. As a result, the wrong utterance that

has T
0

preceding D
0

is generated (i.e., can she).

As a quick summary, (5a) has the problems of missing nodes and a node being

ordered relative to itself; (5b) has the problem of a node being ordered relative to itself;
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(5c) has the problems of bearing contradictory ordering statements and wrong ordering

statements; and (5d) has the problem of containing wrong ordering statements.

Regarding the above problems, I propose four corresponding constraints that aim

at ruling out the illegitimate sets of ordered pairs generated by the Candidates Generator

G before passing the set
3

to the Set-to-String Algorithm.
4

The four constraints are the

Totality Constraint, the Anti-re�exivity Constraint, the Asymmetry Constraint, and the

Language Speci�c Constraints. The Totality Constraint and the Asymmetry Constraint

are adapted from Kayne (1994), the Anti-re�exivity Constraint is adapted from Partee, ter

Meulen and Wall (1990), and the Language Speci�c Constraints are adapted from Wilder

(1999) and Kusmer (2019).
5

Since some of the illegitimate ordered pairs in (5) have more than one problem, in

the following, I switch to the structure in (6), where the problems of missing orders, nodes

being ordered to themselves, paradoxical orders and wrong orders can be independently

presented.

(6) TP2

TP1

VP

V
0

run

T
0

can

DP

D
0

she

In (7), I list four sets generated by G that correspond to the four representative problems.

(7a) has the problem of missing orders; (7b) has the problem of having a node ordered

3
Here, I assume that if there exist sets that satisfy all the constraints there should only be one such set.

However, potentially, there could be more than one set that satis�es all the constraints.

4
Note that later when implementing the basic linearization process in a cyclic way, there will be situations

where despite all the illegitimate sets generated by the Candidates Generator G can be ruled out, the union

of the legitimate sets violates the Asymmetry Constraint. I will discuss how to deal with such situations

when presenting the Set-to-String Algorithm.

5
Di�erent from Kayne (1994), I do not include “Transitivity” as a condition/constraint. The reason is that

at least for cases discussed in this dissertation, having “Transitivity” as a constraint does not add any new

information for forming a string. I will discuss this in more details with concrete examples in chapter 6.
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to itself; (7c) has the problem of having paradoxical orders; and (7d) has the problem of

having wrong orders.

(7) a. {D
0 ă T

0
}

b. {D
0 ă D

0
, D

0 ă T
0
, D

0 ă V
0
, T

0 ă V
0
}

c. {T
0 ă D

0
, D

0 ă T
0
, D

0 ă V
0
, T

0 ă V
0
}

d. {T
0 ă D

0
, D

0 ă V
0
, T

0 ă V
0
}

I propose the Totality Constraint to solve the problem in (7a), the Anti-re�exivity Constraint

to solve the problem in (7b), the Asymmetry Constraint to solve the problem in (7c), and

the Language Speci�c Constraints to solve the problem in (7d). I �rst discuss the Totality

Constraint, which is de�ned in (8).

(8) Totality Constraint

For a given set of ordering statements x, x satis�es the Totality Constraint i�. for

all Maximal X
0

Nodes α and β of phrase p, x contains an ordering of α and β.

In (6), the Maximal X
0

Nodes of the phrase TP2 are shown in (9). These Maximal X
0

Nodes

will serve as the input for the Candidates Generator G, and the Totality Constraint will be

evaluated against them.

(9) Maximal X
0

Nodes of TP2 = {D
0
, T

0
, V

0
}

The Maximal X
0

Nodes in (9) can form three pairs, which are shown in (10). Based on

the Totality Constraint, the legitimate set of ordered pairs should contain an ordering

statement for each pair in (10).

(10) a. D
0

and T
0

b. D
0

and V
0

c. T
0

and V
0

Notice that (7a) only has the ordering statement of D
0

and T
0

and misses the ordering
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statements of D
0

and V
0

as well as T
0

and V
0
. Thus, (7a) violates the Totality Constraint

and should be ruled out. In contrast, (7b) - (7d) contain ordering statements for each pair

in (10), and thus, they all satisfy the Totality Constraint.

Next, I present the Anti-re�exivity Constraint in (11).

(11) Anti-re�exivity Constraint

For a given set of ordering statements x, x satis�es the Anti-re�exivity Constraint

i�. for all orderings of α and β in x, α and β are distinct nodes. Distinctiveness is

de�ned in (11a).

a. Distinctiveness

α and β are distinct nodes i�. α does not self-dominate β.

Note that (7b) contains the ordering statement D
0 ă D

0
, where D

0
and D

0
are not

distinct nodes (D
0

self-dominates D
0
). Thus, (7b) violates the Anti-re�exivity Constraint

and should be ruled out. In contrast, in (7a), (7c) and (7d), all the ordering statements have

a pair of distinct nodes, so they all satisfy the Anti-re�exivity Constraint.

Now, let’s look at the Asymmetry Constraint, which is de�ned in (12).

(12) Asymmetry Constraint

For a given set of ordering statements x, x satis�es the Asymmetry Constraint i�

x does not include both α ă β and β ă α.

(7a), (7b) and (7d) all satisfy the Asymmetry Constraint since none of them contains

paradoxical orders. However, (7c) violates the Asymmetry Constraint since it has both T
0

ă D
0

and D
0 ă T

0
.

Lastly, I discuss the Language Speci�c Constraints, which are stated in (13).
6

6
The constraints in (13a) and (13b) are for languages that are discussed in this dissertation (i.e., Hebrew,

English, Mandarin and Yiddish — they are all head-initial languages). In addition, in this dissertation, I only

consider cases where adjuncts are left adjoined, so the adjunct constraint in (13c) is only for cases with

left-adjoined adjuncts. For other languages, for instance, Japanese (a head-�nal language), in order for the

Language Speci�c Constraints to work, details need to be changed. In other words, the Language Speci�c

Constraints in this dissertation are not designed for typology, they are a particular instantiation of some
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(13) Language Speci�c Constraints

For a given set of ordering statements x, x satis�es the Language Speci�c Con-

straints, i� x satis�es the constraints in a-c.

a. If x contains α ă β or β ă α, and α is a head, there must be an ordering

statement α ă β if β is fully dominated by YP, where YP is the sister of α

(see 1).

b. If x contains α ă β or β ă α, there must be an ordering statement α ă β if α

is dominated by a speci�er XP and β is fully dominated by YP, where YP is

XP’s sister (see 2).

c. If x contains α ă β or β ă α, there must be an ordering statement α ă β, if

α is dominated by an adjunct XP and β is fully dominated by YP, where YP is

XP’s sister (see 3).

(14)

a. αP

YP

βY

α

b. YP

YP

βY

XP

α...

c. YP

YP

YP

βY

...

XP

α...

Here, “full dominance”, “path” and “sister” are de�ned in (15a), (15a-i) and (15b),

respectively.

(15) a. Full dominance

α fully dominates β if every path for α includes β.

speci�c languages.
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(i) Path

A path for α is a series of nodes such that the �rst node immediate

dominates α, the other nodes immediately dominate the preceding

nodes, and the last node is the root node.

b. Sisterhood

α is a sister of β if the immediately dominating mother of α and β fully

dominates both of them.

Before I use a concrete example to show the details about how Language Speci�c

Constraints work, recall that Language Speci�c Constraints are designed to rule out

illegitimate sets of precedence relations that do not contain the right orders (cf. (5d) She

can. *{T
0 ă D

0
}. To be more speci�c, Language Speci�c Constraints make sure that if two

nodes X
0

and Y
0

are ordered, the language particular order about them must be contained

in the set of precedence relations. Note that the condition “if two nodes X
0

and Y
0

are

ordered” refers to three possible scenarios, one where the set contains X
0 ă Y

0
(e.g., D

0 ă

T
0

in (17a)), one where the set contains Y
0 ă X

0
(e.g., T

0 ă D
0

in (17b)), and one where the

set contains both X
0 ă Y

0
and Y

0 ă X
0

(e.g., {T
0 ă D

0
, D

0 ă T
0
} in (17c)) (in all three cases

(17a) - (17c), they have ordering statements regarding D
0

andT
0
). Then, Language Speci�c

Constraints, (13b) in particular, require that the right order between D
0

and T
0

(i.e., D
0

ă T
0
) must be in the set. In this sense, both (17a) and (17c) satisfy the Language Speci�c

Constraints because both of them contain the right order D
0 ă T

0
(D

0
— the node in the

speci�er DP, precedes T
0

— the node fully dominated by the sister of the DP speci�er). It

can be seen that Language Speci�c Constraints require that the right order be in the set,

and whether the wrong one is also there is not a concern (it is a concern for the Asymmetry

Constraint, which means that (17c) will be ruled out by the Asymmetry Constraint).
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(16) she can

(17) Some possible candidates generated by G

a. {D
0 ă T

0
} — satisfy the Language Speci�c Constraints

b. {T
0 ă D

0
} — violate the Language Speci�c Constraints

c. {T
0 ă D

0
, D

0 ă T
0
} — satisfy the Language Speci�c Constraints

Now, think about how all the constrains work together. Considering the possible

candidates in (17) as well as the one in (18), the Totality Constraint makes sure that all

the Maximal X
0

nodes are ordered, but it does not care whether the set has an ordering

statement(s) that orders the same node (e.g., (18) satis�es the Totality Constraint but it

orders D
0

relative to itself), nor does the Totality Constraint care whether every statement

orders the two nodes right (e.g., (17a)-(17c) all satisfy the Totality Constraint despite that

(17b) and (17c) both have wrong orders T
0 ă D

0
). So, the Anti-re�exivity Constraint comes

in to make sure that each statement in the set orders di�erent nodes (e.g., (18) is ruled

out and only (17a)-(17c) satisfy the Anti-re�exivity Constraint). Meanwhile, the Language

Speci�c Constraints and the Asymmetry Constraint work together to make sure only the

right orders are in the set — the Language Speci�c Constraints make sure that for the two

nodes in each ordered pair, the set must have the right order between them (e.g., (17b)

is ruled out and only (17a) and (17c) satisfy the Language Speci�c Constraints) and the

Asymmetry Constraint rules out the set that has both the right order and the wrong order

(e.g., (17c) is then ruled out and only (17a) satis�es the Asymmetry Constraint).

(18) {D
0 ă T

0
, D

0 ă D
0
}

Having discussed some intuition behind how Language Speci�c Constraints work

and how all the constraints work together, in the following, I will go into more technical

details of the Language Speci�c Constraints — I will �rst illustrate the key de�nitions in

(15) using the concrete example in (6), which is repeated below as (19), and then show how
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Language Speci�c Constraints work for this example. Note that in this example, all the

dominance relationships are also full-dominance relationships. In the next chapter, I will

discuss an example, where dominance and full-dominance can be distinguished and this

distinction is crucial.

(19) TP2

TP1

VP

V
0

run

T
0

can

DP

D
0

she

(20) summarizes the full-dominance relationship in (19).

(20) a. TP2 fully dominates DP, D
0
, TP1, T

0
, VP, V

0

b. DP fully dominates D
0

c. TP1 fully dominates T
0
, VP, V

0

d. VP fully dominates V
0

To determine the full-dominance relationship between α and β, one needs to check whether

every path for α includes β. Take TP1 and V
0

as an example. The series of nodes that form

the path for V
0

is shown in (21).

(21) a. p(V
0
) = (VP, TP1, TP2)

In this path, VP is the node that immediately dominates V
0
, and TP1 immediately dominates

VP, and the last node TP2 immediately dominates TP1, and TP2 is the root node. Since this

is the only path for V
0

and this path includes TP1, TP1 fully dominates V
0

(i.e., every path

for V
0

includes TP1).
7

The paths for each node in (19) is shown in (22).

7
Similarly, VP and TP2 also fully dominates V

0
.
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(22) a. p(D
0
) = (DP, TP2)

b. p(T
0
) = (TP1, TP2)

c. p(V
0
) = (VP, TP1, TP2)

d. p(DP) = (TP2)

e. p(TP1) = (TP2)

f. p(VP) = (TP1, TP2)

Now, I turn to sisterhood. Below, Table 4.1 is a list of sisterhood relationship in (19). “IDM”

is short for immediate dominating mother.

IDM relationship

(DP TP1) TP2 sisters

(T
0

VP) TP1 sisters

Table 4.1: TP2 relation

To determine the sisterhood relationship between α and β, one needs to see

whether the immediate dominating mother of α and β fully dominates both α and β. Take

DP and TP1 as an example. They are sisters because their immediate dominating mother

TP2 fully dominates both DP and TP1 (see (20) for the list of full-dominance relationship

in (19)). The reason TP2 fully dominates DP and TP1 is that every path for DP and TP1

includes TP2 (see (22) for the list of paths).

Next, I illustrate how the Language Speci�c Constraints work for (19) (since there

is no adjunct in this example, I will only show how the constraints regarding heads and

speci�ers work). I start with the Language Speci�c Constraints for heads. Take the set in

(7d) that violates the Language Speci�c Constraints as an example, which is shown in (23).

The structure of this case is repeated below in (24).

(23) {T
0 ă D

0
, D

0 ă V
0
, T

0 ă V
0
}
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(24) TP2

TP1

VP

V
0

run

T
0

can

DP

D
0

she

I start with the third ordering statement T
0 ă V

0
. Based on the �rst constraint regarding

head in (13a) in Language Speci�c Constraints, if a set contains α ă β or β ă α, and α is a

head, there must be an ordering statement α ă β if β is fully dominated by YP, where YP

is the sister of α. In this case, (i) the set contains T
0 ă V

0
, (ii) T

0
is a head, (iii) T

0
and VP

are sisters, and (iv) VP fully dominates V
0
. Thus, there must be an ordering statement T

0 ă

V
0

in the set. So, so far, nothing in this set has violated the Language Speci�c Constraints.

Now, I examine the second ordering statement D
0 ă V

0
. Based on the second

constraint regarding speci�ers in (13b) in Language Speci�c Constraints, if a set contains

αă β or β ă α, there must be an ordering statement αă β if α is dominated by a speci�er

XP and β is fully dominated by YP, where YP is XP’s sister. In this case, (i) the set contains

D
0 ă V

0
, (ii) DP is a speci�er, (iii) D

0
is dominated by DP

8
, (iv) DP and TP1 are sisters, and

(v) TP1 fully dominates V
0
. Thus, there must be an ordering statement D

0 ă V
0

in the set.

So, still, nothing in this set has violated the Language Speci�c Constraints yet.

Lastly, I examine the �rst ordering statement T
0 ă D

0
. Similar to the second

ordering statement, based on the second constraint regarding speci�ers in (13b) in Language

Speci�c Constraints, (i) the set contains T
0 ă D

0
, (ii) DP is a speci�er, (iii) D

0
is dominated

by DP, (iv) DP and TP1 are sisters, and (v) TP1 fully dominates T
0
. Thus, there must be an

ordering statement D
0 ă T

0
in the set. However, there is no such ordering statement. Thus,

the set in (23) violates the Language Speci�c Constraints. Note that having the ordering

statement T
0 ă D

0
in the set does not violate the Language Speci�c Constraints. It is the

8
Note that DP is only required to dominate D

0
, not fully dominate - α can dominate β without fully

dominating β, but if α fully dominates β, α must dominate β; fully dominate is a special case of dominate.
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lack of D
0 ă T

0
due to the existence of T

0 ă D
0

that makes the set violate the Language

Speci�c Constraints. In other words, the set in (7c), repeated below in (25), satis�es the

Language Speci�c Constraints (though it violates the Asymmetry Constraint). Note that

the set in (25) is the same as the one in (23) except that (25) has an extra ordering statement

D
0 ă T

0
. (25) satis�es the Language Speci�c Constraints because the existence of T

0 ă D
0

requires the existence of the ordering statement D
0 ă T

0
, which the set has; the existence

of D
0 ă T

0
, D

0 ă V
0

and T
0 ă V

0
requires the existence of the ordering statement D

0 ă T
0
,

D
0 ă V

0
and T

0 ă V
0
, which the set has.

(25) {T
0 ă D

0
, D

0 ă T
0
, D

0 ă V
0
, T

0 ă V
0
}

Table 4.2 summarizes all the ordering statements required by the Language Speci�c Con-

straints for all Maximal X
0

Nodes α and β of TP2 if α and β are ordered as a pair in a given

set.

IDM relationship orders

(T
0

VP) TP1 sisters T
0 ă V

0

(DP TP1) TP2 sisters D
0 ă T

0
, D

0 ă V
0

Table 4.2: TP2 orders

So far, I have illustrated how all four constraints work. I repeat the illegitimate

sets below in (26) and here is a quick summary. Though (26a) satis�es the Anti-re�exivity

Constraint, the Asymmetry Constraint, and the Language Speci�c Constraints, it violates

the Totality Constraint since the ordering statements of D
0

and V
0
, as well as T

0
and V

0
are

missing. Though (26b) satis�es the Totality Constraint, the Asymmetry Constraint, and

the Language Speci�c Constraints, it violates the Anti-re�exivity Constraint by having

D
0

ordered to itself. Though (26c) satis�es the Totality Constraint, Anti-re�exivity Con-

straint and the Language Speci�c Constraints, it violates the Asymmetry Constraint by

having paradoxical ordered pairs T
0 ă D

0
and D

0 ă T
0
. Though (26d) satis�es the Totality
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Constraint, the Anti-re�exivity Constraint and the Asymmetry Constraint, it violates the

Language Speci�c Constraints by not having D
0 ă T

0
. Thus, (26a) - (26d) should all be

ruled out. The only set that satis�es all the constraints is {D
0 ă T

0
, D

0 ă V
0
, T

0 ă V
0
}.

(26) a. {D
0 ă T

0
}

b. {D
0 ă D

0
, D

0 ă T
0
, D

0 ă V
0
, T

0 ă V
0
}

c. {T
0 ă D

0
, D

0 ă T
0
, D

0 ă V
0
, T

0 ă V
0
}

d. {T
0 ă D

0
, D

0 ă V
0
, T

0 ă V
0
}

In the following, I illustrate how the Candidates Generator G and the Constraints

work for cases that involve movement by using the example in (27), the structure of which

is shown in (28).

(27) Can she run it?

(28) CP

TP2

TP1

VP

DP1

D1

0

it

V
0

run

T
0

can

DP2

D2

0

she

C1

0

C
0

In (28), the Maximal X
0

Nodes are shown in (29). Note that T
0

is not a Maximal X
0

Node

because T
0

is dominated by another node, namely C1

0
.

(29) Maximal Nodes of VP = {C1

0
, D2

0
, V

0
, D1

0
}

The Candidates Generator G takes the nodes in (29) and generates all possible

sets of ordered pairs. There is only one set that satis�es all the constraints, which is shown
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in (30).

(30)

$

’

’

’

’

&

’

’

’

’

%

C1

0 ă D2

0

C1

0 ă V 0

C1

0 ă D1

0

D2

0 ă V 0

D2

0 ă D1

0

V 0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

This set satis�es Totality Constraint because all the Maximal X
0

Nodes in (29) are ordered

relative to each other. It satis�es the Anti-re�exivity Constraint because no node is ordered

relative to itself. It satis�es the Asymmetry Constraint because there are no contradictory

orderings. To see why it satis�es the Language Speci�c Constraints, I examine each

ordering statement in this set.

Before going into the details of how Language Speci�c Constraints are evaluated,

I would like to point out that similar to the previous example, all the full-dominance

relationships discussed in this example, which are listed later in (31), are also dominance

relationships. Note that in the next chapter, I will discuss an example where the distinction

between dominance and full-dominance matters.

Since the set has the ordering statement C1

0 ă D2

0
, it requires C1

0 ă D2

0
to be in

the set: based on the Language Speci�c Constraints regarding heads, since (i) the set has

C1

0 ă D2

0
, (ii) C1

0
is a head, (iii) TP2 is the sister of C1

0
, (iv) TP2 fully dominates D2

0
, C1

0 ă

D2

0
is required. Similarly, C1

0 ă V
0
, C1

0 ă D1

0
and V

0 ă D1

0
are also required. Note that in

this case, since T
0

is not a Maximal X
0

Node, there is no need to determine the relationship

between T
0

and the other Maximal X
0

Nodes.
9

In addition, since the set has the ordering

statement D2

0 ă V
0
, it requires D2

0 ă V
0

to be in the set: based on the Language Speci�c

Constraints regarding speci�ers, since (i) the set has D2

0 ă V
0
, (ii) DP2 is a speci�er, (iii)

D2

0
is dominated by DP2, (iv) TP1 is the sister of DP2, and also (v) TP1 fully dominates V

0
,

D2

0 ă V
0

is required. Similarly, D2

0 ă D1

0
is also required.

Table 4.3 summarizes the relevant structural relationship in CP, and the required

9
If T

0
were a Maximal X

0
Node, TP2 dominates but does not fully dominate it because there is a path for

T
0

that does not go through TP2.
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orders by the Language Speci�c Constraints for all Maximal X
0

Nodes α and β of CP if α

and β are ordered as a pair in a given set.

IDM relationship ordered pairs

(C1

0
TP2) CP sisters C1

0 ă D2

0
, C1

0 ă V
0
, C1

0 ă D1

0

(DP2 TP1) TP2 sisters D2

0 ă V
0
, D2

0 ă D1

0

(V
0

DP1) VP sisters V
0 ă D1

0

Table 4.3: CP relation

The relevant path and full-dominance relationship are summarized in (31) and

(32). For instance, C1

0
and TP2 are sisters because their immediate dominating mother CP

fully dominates C1

0
and TP2. The reason CP fully dominates C1

0
and TP2 is that every path

for C1

0
and every path for TP2 includes CP, which is shown in (32a) and (32b) respectively.

(31) a. CP fully dominates C1

0
and TP2

b. TP2 fully dominates DP2, TP1, D2

0
, V

0
, D1

0

c. DP2 fully dominates D2

0

d. TP1 fully dominates V
0
, D1

0

e. VP fully dominates V
0
, DP1

f. DP1 fully dominates D1

0

(32) a. p(C1

0
) = (CP)

b. p(TP2) = (CP)

c. p(DP2) = (TP2, CP)

d. p(TP1) = (TP2, CP)

e. p(V
0
) = (VP, TP1, TP2, CP)

f. p(DP1) = (VP, TP1, TP2, CP)

g. p(D1

0
) = (DP1, VP, TP1, TP2, CP)

Note that so far, for both the non-movement case (i.e., She can run) in (24) and the movement
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case (i.e., Can she run it) in (28), all the relevant nodes only have one path (see (22) and

(32))
10

. In the next chapter, I will discuss cases where for some nodes, there is more than

one path.

In this section, I introduced the Candidates Generator G and the Constraints, and

showed how they work on concrete examples. In the next section, I show how to turn the

surviving set of ordered pairs into a string by implementing the Set-to-String algorithm.

4.2 The Set-to-String Algorithm

In the previous section, for the non-movement case (i.e., She can run) in (24), after imposing

the Constraints on the sets generated by the Candidates Generator G, the illegitimate sets

of ordered pairs are ruled out and one gets the set of ordered pairs that satis�es all the

constraints, which is shown in (33). In this section, I show how this set becomes a string

via the Set-to-String algorithm.

(33) a.

$

’

&

’

%

D0 ă T 0

D0 ă V 0

T 0 ă V 0

,

/

.

/

-

The Set-to-String algorithm contains four stages, and I state and discuss each stage in

(34). Note that in the case of (33), the Set-to-String algorithm will only proceed to Stage 1

because this set does not violate the Asymmetry Constraint. Later, in chapter 5, I discuss a

case that has non successive-cyclic movement, of which the �nal union set violates the

Asymmetry Constraint and thus proceeds to Stage 2, but since it fails to form a string, it

causes the linearization process to crash and does not proceed to Stage 3 and 4; and in

chapter 6, I discuss the VP-doubling case in Mandarin, of which the �nal union set also

violates the Asymmetry Constraint and proceeds to Stage 2 but succeeds in forming a

10
If T

0
were to be considered in the movement case, it has two paths: (TP1, TP2, CP) and (C1

0
, CP)
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string, and thus proceeds to Stage 3 and 4.
11

(34) Set-to-String

The algorithm �rst examines whether a set satis�es the Asymmetry Constraint by checking

whether the set has ordering contradiction. In other words, the algorithm needs to check

each node and see whether there exists a node that both precedes and follows the same

node. One way to implement this is stated in Stage 1, where for each node n, form a set X

that has all the nodes that precede n and a set that has all the nodes that follow n. Then,

take the intersection set of X and Y. If for instance, there exists an ordering contradiction,

where a node precedes and follows the same node n1, n1 will be in both set X and set Y,

so the intersection set of X and Y will include n1 and not be empty. If all the intersection

sets are empty, it means that there is no contradiction (i.e., there does not exist a node that

precedes and follows the same node(s)) and the set can be linearized directly by the String

Forming Mechanism. If there exists an ordering contradiction, proceed to the next stage.

Stage 1:

1. Find the intersection sets: For each distinct node n1, n2, n3, ... in the set of ordered

pairs O = {n1 ă n3, n3 ă n2, ...}, get the set X = {..., n1, ...} that contains all the nodes

that precedes n and the set Y = {..., n2, ...} that contains all the nodes that follows n,

and get the set I = X X Y, which is the intersection of set X and set Y.

2. Check the intersection sets: If all the intersection sets are empty, run the String

Forming Mechanism, which is de�ned in (35) below, on set O and the set will be

turned into a string. Otherwise, proceed to Stage 2.

I propose that if a set only violates the Asymmetry Constraint (i.e., hav-

ing non-empty intersection sets), the linearization does not crash immediately.

11
Note that a �nal union set either satis�es all the constraints or only violates the Asymmetry Constraint.

One situation where a �nal union set only violates the Asymmetry Constraint is that the precedence relations

between a moved item and (some of) the other nodes in the Spell-out domain XP are changed in the next

Spell-out domain YP, which causes ordering contradiction after applying the union operation on XP and YP.
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Instead, check whether it is possible to linearize the moved item in its higher position as a

string but linearize the nodes in the moved item in its lower position.
12

I further propose

that a moved item can only be linearized as a string if the nodes in a moved item can

form a quali�ed constituent. I propose that whether a constituent is quali�ed depends

on the particular language. For instance, in English, no constituent is quali�ed; and in

Mandarin, [VP V bare-NP] is quali�ed (regarding whether the other kinds of VP structures

are quali�ed, it varies among speakers).
13

Thus, there are two tasks the next stage of the

Set-to-String algorithm should accomplish: one is to �nd all the nodes in a moved item, and

the other is to check whether those nodes form a quali�ed constituent. A more concrete

example will be discussed in chapter 5.

Before going into the details of Stage 2, I provide a brief discussion about how

the �rst task of �nding all the nodes in a moved item is done in a formal way in Stage 2.

Imagine the following situation: x is a moved item, and y ă x in the XP Spell-out domain

but x ă y in the next Spell-out domain YP. Assuming that the �nal union set includes both

y ă x and x ă y, the intersection set for x will include y (i.e., x both precedes and follows

y), and relatively the intersection set for y will include x. In this sense, the intersection set

of y includes the moved item x and the intersection set of x includes the node y that is

ordered di�erently to x in XP and YP. Since the nodes in the moved item normally form a

constituent, but the nodes that are ordered di�erently regarding the moved item do not
14

,

I use this as a way for the algorithm to locate the intersection set that contains the nodes

in a moved item.
15

Now that the nodes in a moved item are found, the next step is to see

whether the nodes form a quali�ed constituent. If they do, proceed to the next stage (i.e.,

12
Here, I stipulate that the nodes in the moved item in its higher position should be the candidate for

forming a string. There could possibly be a more general way to choose which nodes to form a string but for

now, I stick to this less general approach and discuss some alternative approaches later.

13
I will revisit quali�ed constituents in Mandarin VP-doubling cases in chapter 6.

14
At least in all the examples in this dissertation, the nodes that are ordered di�erently regarding the

moved item do not form a constituent.

15
The property of being able to form a constituent is just a general observation about the nodes in a

moved item, which di�ers from the nodes that are ordered di�erently from the moved item. This property

does not provide any explanation for why the nodes in the moved item should be chosen but only serves as

a way for the algorithm to �nd all the nodes in the moved item in a formal way.
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Stage 3); otherwise, the linearization process crashes.

Stage 2:

1. Collect all the non-empty intersection sets: Form a set M = {I1, I2,...} that contains

all the non-empty intersection sets.

2. Try forming a string:

(a) No quali�ed constituent: For all given intersection sets I1 = {n1, n2, ...}, I1 =

{n3, ...}, ... in set M, if none of them forms a quali�ed constituent, the linearization

process crashes.

(b) Quali�ed constituent: If there exists intersection set I
*

that forms a quali�ed

constituent, proceed to Stage 3.

If the nodes form a constituent, the next step is to form a string out of

the nodes. The formal way to implement this is to form a set S that contains all the ordered

pairs that order the nodes that form a quali�ed constituent in the intersection set I
*

(i.e.,

the nodes that are in the moved item), and run the String Forming Mechanism on set S.

This is stated in Stage 3.

Stage 3:

1. Form set S: Form the subset S = {n1 ă n2, ...} of set O that contains all the ordered

pairs α ă β, where both α and β are in the intersection set I
*
.

2. Forming a string: Run the String Forming Mechanism algorithm, which is stated

in (35), on set S and get the string str = ăS n1n2...ą.

After forming the string, the next step is to replace the nodes in the moved item

in its higher position with the string. Note that there are ordering statements that order

the nodes within the moved item and they should not be replaced in those statements, or

the string will be ordered relative to itself. For instance, x and y are the nodes in a moved
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item and the ordering statements include x ă y. If x and y are replaced by the string ăS

xy ą, there will be an ordering statement of ăS xy ą preceding ăS xy ą, which violates

the Anti-re�exivity Constraint. In other words, replacement should only be applied to

statements that are not the ones like x ă y, where both x and y are nodes in the moved

item. The way to implement this idea is to �nd a set D, which excludes ordering statements

like x ă y from the original set O, and only apply replacement to the ordering statements

in the original set O if they are in set D. Note that previously, the algorithm has formed set

S, which contains all the ordering statements that order the nodes in the moved item, so

the algorithm can get set D by subtracting set S from the original set O. To implement the

idea of only forming a string in the higher position of the moved item, replacement only

happens to the α position of α ă β.

Before showing the formal details in Stage 4, I provide a brief illustration of how

replacement can solve the asymmetric problem. For instance, assuming that the original

set is {A ă C, B ă C, C ă A, C ă B, A ă B}, A and B are the nodes in a moved item, and A

and B form a quali�ed constituent. So, A and B form the string ăS ABą. Then, replace

A and B with the string when A and B are in their higher position (i.e., A and B are the

preceding nodes in the ordering statements). As a result, the original set becomes {ăS AB

ą ă C, C ă A, C ă B, A ă B} and there is no contradictory ordering. A more concrete

example will be discussed in chapter 6.

Stage 4:

1. Replace nodes with string:

(a) Get set D = O - S Form set D = O - S (i.e., D = {n1 ă n3, n3 ă n2 ...}, O = {n1 ă

n3, n3 ă n2, n1 ă n2, ...} and S = {n1 ă n2})

(b) Replace For every ordering statementαă β in the original set O, if the ordering

statement is in set D, replace the node with the string str = ăS n1n2...ą if the

node is in intersection set I
*

and in the α position.
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The updated set O = {ăS n1n2...ą ă n3, n3 ă n2, n1 ă n2, ...}.

2. Linearizing O: Run the String Forming Mechanism algorithm in (35) on the updated

set O.

(35) String Forming Mechanism

For a given set of ordered pairs x, it is associated with a string str that is by default

empty. Concatenate node/string α to string str if the node/string α is not preceded

by any other node, and then delete all the ordered pairs that contain α. Repeat

this procedure unless there is only one ordered pair γ ă δ left in set x, then, �rst

concatenate γ and then concatenate δ to string str.

In the following, I illustrate how the Set-to-String algorithm works using the set in (33),

which is repeated below in (36). The structure in question is repeated below in (37).

(36)

$

’

&

’

%

D0 ă T 0

D0 ă V 0

T 0 ă V 0

,

/

.

/

-

(37) TP2

TP1

VP

V
0

run

T
0

can

DP

D
0

she

First, implement Stage 1 of the Set-to-String algorithm, where the algorithm determines

whether the �nal union set (36), which I will refer to as Set O, violates the Asymmetry

Constraint. Speci�cally, �nd the intersection sets for all the nodes (i.e., D
0
, T

0
and V

0
) in O.

For each node, take the intersection of the set that has the preceding nodes and the set

that contains the following nodes. The intersection sets are shown in (38).
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(38) a. D
0
: H =HX {T

0
, V

0
}

b. T
0
: H = {D

0
} X {V

0
}

c. V
0
: H = {D

0
, T

0
} XH

Note that since all the intersection sets are empty, the algorithm will not proceed to Stage

2, but run the String Forming Mechanism algorithm on set O, which yields the string ăS

D
0
T

0
V

0ą. Here is how the string is formed by the String Forming Mechanism algorithm.

First, �nd the node that is not preceded by any other nodes (i.e., the node is D
0
) and

concatenate this node (i.e., D
0
) to the default empty string str. Then, delete all the ordering

statements that contain D
0
. The next step is supposed to repeat this procedure (i.e., �nd the

next node that is not preceded by any other nodes, concatenate this node to the string (i.e.,

ăS D
0 ą), and delete all the statements that contain the node D

0
). However, since there is

only one ordering statement (i.e., T
0 ă V

0
) left, the procedure will not be repeated but T

0

will be concatenated to string str ăS D
0 ą and then V

0
will be concatenated to string str

ăS D
0
T

0 ą. As a result, the �nal string is ăS D
0
T

0
V

0 ą.

Now, it comes to the last step of the basic linearization algorithm: insert vocabulary

items. First, for each node, form the lexical insertion site, which is shown in (39). A „

B represents that The lexical insertion site for A is B. Then, the string becomes ăS #D
0
#

#T
0
# #V

0
#ą. The lexical insertion sites might seem to be redundant for now but it will

become more obvious why the lexical insertion sites are necessary later for cases that

involve complex verbal morphology.

(39) a. D
0 „ #D

0
#

b. T
0 „ #T

0
#

c. V
0 „ #V

0
#

Then, insert lexical items in the lexical insertion site, which is shown in (40). A “ B

represents that the lexical insertion for A is B. As a result, the string ăS #D
0
# #T

0
# #V

0
#ą

is updated as ăS she can runą. Finally, we get she can run as the utterance.
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(40) a. #D
0
# “ she

b. #T
0
# “ can

c. #V
0
# “ run

4.3 The di�erent stages of the Set-to-String algorithm

In the previous section, I presented the four stages of the Set-to-String algorithm. As a

quick summary, Stage 1 is for checking whether a certain �nal union set of the ordering

statements violate the Asymmetry Constraint, and it only proceeds to Stage 2 if the �nal

union set violates the Asymmetry Constraint. For instance, like the previous case in (36),

the �nal union set does not have contradictory orderings, and thus satis�es the Asymmetry

Constraint, so the linearization process only implements Stage 1 and does not proceed

to Stage 2. Later on, in chapter 6, when verb-doubling is discussed, I will show that the

linearization of the V-doubling cases also stops at Stage 1 since the �nal union set satis�es

all the constraints, including the Asymmetry Constraint. A preview for the V-doubling

example is shown in (41), where the �nal union set in (41b) satis�es all the constraints. So,

for both simple cases like (36) or the V-doubling cases like (41), the linearization process

only proceeds to Stage 1 since the �nal union set satis�es all the constraints, and the sets

are mapped to a string by the String Forming Mechanism, which eventually becomes the

output of PF after lexical insertion. In addition, Stage 1 only deals with “words”, namely,

X
0
-level nodes. This can be seen in both the �nal union set of the previous case in (36) and

the �nal union set of the V-doubling case in (41b), where the ordering statements only

contain X
0

nodes.
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(41) a. Hebrew

Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

b. The �nal union set

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

Top1

0 ă D1

0

Top1

0 ă N 0

C0 ă D1

0

C0 ă T 1

0

C0 ă D2

0

C0 ă N 0

D2

0 ă T 1

0

D2

0 ă D1

0

D2

0 ă N 0

T 1

0 ă D1

0

T 1

0 ă N 0

D1

0 ă N 0
V

0 ă D2

0

V
0 ă N

0

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

However, once a �nal union set violates the Asymmetry Constraint, the lineariza-

tion process proceeds to Stage 2, which is the stage that starts involving strings in the

linearization. To be more speci�c, Stage 2 aims at checking whether there is a quali�ed

constituent in the structure that can enter the linearization process as a string, and it only

proceeds to Stage 3 and 4 if there is a quali�ed constituent. For instance, in chapter 5, I

will discuss the non successive-cyclic movement of the wh-phrase in English. A preview

for this example is shown in (42). In this example, the �nal union set (42c) violates the

Asymmetry Constraint since the �nal union set contains ordering statements like P
0 ă

D2

0
and D2

0 ă P
0
, and thus, it proceeds to Stage 2.

(42) a. To whom will she give it?

b. Non successive-cyclic movement

*[CP To whom will she [VP ______ give it to whom]]?
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c. Final union set

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

P 0 ă D1

0

P 0 ă C0

P 0 ă D3

0

P 0 ă T 0

P
0 ă V

0

P
0 ă D2

0

D1

0 ă C0

D1

0 ă D3

0

D1

0 ă T 0

D1

0 ă V
0

D1

0 ă D2

0

C0 ă D3

0

C0 ă T 0

C0 ă V 0

C0 ă D2

0

D3

0 ă T 0

D3

0 ă V 0

D3

0 ă D2

0

T 0 ă V 0

T 0 ă D2

0

V 0 ă D2

0

V
0 ă P

0

V
0 ă D1

0

D2

0 ă P
0

D2

0 ă D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Later, in chapter 6, I will show that for the VP-doubling case in Mandarin, its �nal

union set also violates the Asymmetry Constraint. A preview for this case is shown in (43).

(43) a. Mandarin (aspectual form)

Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

b. The �nal union set

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Asp1

0 ă D1

0

Asp1

0 ă Top0

Asp1

0 ă C0

Asp1

0 ă D2

0

Asp1

0 ă Adv0

Asp1

0 ă Neg0

Asp1

0 ă T 0

D1

0 ă Top0

D1

0 ă C0

D1

0 ă D2

0

D1

0 ă Adv0

D1

0 ă Neg0

D1

0 ă T 0

Top0 ă C0

Top0 ă D2

0

Top0 ă Adv0

Top0 ă Neg0

Top0 ă T 0

C0 ă D2

0

C0 ă Adv0

C0 ă Neg0

C0 ă T 0

C
0 ă Asp1

0

C
0 ă D1

0

D2

0 ă Adv0

D2

0 ă Neg0

D2

0 ă T 0

D2

0 ă Asp1

0

D2

0 ă D1

0

Adv0 ă Neg0

Adv0 ă T 0

Adv
0 ă Asp1

0

Adv
0 ă D1

0

Neg0 ă T 0

Neg
0 ă Asp1

0

Neg
0 ă D1

0

T
0 ă Asp1

0

T
0 ă D1

0

V
0 ă D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

So, for both the non successive-cyclic movement case (42) and the VP-doubling

case (43), they violate the Asymmetry Constraint, and thus the linearization process

proceeds to Stage 2. However, only the VP-doubling case continues to Stage 3 and 4

because it has a quali�ed constituent in the structure; while the non successive-cyclic

movement case stops at Stage 2 and causes the linearization process to crash since there
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is no quali�ed constituent. For the VP-doubling case, during Stage 3 and 4, the quali�ed

constituent, which is an XP-level syntactic object, is turned into a string (44a), and this

string is put into the linearization process (44b), where the set not only contains ordering

statements that order words but also contains ordering statements that order words and

strings. Then, the set in (44b), which contains both words (i.e., X
0
s) and strings (i.e., XPs),

is �nally turned into a string (45) by the String Forming Mechanism, which is eventually

the output of PF after lexical insertion.

(44) a. ăS Asp1

0
D1

0ą

b.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Asp1

0 ă D1

0

ăS Asp1

0
D1

0ą ă Top0

ăS Asp1

0
D1

0ą ă C0

ăS Asp1

0
D1

0ą ă D2

0

ăS Asp1

0
D1

0ą ă Adv0

ăS Asp1

0
D1

0ą ă Neg0

ăS Asp1

0
D1

0ą ă T 0

Top0 ă C0

Top0 ă D2

0

Top0 ă Adv0

Top0 ă Neg0

Top0 ă T 0

C0 ă D2

0

C0 ă Adv0

C0 ă Neg0

C0 ă T 0

C0
<Asp1

0

C0
<D1

0

D2

0 ă Adv0

D2

0 ă Neg0

D2

0 ă T 0

D2

0
<Asp1

0

D2

0
<D1

0

Adv0 ă Neg0

Adv0 ă T 0

Adv0
<Asp1

0

Adv0
<D1

0

Neg0 ă T 0

Neg0
<Asp1

0

Neg0
<D1

0

T 0
<Asp1

0

T 0
<D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(45) The �nal string

ăS ăS Asp1

0
D1

0ąTop
0
C

0
D2

0
Adv

0
Neg

0
T

0
Asp1

0
D1

0ą

As a quick summary, for the previous non successive-cyclic case and V-doubling

case, and also the VP-doubling case, what the Set-to-String algorithm does is to turn their

�nal union set into a string. The only di�erence is that during the linearization process,

the previous non successive-cyclic case and V-doubling case only deal with ordering

statements that linearize words (i.e., X
0
s) but for the VP-doubling case, it also deals with

ordering statements that linearize words and strings (i.e., XPs). In other words, the Set-to-

89



String algorithm turns the �nal union set of the previous non successive-cyclic case and

V-doubling case into a string without forming a sub-string �rst, while for the VP-doubling

case, he Set-to-String algorithm �rst generates a string out of the subset of the ordering

statements and then forms the �nal string, which contains the sub-string.

4.4 Summary

In this chapter, I introduced the basic algorithm that contains the Candidates Generator G,

the Constraints and the Set-to-String algorithm. The Candidates Generator G generates

all possible sets of ordered pairs using the Maximal X
0

Nodes; the Constraints �lter out

most of the sets and leave one survivor that satis�es all the Constraints; and the Set-to-

String algorithm proceeds with the survived set and the survived set becomes a string.
16

Finally, lexical items are inserted and the �nal utterance is produced. In the next chapter,

I will incorporate this basic linearization process with Fox and Pesetsky (2005)’s cyclic

linearization and show how it works. I will also introduce the Ordering Deletion rule that

gets rid of the redundant ordering statements caused by the cyclic linearization process.

16
Here, I assume that there is always only one legitimate utterance generated by the linearization process.

However, the linearization process proposed in this dissertation can potentially generate more than one

legitimate utterance.
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CHAPTER 5

The cyclic linearization process

So far, I have been making an implicit assumption that the linearization process of p is

applied to the whole structure. In this chapter, I show how the basic linearization process

works in a cyclic way by �rst presenting Fox and Pesetsky (2005)’s proposal about cyclic

linearization in section 5.1 and then showing how the basic linearization algorithm is

implemented in a cyclic way in section 5.2.

5.1 Fox and Pesetsky (2005)’s cyclic linearization

Fox and Pesetsky (2005) propose that for a given linearization algorithm, it is applied to

each Spell-out domain, where Spell-out domain is de�ned in (1). They propose that the

list of Spell-out domains includes at least CP, VP and DP. For instance, when a Spell-out

domain, say DP, is constructed in the derivation, Spell-out applies to DP and linearizes DP

using the linearization algorithm; then build the structure for the next Spell-out domain,

say VP, and then apply Spell-out to VP and linearizes VP using the linearization algorithm,

and repeat this procedure until the structure in the last Spell-out domain is linearized.
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(1) Spell-out domain

Spell-out domain refers to the constituents that are mapped by Spell-out, where

Spell-out refers to the mapping between syntax and phonology.

Fox and Pesetsky (2005)

One key property of Fox and Pesetsky (2005)’s cyclic linearization is Order Preservation,

which is stated in (2).

(2) Order Preservation

Information about linearization, once established at the end of a given Spell-out

domain, is never deleted in the course of a derivation. The sole function of Spell-out

is to add information.

Fox and Pesetsky (2005)

For instance, Order Preservation requires that once the linearization of a Spell-out domain,

say DP, is generated, the linearization of DP will never be deleted and will be added to

be part of the information about linearization. After the next Spell-out domain, namely

VP, is linearized, the linearization information of VP will also be added to be part of the

information about linearization and cannot be deleted either.

In the following, I discuss the Object Shift phenomenon (Holmberg 1986) in

Swedish which Fox and Pesetsky (2005) argue to be explained by cyclic linearization.

Before going in to the details of Object Shift in Swedish, I provide a brief discussion about

the verb-second property of Swedish.

Verb-second refers to the phenomenon that the �nite verb is obligatorily the second

constituent and is typical for Germanic languages. As one of the Germanic languages,

Swedish also has this property, which are shown in (3). It can be seen that regardless of

what the �rst constituent (i.e., the italicized material) is, the �nite verb (i.e., the auxiliary

verb har ‘have’) is the second constituent. Traditionally, verb-second is believed to be a

result of verb movement — the verb moves to C
0

(cf. Koster 1975, Besten 1983).

92



(3) a. Jag
I

har

have

ärligt

honestly

talat

speaking

aldri

never

sett

seen

huggormar

adders

i

in

den

this

här

here

skogen

forest

b. Huggormar
adders

har

have

Jag

I

ärligt

honestly

talat

speaking

aldri

never

sett

seen

i

in

den

this

här

here

skogen

forest

c. I
in

den
this

här
here

skogen
forest

har

have

Jag

I

ärligt

honestly

talat

speaking

aldri

never

sett

seen

Huggormar

adders

d. ärligt
honestly

talat
speaking

har

have

Jag

I

aldri

never

sett

seen

Huggormar

adders

i

in

den

this

här

here

skogen

forest

‘To be honest I’ve never seen adders in this forest.’

(Holmberg 2015: 2, ex. 1)

(4) CP

CP

TP2

TP1

VP

V
0

T1

0

T
0

DP2

I

C1

0

C
0

...

As shown in (4), the verb moves to C
0
, preceding the subject Jag ‘I’ and after the �rst

constituent at Spec, CP (e.g., huggormar ‘adders’).

However, verb-second can be blocked in an embedded clause, which is shown in

(5), where the �nite verb kysste ‘kissed’ is not the second constituent in the embedded

clause. In this case, verb-movement is considered to be blocked. However, one exception

for this is found in Icelandic (6), where the verb precedes the adverb, which is evidence

that the verb moves out of VP; and since it is below the subject, which is considered to be

in spec-TP, the verb moves to T
0
.

(5) att

that

jag

I

inte

not

kysste

kissed

henne

her

(Holmberg 1999: 1, ex.1c’)
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(6) a. Ég

I

spurði

asked

af-hverju

why

Pétur

Peter

læsiv

read

aldrei

never

[VP tV þessa

this

bók].

book

(Vikner 2005: 395-396, ex. 12(a))

b. CP

CP

TP2

TP1

VP

VP

V
0

AdvP

Adv

never

T1

0

T
0

DP2

Peter

C
0

...

Now, I go back to Object Shift. Object Shift is found in the North Germanic (Icelandic,

Faroese, Norwegian, Danish, Swedish) languages and refers to the rule that moves an

object leftwards under the condition that the verb selecting the object also moves out of

VP, which is also known as Holmberg’s Generalization. An example for object shift is in

(17) from Swedish: when the verb in V
0

does not move to C
0
, Object Shift is impossible. To

be more speci�c, (7a) is grammatical, where the verb moves to C
0

and the object moves

out of the VP. In contrast, in (7b) and (7c), the object moves out of the VP while the verb

stays inside the VP. To be more speci�c, in (7b), verb movement is blocked and the verb

kysste ‘kissed’ has to stay in VP but the object moves out of VP across the verb; in (7c),

since there is an auxiliary verb in the clause, verb-second applies to the auxiliary verb, so

the verb kysst ‘kissed’ also stays in VP but the object moves out of the VP across the verb.
1

1
According to Holmberg (1986), usually Object Shift only applies to weakly stressed pronouns, but Object

Shift applies to all NPs in Icelandic, provided they are not very heavy.
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(7) Object Shift

a. Jag

I

kysste

kissed

henne

her

inte

not

[VP tV tO]

b. *att

that

jag

I

henne

her

inte

not

[VP kysste

kissed

tO]

c. *Jag

I

har

have

henne

her

inte

not

[VP kysst

kissed

tO] (Holmberg 1999: 1, ex.1)

Note that Object Shift does not hinge on the verb movement to C
0
. In Icelandic embedded

clauses, the verb moves to T
0
, and Object Shift is still possible. For instance, in (8), the

verb læsi ‘read’ moves to T
0
, and the object can precede the adverb þessa ‘never’, which is

evidence that the object moves out of VP, too.

(8) Ég

I

spurði

asked

af-hverju

why

Pétur

Peter

læsiv

read

bóki

this

aldrei

book

þessa

never

[VP tV ti].

(Vikner 2005: 395-396, ex. 12(b))

The �rst modern analysis for Object Shift is in Holmberg (1986), which ties the

facts to case assignment: when the verb stays in V
0
, it assigns case obligatorily to its object

and thus, the object cannot move freely into a di�erent position and be assigned case there.

On the contrary, if the verb moves to C
0
, the trace of the verb optionally assigns case to

its object and thus, the object can move to a di�erent place and be assigned case there.

However, there seem to be some problems with this case analysis. First, according to works

such as Burzio (1986), Johnson (1991) and Kratzer (1996), it is v
0

that assigns accusative

case to the object, not the verb. Even if one adopts the theory that it is indeed the verb

that assigns case, Holmberg (1999) made an observation that any phonologically visible

category inside VP preceding the object can block Object Shift, not just an unmoved verb,

including prepositions (9), verb particles (10), and indirect object (11). For example, (9a) has

verb-second word order (i.e., the verb talade “spoke” moves to C
0
) and is grammatical; while

in (9b), despite the fact that the verb moves to C
0
, it is ungrammatical if the object moves

out of VP when there is a preposition preceding the object in its original position. This is

also true of (10) and (11), where there is a verb particle or an indirect object preceding the
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object in its original position. Note that unlike the example in (17), in (9)-(10), object shift

is still not allowed, though the verb has moved. For (9) and (10), one might argue that it is

the preposition and the particle that assign case to the object, so moving the preposition

and the particle, instead of the verb, is required for Object Shift. However, it is unclear

why (11b) is ungrammatical, especially given the facts in (12) —under the case analysis, it

is unclear why Object Shift is disallowed when the indirect object does not move (11b) but

it is allowed when the indirect object moves (12), given that the indirect object is clearly

not a case assigner like the preposition and the particle.

(9) a. Jag

I

talade

spoke

inte

not

[VP tV med

with

henne]

her

b. *Jag

I

talade

spoke

henne

her

inte

not

[VP tV med

with

tO]

(10) a. Dom

they

kastade

threw

inte

not

[VP tV ut

out

mej]

me

b. *Dom

they

kastade

threw

mej

me

inte

not

[VP tV ut

out

tO]

(11) a. Jag

I

gav

gave

inte

not

[VP tV Elsa

Elsa

den]

it

b. *Jag

I

gav

gave

den

it

inte

not

[VP tV Elsa

Elsa

tO]

(Holmberg 1999: 2, ex. 2(a) - (c’))

(12) a. Vemio

who

gav

gave

du

you

deno

it

inte

not

[VP tio to]?

‘Who didn’t you give it to?’

b. Henneio

her

visar

show

jag

I

deno

it

helst

rather

inte

not

[VP tio to].

‘I’d rather not show it to HER.’

(Holmberg 1999: 17, ex. 43)

In fact, Holmberg (1999) provides another view to explain the facts in (17) and (9) - (12): it

is the linear position of an element that is responsible for the intervention e�ect - Object

Shift is prevented from moving across any phonologically visible element in VP. Along
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this line, Fox and Pesetsky (2005) propose that Object Shift is related to linearization. To

be more speci�c, assuming that Object Shift does not proceed through Spec, VP, before

Object Shift, the object follows certain items; and after Object Shift, the object precedes

those items. Due to Order Preservation, information about the object preceding those

items and following those items is preserved, which results in ordering contradiction.

Before going into the details of explaining the facts in (17), I would like to point out

that in Fox and Pesetsky (2005), they do not make a distinction between vP and VP in most

cases, including the Object Shift examples in (17). So, in the following discussion of (17), I

will also treat VP, not vP, as a Spell-out domain. Also, in the Object Shift example, whether

DP being a Spell-out domain is not crucial to the explanation, so I will only focus on VP

and CP being a Spell-out domain in the following discussion. Also, following Fox and

Pesetsky (2005), for the ease of presentation, the base-generated position of the external

argument is ignored for the Object Shift examples.

Now, I continue with the discussion about how Fox and Pesetsky (2005) explains

Object Shift using (7a) as an example. To begin with, Spell-out applies to the VP Spell-out

domain and linearizes it. The linearization of the VP Spell-out domain is shown in (13).

(13) The ordering statements in the VP domain, labeled as LVP:

{kysste ‘kissed’ ă henne ‘her’}

Then, Spell-out applies to the next Spell-out domain, which is CP. The linearization

of the CP Spell-out domain is shown in (14). Note that for Fox and Pesetsky (2005),

“linearization” means ordered pairs, not strings.

(14) The ordering statements in the CP domain, labeled as LCP:

$

’

’

’

’

&

’

’

’

’

%

jag ‘I’ ă kysste ‘kissed’

jag ‘I’ ă henne ‘her’

jag ‘I’ ă inte ‘not’

kysste ‘kissed’ ă henne ‘her’

kysste kissed ă inte ‘not’

henne ‘her’ ă inte ‘not’
,

/

/

/

/

.

/

/

/

/

-
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It can be seen that LVP and LCP are compatible with each other, so (7a) is linearized

as Jag kysste henne inte (‘I kissed her not’).

Now, let’s look at (7b). Still, Spell-out applies to VP and linearizes it. The lineariza-

tion of VP is shown in (15), which is the same as the linearization of VP in (13).

(15) The ordering statements in the VP domain, labeled as LVP:

{kysste ‘kissed’ ă henne ‘her’}

Next, Spell-out applies to CP and linearizes it. The linearization of CP is shown

in (16), which is di�erent from the linearization of CP in (14) especially regarding the

ordering of the object henne ‘her’ and the verb kysste ‘kissed’.

(16) The ordering statements in the CP domain, labeled as LCP:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

att ‘that’ ă jag ‘I’, att

att ‘that’ ă henne ‘her’

att ‘that’ ă inte ‘not’

att ‘that’ ă kysste ‘kissed’

jag ‘I’ ă henne ‘her’

jag ‘I’ ă inte ‘not’

jag ‘I’ ă kysste ‘kissed’

henne ‘her’ ă inte ‘not’

henne ‘her’ ă kysste ‘kissed’

inte ‘not’ ă kysste ‘kissed’

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

It can be seen that LVP contradicts LCP: unlike (7a), repeated below as (17a), for

(7b), repeated below as (17b), henne ‘her’ ă kysste ‘kissed’ in the CP domain but kysste

‘kissed’ ă henne ‘her’ in the VP domain, which creates an ordering contradiction. Since

LVP cannot be deleted based on Order Preservation, the contradiction cannot be resolved.

As a result, the linearization of (7b) fails. The same logic applies to (7c).

(17) Object Shift

a. Jag

I

kysste

kissed

henne

her

inte

not

[VP tV tO]

b. *att

that

jag

I

henne

her

inte

not

[VP kysste

kissed

tO]

As a quick summary, under the assumption that the Object Shift does not go
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through Spec, VP, since linearization is implemented to each Spell-out domain and observes

Order Preservation, the ordering for the Spell-out domain CP must be compatible with the

ordering for its previous Spell-out domain VP. In other words, the ordering of the object

henne ‘her’ and the verb kysste must remain the same in the VP Spell-out domain and

the CP Spell-out domain. If the object moves out of VP, the verb must also move to C so

that the relative ordering of the object and the verb can remain as kysste ‘kissed’ ă henne

‘her’ in the CP Spell-out domain. In other words, despite the fact that the object phrase is

base-generated from a non-initial position in VP, but when the verb moves out of VP, the

object becomes a non-initial position.

It is worth pointing out that a crucial ingredient of Fox and Pesetsky (2005)’s cyclic

linearization is Order Preservation that preserves the precedence relations, which are used

to evaluate whether there is ordering contradiction; for instance, in the case of Object

Shift, the precedence relations are used to see whether the ordering statements in the VP

Spell-out domain are preserved in the CP Spell-out domain. In this sense, for Fox and

Pesetsky (2005), it is crucial for their linearization to include precedence relations instead

of just including a string. In the work of this dissertation, I follow Fox and Pesetsky (2005)

and assume that linearization should include a representation of precedence relations.

In the next section, I propose a detailed mechanism of how Fox and Pesetsky

(2005)’s cyclic linearization works in combination with the basic linearization process that

I proposed in the previous chapter.

5.2 The cyclic linearization process of p

In this section, I propose a cyclic linearization process that incorporates the basic lineariza-

tion process with Fox and Pesetsky (2005)’s cyclic linearization. It is worth pointing out

that di�erent from Fox and Pesetsky (2005), I assume that
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1. Though linearization is applied in a cyclic fashion, it is applied cyclically to a syntactic

structure that is fully built.
2

2. In addition to DP, VP, and CP, the root node is always a Spell-out domain.

3. All the material inside the current Spell-out domain is linearized (in Fox and Pesetsky

(2005), material that is linearized in the previous Spell-out domain is not linearized

again in the current Spell-out domain).

In general, after the whole structure is built, do the following: start linearizing

the lowest Spell-out domain, and then continue to linearize the next higher Spell-out

domain. If there is a previous Spell-out domain, take the union of the set of ordered

pairs from the current Spell-out domain and the set of ordered pairs from the previous

Spell-out domain. Repeat the procedure until the �nal union set is formed. Then, run the

Set-to-String algorithm to the �nal union set. The detailed cyclic linearization process is

stated as the following. Note that since the linearization process also includes the string

(of nodes) representation, in addition to precedence relation, a Spell-out domain will be

�rst linearized as a string of nodes, and then lexical items will be inserted to the string and

get pronounced.

1. Generate sets and �lter - starting set: Apply the the Candidates Generator G

and the Constraints (i.e., the Totality Constraint, the Anti-re�exivity Constraint, the

Asymmetry Constraint and the Language Speci�c Constraints) to the �rst Spell-out

domain XP.

2
In Fox and Pesetsky (2005), the application of linearization is interleaved in the process of building the

structure (e.g., �rst build VP and then linearize VP; and later build CP and then linearize CP). However, in

my analysis, linearization is applied cyclically after the whole structure is built (e.g., �rst build the whole

structure, then linearize VP, and then linearize CP). Assuming that movement is interleaved in the process

of building structures (e.g., V-to-v movement happens while vP is built up, instead of happening after the

whole structure is built.), applying linearization after the whole structure is built in my analysis and applying

linearization during the course of building structures in Fox and Pesetsky (2005) are e�ectively the same, at

least for cases discussed in this dissertation. Choosing to linearize after the whole structure is built in my

analysis is for ease of presentation. To be more speci�c, this dissertation does not focus on the theories of

how things move, but focus on how a structure with movement is linearized. Applying linearization after the

whole structure is built leaves out the details of how movement happens in each Spell-out domain, which

helps one focusing on how each Spell-out domain is linearized.
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2. Cyclic process steps

(a) Cyclic process step I: generate sets and �lter Apply the Candidates Gen-

erator G and the Constraints to the next Spell-out domain YP.

(b) Cyclic process step II: Union Apply the operation Union to the set of ordered

pairs that survives the Constraints from XP and the set of ordered pairs that

survives the Constraints from the previous Spell-out domain YP. I refer to the

set generated by the Union operation as the union set.

(c) Cyclic process step III: Filter on the union set Impose the Constraints on

the union set. Note that the constraints are evaluated against the structure of

the most recent Spell-out domain.

(d) Cyclic process step IV: check point If the union set survives all the con-

straints, the linearization process can continue; otherwise, the linearization

process will fail.

3. Repeat until the last union: Repeat the cyclic process steps. Once the last union

set is formed, apply Ordering Deletion, which is de�ned in (18), and instead of

implementing step III and IV, apply the Set-to-String algorithm.

4. Vocabulary insertion: Form lexical insertion sites and insert vocabulary items to

the sites.

(18) Ordering Deletion

For a given set of ordering statements, Y ă α must be deleted if X dominates Y

and X ă α, and α ă Y must be deleted if X dominates Y and α ă X; unless there

exists β such that β ă X and Y ă β, or X ă β and β ă Y.

In the following, I �rst use a simple sentence in (19) to illustrate how the cyclic linearization

process works, and then use a more complex sentence in (20) to show how a non successive-
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cyclic movement is ruled out. Lastly, I use the example in (21) to illustrate how the Ordering

Deletion rule works.

Note that since the linearization of the Spell-out domain DP is trivial for the

current as well as the future cases and leaving it out will not a�ect the discussion, I omit

the linearization of the DP Spell-out domain for all cases.

(19) Can she run it?

(20) To whom will she give it?

(21) She can run it.

5.2.1 Apply the cyclic linearization process

Let’s �rst look at example (19), the structure of which is shown in (22).

(22) CP

TP2

TP1

VP

DP1

D1

0

it

V
0

run

T
0

can

DP2

D2

0

she

C1

0

C
0

The �rst Spell-out domain is the VP domain, which is shown in (23). The Maximal X
0

Nodes in (23) are shown in (24).

(23) VP

DP1

D1

0

V
0
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(24) Maximal Nodes of VP = {V
0
, D1

0
}

After applying G(VP) and the Constraints on the generated sets, the surviving set of ordered

pairs is shown in (25).

(25) {V
0 ă D1

0
}

Next, apply the cyclic process steps. The next Spell-out domain is CP, the structure of

which is shown in (22). The Maximal X
0

Nodes of the CP Spell-out domain are shown in

(26). Note that T
0

is not a Maximal X
0

Node since it is dominated by C1

0
. Thus, only the

nodes in (26) will serve as the input for the Candidates Generator G; the node T
0

will not

occur in any ordered pairs in any set generated by G.

(26) Maximal Nodes of CP = {C1

0
, D2

0
, V

0
, D1

0
}

Apply the Candidates Generator G to CP and impose the Constraints on the generated

sets, and the surviving set of ordered pairs is shown in (27).

(27)

$

’

’

’

’

&

’

’

’

’

%

C1

0 ă D2

0

C1

0 ă V 0

C1

0 ă D1

0

D2

0 ă V 0

D2

0 ă D1

0

V 0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Table 5.1 summarizes the relevant structural relationship in CP, and the required orders by

the Language Speci�c Constraints for all Maximal X
0

Nodes α and β of CP if α and β are

ordered as a pair in a given set.

IDM relationship ordered pairs

(C1

0
TP2) CP sisters C1

0 ă D2

0
, C1

0 ă V
0
, C1

0 ă D1

0

(DP2 TP1) TP2 sisters D2

0 ă V
0
, D2

0 ă D1

0

(V
0

DP1) VP sisters V
0 ă D1

0

Table 5.1: CP relation
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C1

0
and TP2 are sisters because their immediate dominating mother CP fully

dominates them. The reason CP fully dominates C1

0
and TP2 is that every path for C1

0

and TP2 includes CP. The same logic applies to DP and TP1. The relevant paths and

full-dominance relationships are shown in (28) and (29).

(28) a. p(C1

0
) = (CP)

b. p(TP2) = (CP)

c. p(DP2) = (TP2, CP)

d. p(TP1) = (TP2, CP)

e. p(V
0
) = (VP, TP1, TP2, CP)

f. p(DP1) = (VP, TP1, TP2, CP)

g. p(D1

0
) = (DP1, VP, TP1, TP2, CP)

(29) a. CP fully dominates C1

0
and TP2

b. TP2 fully dominates DP2, TP1, D2

0
, V

0
, D1

0

c. DP2 fully dominates D2

0

d. TP1 fully dominates V
0
, D1

0

e. VP fully dominates V
0
, DP1

f. DP1 fully dominates D1

0

Now, apply the operation Union to the set of ordered pairs from the VP domain and to the

one from the CP Spell-out domain. The union set of VP and CP is identical to the one in

the CP Spell-out domain and is shown in (30).

(30)

$

’

’

’

’

&

’

’

’

’

%

C1

0 ă D2

0

C1

0 ă V 0

C1

0 ă D1

0

D2

0 ă V 0

D2

0 ă D1

0

V 0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Since this union set is the �nal union set, apply Ordering Deletion. Since no
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ordering statement �ts the criteria in Ordering Deletion, nothing is deleted. Note that

in a later case in this section, I will illustrate how Ordering Deletion works. Note that

the �nal union set satis�es all the constraints. The reason is the following. The Totality

Constraint is evaluated against the structure of the most recent Spell-out domain, which is

the structure of the CP domain. Thus, the Maximal X
0

Nodes for the union of VP and CP

domain is the same as the one in the CP domain in (26). Since all the Maximal X
0

Nodes

are ordered relative to each other in the union set in (30), this set satis�es the Totality

Constraint. It satis�es the Anti-re�exivity Constraint since for each statement in the union

set, only distinct nodes are ordered. It satis�es the Asymmetry Constraint since there are

no paradoxical orders. It satis�es the Language Speci�c Constraints since no required

order is missing.

Finally, implement the Set-to-String algorithm. The algorithm starts with deter-

mining whether the set (30) violates the Asymmetry Constraint by �nding the intersection

sets for each node in this set (i.e., Stage 1). The relevant part of the algorithm is shown

below, and the intersection sets are in (31).

Stage 1:

1. Find the intersection sets: For each distinct node n1, n2, n3, ... in the set of ordered

pairs O = {n1 ă n3, n3 ă n2, ...}, get the set X = {..., n1, ...} that contains all the nodes

that precedes n and the set Y = {..., n2, ...} that contains all the nodes that follows n,

and get the set I = X X Y, which is the intersection of set X and set Y.

2. Check the intersection sets: If all the intersection sets are empty, run the String

Forming Mechanism on set O and the set will be turned into a string. Otherwise,

proceed to Stage 2.
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(31) a. C1

0
: H =HX {D2

0
, V

0
, D1

0
}

b. D2

0
: H = {C1

0
} X {V

0
, D1

0
}

c. V
0
: H = {C1

0
, D2

0
} X {D1

0
}

d. D1

0
: H = {C1

0
, D2

0
, V

0
} XH

Since all the intersection sets are empty, the linearization stops at Stage 1. Then,

the next step is to run the String Forming Mechanism algorithm, repeated below as (32),

which yields the string ăS C1

0
D2

0
V

0
D1

0ą.

(32) String Forming Mechanism

For a given set of ordered pairs x, it is associated with a string str that is by default

empty. Concatenate node/string α to string str if the node/string α is not preceded

by any other node, and then delete all the ordered pairs that contain α. Repeat

this procedure unless there is only one ordered pair γ ă δ left in set x, then, �rst

concatenate γ and then concatenate δ to string str.

The following is how the string is formed by the String Forming Mechanism algorithm.

First, �nd the node that is not preceded by any other nodes (i.e., C1

0
), concatenate the

node to the empty string str, and delete the ordering statements that contain C1

0
. The next

step is to repeat this procedure (i.e., �nd the next node that is not preceded by any other

nodes (i.e., D2

0
), concatenate the node to stringăS C1

0 ą, and delete all the statements that

contain D2

0
). Now, there is only one statement left, which is V

0 ă D1

0
, �rst V

0
and then

D1

0
will be concatenated to ăS C1

0
D2 ą, which yields the �nal string ăS C1

0
D2

0
V

0
D1

0ą.

Next, it is the last step of the linearization process: insert vocabulary items. First,

for each node, form the lexical insertion site, which is shown in (33). A „ B represents that

The lexical insertion site for A is B. Then, the string becomes ăS #C1

0
##D2#V

0
##D1

0
#ą.
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(33) a. C1

0 „ #C1

0
#

b. D2

0 „ #D2

0
#

c. V
0 „ #V

0
#

d. D1

0 „ #D1

0
#

Then, insert lexical items in the lexical insertion site, which is shown in (34). A “ B repre-

sents that the lexical insertion for A is B. As a result, the string ăS #C1

0
##D2#V

0
##D1

0
#ą

is updated as ăS can she run itą.

(34) a. #C1

0
# “ can

b. #D2

0
# “ she

c. #V
0
# “ run

d. #D1

0
# “ it

Finally, we get string can she run it as the utterance.

Now, let’s look at example (20), which is repeated below in (35). I will discuss the

linearization of both the derivation that has successive-cyclic movement, which is shown

in (36a), and the one that has non successive-cyclic movement, which is shown in (36b).

(35) To whom will she give it?

(36) Successive-cyclic movement v.s. Non successive-cyclic movement

a. [CP To whom will she [VP to whom give it to whom]]?

successive-cyclic movement

b. *[CP To whom will she [VP ______ give it to whom]]?

non successive-cyclic movement

I start with the successive-cyclic derivation, the structure of which is shown in (37).
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(37) Successive-cyclic movement

CP2

CP1

TP2

TP1

VP2

VP1

PP2

PP1

DP1

D1

0

whom

P
0

to

DP2

D2

0

it

V
0

give

T
0

DP3

D3

0

she

C
0

will

There are two Spell-out domains: VP2 and CP2. Let’s start with the �rst Spell-out domain

VP2, the structure of which is shown in (38).

(38) Successive-cyclic movement

VP2

VP1

PP2

PP1

DP1

D1

0

P
0

DP2

D2

0

V
0

The Maximal X
0

Nodes are shown in (39)

(39) The Maximal X
0

Nodes of VP2 = {P
0
, D1

0
, V

0
, D2

0
}
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The set that satis�es all the constraints is shown in (40).

(40)

$

’

’

’

’

&

’

’

’

’

%

P 0 ă D1

0

P 0 ă V 0

P 0 ă D2

0

D1

0 ă V 0

D1

0 ă D2

0

V 0 ă D2

0

,

/

/

/

/

.

/

/

/

/

-

Below, Table 5.2 summarizes the relevant structural relationship in VP2, regarding

the Language Speci�c Constraints.

IDM relationship ordered pairs

(PP1 VP1) VP2 sisters P
0 ă V

0
, P

0 ă D2

0
, D1

0 ă V
0
, D1

0 ă D2

0

(P
0

DP1) PP1 sisters P
0 ă D1

0

(V
0

PP2) VP1 sisters V
0 ă D2

0

(DP2 PP1) PP2 not sisters N/A

Table 5.2: VP relation

Note that in this case, the distinction between full-dominance and dominance is

important. The ordering statement V
0 ă P

0
is not required because despite the fact that (i)

the set has P
0 ă V

0
, (ii) V is the head, and (iii) PP2 is the sister of V

0
, PP2 does not fully

dominate P
0

(there is a path of P
0

that does not go through PP2, which is shown in (42e-i)).

The same logic applies to the reason V
0 ă D1

0
is not required (i.e., D1

0
is also not fully

dominated by PP2 - see the path information in (42c-i)).

In addition, D2

0 ă P
0

is not required because despite the fact that (i) the set

has {P
0 ă D2

0
}, (ii) DP2 is a speci�er, (iii) D2

0
is dominated by DP2, and (iv) PP1 fully

dominates P
0
, PP1 is not a sister of DP2 (i.e., their immediate dominating mother PP2 does

not fully dominate PP1 - there is a path for PP1 that does not go through PP2 - see the path

information in (42d-i)). The same logic applies to why D2

0 ă D1

0
is not required.

The relevant full-dominance relationships and paths are shown in (41) and (42).
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(41) a. PP1 fully dominates P
0

and D1

0

b. VP1 fully dominates V
0

and D
0

c. DP1 fully dominates D1

0

d. PP2 fully dominates D2

0

(42) a. p(V
0
) = (VP1, VP2)

b. p(D2

0
) = (DP2, PP2, VP1, VP2)

c. p(D1

0
) =

(i) (DP1, PP1, VP2)

(ii) (DP1, PP1, PP2, VP1, VP2)

d. p(PP1) =

(i) (VP2)

(ii) (PP2, VP1, VP2)

e. p(P
0
) =

(i) (PP1, VP2)

(ii) (PP1, PP2, VP1, VP2)

Now, let’s proceed to the CP2 Spell-out domain, the structure of which is repeated below

in (43).
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(43) CP2

CP1

TP2

TP1

VP2

VP1

PP2

PP1

DP1

D1

0

P
0

DP2

D2

0

V
0

T
0

DP3

D3

0

C
0

The Maximal X
0

Nodes are shown in (57)

(44) The Maximal X
0

Nodes of CP2 = {P
0
, D1

0
, C

0
, D3

0
, T

0
, V

0
, D2

0
}

The set that satis�es all the constraints are shown in (45).

(45)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

P 0 ă D1

0

P 0 ă C0

P 0 ă D3

0

P 0 ă T 0

P 0 ă V 0

P 0 ă D2

0

D1

0 ă C0

D1

0 ă D3

0

D1

0 ă T 0

D1

0 ă V 0

D1

0 ă D2

0

C0 ă D3

0

C0 ă T 0

C0 ă V 0

C0 ă D2

0

D3

0 ă T 0

D3

0 ă V 0

D3

0 ă D2

0

T 0 ă V 0

T 0 ă D2

0

V 0 ă D2

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Below, Table 5.3 summarizes the relevant structural relationship in CP2, regarding

the Language Speci�c Constraints.
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IDM relationship ordered pairs

(PP1 CP1) CP2 sisters

P
0 ă C

0
, P

0 ă D3

0
, P

0 ă T
0
,

P
0 ă V

0
, P

0 ă D2

0

D1

0 ă C
0
, D1

0 ă D3

0
, D1

0 ă T
0
,

D1

0 ă V
0
, D1

0 ă D2

0

(P
0

DP1) PP1 sisters P
0 ă D1

0

(C
0

TP2) TP1 sisters C
0 ă D3

0
, C

0 ă T
0
, C

0 ă V
0
, C

0 ă D2

0

(D3

0
TP1) TP2 sisters D3

0 ă T
0
, D3

0 ă V
0
, D3

0 ă D2

0

(T
0

VP2) TP1 sisters T
0 ă V

0
, T

0 ă D2

0

(V
0

PP2) VP1 sisters V
0 ă D2

0

(DP2 PP1) PP2 not sisters N/A

(PP1 VP1) VP2 not sisters N/A

Table 5.3: CP relation

Note that the ordering statement C
0 ă P

0
is not required because despite the fact

that (i) the set has P
0 ă C

0
, (ii) C is the head, and (iii) TP2 is the sister of C

0
, TP2 does not

fully dominate P
0

(there is a path of P
0

that does not go through PP2, which is shown in

(46b-i)). The same logic applies to the reason T
0 ă P

0
, V

0 ă P
0
, as well as C

0 ă D1

0
, T

0 ă

D1

0
, V

0 ă D1

0
are not required.

In addition, D3

0 ă P
0

is not required because despite the fact that (i) the set has

P
0 ă D3

0
, (ii) DP3 is a speci�er, and (iii) DP3 dominates D3

0
, TP1 does not fully dominate

P
0

(i.e., there is a path for P
0

that does not go through TP1 - see (46b-i)). The same logic

applies to the reason D3

0 ă D1

0
is not required.

Furthermore, D2

0 ă P
0

is not required because despite the fact that (i) the set has

P
0 ă D2

0
, (ii) DP2 is a speci�er, (iii) DP2 dominates D2

0
, and (iv) PP1 fully dominates P

0
,
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DP2 and PP1 are not sisters (i.e., there are paths for PP1 that does not go through PP2 - see

(46a-i) and (46a-ii)). The same logic applies to the reason D2

0 ă D1

0
is not required.

(46) a. p(PP1) =

(i) (CP2)

(ii) (VP2, TP1, TP2, CP1, CP2)

(iii) (PP2, VP1, VP2, TP1, TP2, CP1, CP2)

b. p(P
0
) =

(i) (PP1, CP2)

(ii) (PP1, VP2, TP1, TP2, CP1, CP2}

(iii) (PP1, PP2, VP1, VP2, TP1, TP2, CP1, CP2)

c. p(D1

0
) =

(i) (DP1, PP1, CP2)

(ii) (DP1, PP1, VP2, TP1, TP2, CP1, CP2)

(iii) (DP1, PP1, PP2, VP1, VP2, TP1, TP2, CP1, CP2)

Next, take the union of the set of ordered pairs from the VP Spell-out domain and the one

from the CP Spell-out domain, both of which are repeated below in (47). Note that the set

from CP contains all the ordering statements in the set from VP. Thus, the union set of CP

and VP is the same as the one from CP.

(47)

a.

$

’

’

’

’

&

’

’

’

’

%

P 0 ă D1

0

P 0 ă V 0

P 0 ă D2

0

D1

0 ă V 0

D1

0 ă D2

0

V 0 ă D2

0

,

/

/

/

/

.

/

/

/

/

-
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b.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

P 0 ă D1

0

P 0 ă C0

P 0 ă D3

0

P 0 ă T 0

P 0 ă V 0

P 0 ă D2

0

D1

0 ă C0

D1

0 ă D3

0

D1

0 ă T 0

D1

0 ă V 0

D1

0 ă D2

0

C0 ă D3

0

C0 ă T 0

C0 ă V 0

C0 ă D2

0

D3

0 ă T 0

D3

0 ă V 0

D3

0 ă D2

0

T 0 ă V 0

T 0 ă D2

0

V 0 ă D2

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Since the �nal Spell-out domain has been reached, apply Ordering Deletion. Since no

ordering statements �t the criteria in Ordering Deletion, nothing is deleted. Then, apply

the Set-to-String algorithm to the union set of CP and VP, which is the set in 2. Since the

union set satis�es all the constraints, the Set-to-String algorithm proceeds with it. Next,

get the intersection sets for it. Notice that for each node, the intersection sets are empty.

Thus, run the String Forming Mechanism algorithm on the union set, which yields the

string ăS P0D1

0
C0D3

0
T0V0D2

0ą.

The next step is to form lexical insertion sites, which is shown in (48).

(48) a. P
0 „ #C

0
#

b. D1

0 „ #D1

0
#

c. C
0 „ #C

0
#

d. D3

0 „ #D3

0
#

e. T
0 „ #T

0
#

f. V
0 „ #V

0
#

g. D2

0 „ #D2

0
#

Now, implement lexical insertion, which is shown in (49).

(49) a. P
0

= ‘to’

b. D1

0
= ‘whom’

c. C
0

= ‘will’
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d. D3

0
= ‘she’

e. T
0

=H

f. V
0

= ‘give’

g. D2

0
= ‘it’

Thus, the string is updated as ăS to whom will she give itą. Finally, the string becomes

the utterance to whom will she give it?

In the following, I will discuss the non successive-cyclic derivation of the sentence

to whom will she give it? and show how the linearization of it fails. The structure is shown

in (50).

(50) Non successive-cyclic movement

CP2

CP1

TP2

TP1

VP

PP2

PP1

DP1

D1

0

whom

P
0

to

DP2

D2

0

it

V
0

give

T
0

DP3

D3

0

she

C
0

will

There are two Spell-out domains: VP and CP2. Let’s start with the �rst constructed Spell-out

domain VP, the structure of which is shown in (51).
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(51) VP

PP2

PP1

DP1

D1

0

P
0

DP2

D2

0

V
0

The Maximal X
0

Nodes are shown in (52).

(52) The Maximal X
0

Nodes of VP = {V
0
, D2

0
, P

0
, D1

0
} The set that satis�es all the

constraints is shown in (53).

(53)

$

’

’

’

’

&

’

’

’

’

%

V 0 ă D2

0

V 0 ă P 0

V 0 ă D1

0

D2

0 ă P 0

D2

0 ă D1

0

P 0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Below, Table 5.4 summarizes the relevant structural relationship in VP, regarding the

Language Speci�c Constraints.

IDM relationship ordered pairs

(V
0

PP2) VP sisters V
0 ă D2

0
, V

0 ă P
0
, V

0 ă D1

0

(DP2 PP1) PP2 sisters D2

0 ă P
0
, D2

0 ă D1

0

(P
0

DP1) PP1 sisters P
0 ă D1

0

Table 5.4: VP relation

The relevant full-dominance relationship and paths are shown in (54) and (55).

(54) a. PP2 fully dominates D2

0
, P

0
and D1

0

b. PP1 fully dominates P
0

and D1

0

c. DP1 fully dominates D1

0

116



(55) a. p(V
0
) = (VP)

b. p(PP2) = (VP)

c. p(DP2) = (PP2, VP)

d. p(D2

0
) = (DP2, PP2, VP)

e. p(PP1) = (PP2, VP)

f. p(P
0
) = (PP1, PP2, VP)

g. p(DP1) = (PP1, PP2, VP)

h. p(D1

0
) = (DP1, PP1, PP2, VP)

Now, let’s proceed to the CP2 Spell-out domain, the structure of which is repeated below

in (56).

(56) CP2

CP1

TP2

TP1

VP

PP2

PP1

DP1

D1

0

P
0

DP2

D2

0

V
0

T
0

DP3

D3

0

C
0

The Maximal X
0

Nodes are shown in (57).

(57) The Maximal X
0

Nodes of CP2 = {P
0
, D1

0
, C

0
, D3

0
, T

0
, V

0
, D2

0
}

The set that satis�es all the constraints is shown in (58).
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(58)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

P 0 ă D1

0

P 0 ă C0

P 0 ă D3

0

P 0 ă T 0

P 0 ă V 0

P 0 ă D2

0

D1

0 ă C0

D1

0 ă D3

0

D1

0 ă T 0

D1

0 ă V 0

D1

0 ă D2

0

C0 ă D3

0

C0 ă T 0

C0 ă V 0

C0 ă D2

0

D3

0 ă T 0

D3

0 ă V 0

D3

0 ă D2

0

T 0 ă V 0

T 0 ă D2

0

V 0 ă D2

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Below, Table 5.5 summarizes the relevant structural relationship in CP2, regarding the

Language Speci�c Constraints.

IDM relationship ordered pairs

(PP1 CP1) CP2 sisters

P
0 ă C

0
, P

0 ă D3

0
, P

0 ă T
0
,

P
0 ă V

0
, P

0 ă D2

0

D1

0 ă C
0
, D1

0 ă D3

0
, D1

0 ă T
0
,

D1

0 ă V
0
, D1

0 ă D2

0

(P
0

DP1) PP1 sisters P
0 ă D1

0

(C
0

TP2) TP1 sisters C
0 ă D3

0
, C

0 ă T
0
, C

0 ă V
0
, C

0 ă D2

0

(D3

0
TP1) TP2 sisters D3

0 ă T
0
, D3

0 ă V
0
, D3

0 ă D2

0

(T
0

VP) TP1 sisters T
0 ă V

0
, T

0 ă D2

0

(V
0

PP2) VP sisters V
0 ă D2

0

(DP2 PP1) PP2 not sisters N/A

Table 5.5: CP2 relation

Note that the ordering statement C
0 ă P

0
is not required because despite the fact

that (i) P
0 ă C

0
, (ii) C is a head, and (iii) TP2 is the sister of C

0
, TP2 does not fully dominate

P
0

(there is a path of P
0

that does not go through PP2 - see (59b-i)). The same logic applies

to the reason T
0 ă P

0
, V

0 ă P
0
, as well as C

0 ă D1

0
, T

0 ă D1

0
, V

0 ă D1

0
, are not required.
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In addition, D3

0 ă P
0

is not required because despite the fact that (i) the set has P
0

ă D3

0
, (ii) DP3 is a speci�er, and (iii) DP3 dominates D3

0
, (iv) DP3 and TP1 are sisters, TP1

does not fully dominate P
0

(i.e., there is a path for P
0

that does not go through TP1 - see

(59b-i)). The same logic applies to the reason D3

0 ă D1

0
are not required.

Furthermore, D2

0 ă P
0

is not required because despite the fact that (i) the set has

P
0 ă D2

0
, (ii) DP2 is a speci�er, (iii) DP2 dominates D2

0
, and (iv) PP1 fully dominates P

0
,

DP2 and PP1 are not sisters (i.e., there are paths for PP1 that does not go through PP2 - see

(59a-i)). The same logic applies to the reason D2

0 ă D1

0
is not required.

(59) a. p(PP1) =

(i) (CP2)

(ii) (PP2, VP, TP1, TP2, CP1, CP2)

b. p(P
0
) =

(i) (PP1, CP2)

(ii) (PP1, PP2, VP, TP1, TP2, CP1, CP2)

c. p(D1

0
) =

(i) (DP1, PP1, CP2)

(ii) (DP1, PP1, PP2, VP, TP1, TP2, CP1, CP2)

Next, take the union of the set of ordered pairs from the VP Spell-out domain and the one

from the CP Spell-out domain, both of which are repeated below in (60). The union set is

shown in (61).

(60)

a.

$

’

’

’

’

&

’

’

’

’

%

V 0 ă D2

0

V
0 ă P

0

V
0 ă D1

0

D2

0 ă P
0

D2

0 ă D1

0

P 0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-
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b.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

P 0 ă D1

0

P 0 ă C0

P 0 ă D3

0

P 0 ă T 0

P
0 ă V

0

P
0 ă D2

0

D1

0 ă C0

D1

0 ă D3

0

D1

0 ă T 0

D1

0 ă V
0

D1

0 ă D2

0

C0 ă D3

0

C0 ă T 0

C0 ă V 0

C0 ă D2

0

D3

0 ă T 0

D3

0 ă V 0

D3

0 ă D2

0

T 0 ă V 0

T 0 ă D2

0

V 0 ă D2

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(61)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

P 0 ă D1

0

P 0 ă C0

P 0 ă D3

0

P 0 ă T 0

P
0 ă V

0

P
0 ă D2

0

D1

0 ă C0

D1

0 ă D3

0

D1

0 ă T 0

D1

0 ă V
0

D1

0 ă D2

0

C0 ă D3

0

C0 ă T 0

C0 ă V 0

C0 ă D2

0

D3

0 ă T 0

D3

0 ă V 0

D3

0 ă D2

0

T 0 ă V 0

T 0 ă D2

0

V 0 ă D2

0

V
0 ă P

0

V
0 ă D1

0

D2

0 ă P
0

D2

0 ă D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Note that the union set satis�es all the constraints except for the Asymmetry

Constraint (e.g., the set has both V
0 ă P

0
and P

0 ă V
0
). It satis�es the Totality Constraint

because all the Maximal X
0

Nodes in the most recent Spell-out domain, namely, the CP Spell-

out domain, are ordered relative to each other. It satis�es the Anti-re�exivity Constraint

because no node is ordered relative to itself. It satis�es the Language Speci�c Constraints

because all the required ordering statements are in the union set. Note that based on the

Language Speci�c Constraints, the existence of V
0 ă P

0
does not require the existence

of any ordering statement: despite the fact that (i) the set has V
0 ă P

0
, (ii) V

0
is a head,

and (iii) PP2 is the sister of V
0
, PP2 does not fully dominate P

0
, so V

0 ă P
0

is not required

and at the same time nothing prohibits the existence of V
0 ă P

0
based on the Language

Speci�c Constraints (though having both V
0 ă P

0
and P

0 ă V
0

violates the Asymmetry

Constraint) — the Language Speci�c Constraints are about the conditions under which

existing ordering statements require another ordering statement but not about preventing
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certain ordering statements. Similarly, D2

0 ă P
0
, as well as V

0 ă D1

0
and D2

0 ă D1

0
do not

require the existence of any ordering statement either.

Since the �nal Spell-out domain has been reached, apply Ordering Deletion. Since

no ordering statement �ts the criteria in Ordering Deletion, nothing is deleted. Then, apply

the Set-to-String algorithm to the union set of CP and VP, which is the set in (61). First,

implement Stage 1 in the Set-to-String algorithm (see below for the content of Stage 1).

Stage 1:

1. Find the intersection sets: For each distinct node n1, n2, n3, ... in the set of ordered

pairs O = {n1 ă n3, n3 ă n2, ...}, get the set X = {..., n1, ...} that contains all the nodes

that precedes n and the set Y = {..., n2, ...} that contains all the nodes that follows n,

and get the set I = X X Y, which is the intersection of set X and set Y.

2. Check the intersection sets: If all the intersection sets are empty, run the String

Forming Mechanism, which is de�ned in (35) below, on set O and the set will be

turned into a string. Otherwise, proceed to Stage 2.

It turns out that there are non-empty intersection sets, which are shown in (62).

Thus, the algorithm goes to Stage 2.

(62) a. {P
0
, D1

0
}

b. {V
0
, D2

0
}

Stage 2:

1. Collect all the non-empty intersection sets: Form a set M = {I1, I2,...} that contains

all the non-empty intersection sets.

2. Try forming a string:

(a) No quali�ed constituent: For all given intersection sets I1 = {n1, n2, ...}, I1 =

{n3, ...}, ... in set M, if none of them forms a quali�ed constituent, the linearization

process crashes.
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(b) Quali�ed constituent: If there exists intersection set I
*

that forms a quali�ed

constituent, proceed to Stage 3.

In Stage 2, the algorithm checks whether there exists an intersection set that

can form a quali�ed constituent. In this case, {V
0
, D2

0
} does not form a constituent; {P

0
,

D1

0
} forms a constituent but it is not a quali�ed constituent in English. So, none of the

non-empty intersection sets can form a quali�ed constituent. As a result, the linearization

process crashes.

As a quick summary, the non successive-cyclic derivation results in the �nal union

set violating the Asymmetry Constraint, which cannot be resolved by the Set-to-String

algorithm, which eventually makes the linearization process crash.

5.2.2 Ordering Deletion

Lastly, I discuss the example in (21) (She can run it.) to illustrate how the Ordering Deletion

rule (63) works. The structure of it is shown in (64).

(63) Ordering Deletion

For a given set of ordering statements, Y ă α must be deleted if X dominates Y

and X ă α, and α ă Y must be deleted if X dominates Y and α ă X; unless there

exists β such that β ă X and Y ă β, or X ă β and β ă Y.
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(64) TP2

TP1

vP

VP

DP1

D1

0

it

V
0

run

v1

0

v
0

T
0

can

DP2

D2

0

she

The set of ordered pairs that satis�es all the constraints in the VP Spell-out domain is

shown in (66).

(65) VP

DP1

D1

0

V
0

(66) {V
0 ă D1

0
}

The Maximal X
0

Nodes in TP is shown in (67).

(67) Maximal Nodes of TP = {D2

0
, T

0
, v1

0
, D1

0
}

The set of ordered pairs that satis�es all the constraints in the TP Spell-out domain is

shown in (68).

(68)

$

’

’

’

’

&

’

’

’

’

%

D2

0 ă T 0

D2

0 ă v1

0

D2

0 ă D1

0

T 0 ă v1

0

T 0 ă D1

0

v1

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

The union set of VP and TP is shown in (69).
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(69)

$

’

’

’

’

&

’

’

’

’

%

D2

0 ă T 0

D2

0 ă v1

0

D2

0 ă D1

0

T 0 ă v1

0

T 0 ă D1

0

v1

0 ă D1

0
V

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Since the �nal union is reached, Ordering Deletion, which is repeated below as (70), should

apply.

3. Repeat until the last union:

Repeat the cyclic process steps. Once the last union set is formed, apply Order-

ing Deletion and instead of implementing step III and IV, apply the Set-to-String

algorithm.

(70) Ordering Deletion

For a given set of ordering statements, Y ă α must be deleted if X dominates Y

and X ă α, and α ă Y must be deleted if X dominates Y and α ă X; unless there

exists β such that β ă X and Y ă β, or X ă β and β ă Y.

Based on Ordering Deletion, V
0 ă D1

0
should be deleted because (i) v1

0
dominates V

0
, (ii)

v1

0
< D1

0
, and (iii) there does not exist β such that β ă v1

0
and V

0 ă β, or v1

0 ă β and β ă

V
0
.

After applying Ordering Deletion to the union set, it is updated as (71). Note that

this updated union set is the same as the set of ordered pairs in the TP Spell-out domain.

(71)

$

’

’

’

’

&

’

’

’

’

%

D2

0 ă T 0

D2

0 ă v1

0

D2

0 ă D1

0

T 0 ă v1

0

T 0 ă D1

0

v1

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Once the �nal union set is updated, the Set-to-String algorithm should be implemented.

One will get the string ăS D2

0
T

0
v1

0
D1

0 ą. The lexical insertion sites are shown in (72).

Note that v1

0
has the complex form of #V

0
v

0
# and I assume that the ordering between V

0
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and v
0

is decided by morphology, not the linearization process.

(72) a. D2

0 „ #D2

0
#

b. T
0 „ #T

0
#

c. v1

0 „ #V
0
v

0
#

d. D1

0 „ #D1

0
#

Now, implement lexical insertion, which is shown in (73).

(73) a. D2

0
= ‘she’

b. T
0

= ‘can’

c. v1

0
= ‘run-H’

d. D1

0
= ‘it’

Thus, the �nal utterance is She can run it.

In the following, I discuss two questions: (i) Why is Ordering Deletion necessary in

the linearization process? (ii) How to understand Ordering Deletion, especially regarding

Fox and Pesetsky (2005)’s Order Preservation?

(74) Order Preservation

Information about linearization, once established at the end of a given Spell-out

domain, is never deleted in the course of a derivation. The sole function of Spell-

out is to add information.

Fox and Pesetsky (2005)

I start with the �rst question. Note that in the union set in (69), if one orders the set via the

String Forming Mechanism, D2

0
will be made the �rst element of the string; then, T

0
will

be made the next element of the string. Now, the set is left with the ordering statements

v1

0 ă D1

0
and V

0 ă D1

0
. Note that now, both v1

0
and V

0
are not preceded by any other

nodes, but there is no statement about the ordering relation between v1

0
and V

0
. Thus, the
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set in (69) cannot be linearized.
3

The fact that the set in (69) cannot be linearized is due to the interaction between

cyclic linearization and Maximal X
0

Nodes in the current linearization process. To be more

speci�c, in the VP Spell-out domain, V
0

is one of the Maximal X
0

Nodes. However, in the

TP Spell-out domain, V
0

is merged with v
0

and dominated by v1

0
. Thus, V

0
is no longer a

Maximal X
0

Node in the TP Spell-out domain. However, since cyclic linearization collects

ordering statements in each Spell-out domain, the ordering statement involving V
0

from

the VP Spell-out domain is still collected and becomes part of the union set of VP and TP.

Note that without the ordering statement V
0 ă D1

0
, the set can be linearized. In this sense,

the Ordering Deletion rule helps getting rid of the problematic ordering statement V
0 ă

D1

0
so that the set can be linearized by the String Forming Mechanism.

Regarding the second question, Ordering Deletion gets rid of the ordering state-

ment collected, which seems to be contradictory to Ordering Preservation. However,

the ordering information about V
0

and D1

0
is still preserved in the sense that in the TP

Spell-out domain, V
0

becomes part of v1

0
and thus, the position of V

0
is now represented

by v1

0
; since v1

0 ă D1

0
is in the union set, the information that V

0
preceding D1

0
can be

represented by the mother of V
0
, namely, v1

0
, preceding D1

0
.
4

5.3 Summary

In this chapter, I introduced the cyclic linearization process and showed how it works

on real examples. Instead of linearizing the structure as a whole, the cyclic linearization

process linearizes the structure in a cyclic way, and the set of ordered pairs that gets

linearized by the Set-to-String algorithm ends up being the union set of all the Spell-out

domains. In the next chapter, I will look at the V(P)-doubling cases and show how this

3
Another way to view the problem is this set only shows that V

0
should be ordered before D1

0
, but no

information about how V
0

should be ordered relative to the other nodes is provided.

4
Another approach to make the linearization process coherent is to revise Fox and Pesetsky (2005)’s

Order Preservation such that only information about Maximal X
0

Nodes in the �nal Spell-out domain must

be preserved.
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cyclic linearization process works for these cases.
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CHAPTER 6

Analyzing V(P)-doubling constructions

In this chapter, I discuss the linearization of verb-doubling cases in Hebrew and Yiddish,

which are shown in (1) and (2), and the VP-doubling case in Mandarin, which is shown in

(3). Before going into the details of how the linearization process works on these cases,

I would like to point out that the reasons why the verbs are doubled vary among these

cases, and are related to how the V(P)s move.

(1) Verb-doubling (with verb-fronting)

a. Hebrew (in�nitival)

Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

b. Yiddish (aspectual form)

Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’

(2) Verb-doubling (with VP-fronting)

Hebrew (in�nitival form)

Lishtof

to.wash

maher

quickly

et

acc

ha-kelim,

the-dishes

hu

he

shataf

wash.pst

‘As for washing the dishes quickly, he washed.’
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(3) VP-doubling

Mandarin (aspectual form)

Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

6.1 V-doubling with verb fronting

I start with the verb-doubling case in Hebrew, which is repeated below as (4). The structure

of which is shown in (5). Note that I will ignore the linearization of the accusative marker.

(4) Hebrew (in�nitival)

Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

(5) TopP

CP

TP2

TP1

vP

VP

DP1

NP

N
0

D1

0

V
0

v1

0

v
0

T1

0

T
0

DP2

D2

0

C
0

Top1

0

Top
0

There are three Spell-out domains in (5): VP, CP and TopP. The structure of the VP Spell-out

domain is shown in (6).
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(6) VP

DP1

NP

N
0

D1

0

V
0

The Maximal X
0

Nodes of VP are shown in (7).

(7) Maximal X
0

Nodes of VP = {V
0
, D1

0
, N

0
}

Table 6.1 summarizes all the sisterhood relationship and the required orders by the Lan-

guage Speci�c Constraints for all Maximal X
0

Nodes α and β of VP if α and β are ordered

as a pair in a given set.

relationship ordering statements

V
0

DP1 sisters {V
0 ă D1

0
, V

0 ă N
0
}

D1

0
NP sisters {D1

0 ă N
0
}

Table 6.1: VP Spell-out domain

The relevant paths and full-dominance relationship are shown in (8) and (9).

(8) a. p(V
0
) = (VP)

b. p(DP1) = (VP)

c. p(NP) = (DP1, VP)

d. p(D1

0
) = (DP1, VP)

e. p(N
0
) = (NP, DP1, VP)

(9) a. DP1 fully dominates D1

0
and N

0

b. NP fully dominates N
0

The following set in (10) for the VP Spell-out domain satis�es all the constraints.
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(10)

$

’

&

’

%

V 0 ă D1

0

V 0 ă N 0

D1

0 ă N 0

,

/

.

/

-

Now, let’s look at the CP Spell-out domain. The structure of the CP Spell-out

domain is shown in (11).

(11) CP

TP2

TP1

vP

VP

DP1

NP

N
0

D1

0

V
0

v1

0

v
0

T1

0

T
0

DP2

D2

0

C
0

The Maximal X
0

Nodes of CP is shown in (12). Table 6.2 shows the sisterhood relationship

and the required orders by the Language Speci�c Constraints for all Maximal X
0

Nodes α

and β of VP if α and β are ordered as a pair in a given set.

(12) Maximal X
0

Nodes of CP = {C
0
, D2

0
, T1

0
, D1

0
, N

0
}

relationship ordering statements

C
0

TP2 sisters {C
0 ă D2

0
, C

0 ă T1

0
, C

0 ă D1

0
, C

0 ă N
0

}

DP2 TP1 sisters {D2

0 ă T1

0
, D2

0 ă D1

0
, D2

0 ă N
0

}

T1

0
vP sisters {T1

0 ă D1

0
, T1

0 ă N
0

}

D1

0
NP sisters {D1

0 ă N
0

}

Table 6.2: CP Spell-out domain
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The relevant paths and full-dominance relationship are shown in (13) and (14).

(13) a. p(C
0
) = (CP)

b. p(TP2) = (CP)

c. p(DP2) = (TP2, CP)

d. p(TP1) = (TP2, CP)

e. p(T1

0
) = (TP1, TP2, CP)

f. p(vP) = (TP1, TP2, CP)

g. p(D1

0
) = (DP1, VP, vP, TP1, TP2, CP)

h. p(N
0
) = (NP, DP1, VP, vP, TP1, TP2, CP)

i. p(D2

0
) = (DP2, TP2, CP)

(14) a. CP fully dominates C
0

and TP2.

b. TP2 fully dominates DP2, TP1, D2

0
, T1

0
, D1

0
and N

0
.

c. TP1 fully dominates vP, T1

0
, D1

0
and N

0
.

d. vP1 fully dominates D1

0
and N

0
.

e. DP1 fully dominates D1

0
and N

0
.

f. NP1 fully dominates N
0
.

The following set in (15) for the CP Spell-out domain satis�es all the constraints.

(15)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

C0 ă D2

0

C0 ă T 1

0

C0 ă D1

0

C0 ă N 0

D2

0 ă T 1

0

D2

0 ă D1

0

D2

0 ă N 0

T 1

0 ă D1

0

T 1

0 ă N 0

D1

0 ă N 0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

The union set of CP and VP is shown in (16) and it satis�es all the constraints.
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(16)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

C0 ă D2

0

C0 ă T 1

0

C0 ă D1

0

C0 ă N 0

D2

0 ă T 1

0

D2

0 ă D1

0

D2

0 ă N 0

T 1

0 ă D1

0

T 1

0 ă N 0

D1

0 ă N 0
V

0 ă D1

0

V
0 ă N

0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

Before going into the next Spell-out domain, I discuss why the union set of CP and

VP in (16) satis�es all the constraints. This union set satis�es the Totality Constraint since

(i) the Totality Constraint is evaluated against the most recent Spell-out domain, which is

the CP Spell-out domain, and (ii) all the Maximal X
0

Nodes in the CP Spell-out domain is

ordered relative to each other in the union set of CP and VP. It satis�es the Anti-re�exivity

Constraint since none of the Maximal X
0

Nodes is ordered relative to itself. It satis�es

the Anti-symmetry constraint since there is no ordering contradiction. It satis�es the

Language Speci�c Constraint because no required order is missing. Note that the existence

of V
0 ă D1

0
does not require the existence of any ordering statements: despite the fact that

V
0

is a head and DP1 fully dominates D1

0
, DP1 is not the sister of V

0
(i.e., the immediate

dominating mother VP does not fully dominate V
0
), and thus, no ordering statement is

required by the Language Speci�c Constraint. At the same time, the Language Speci�c

Constraint does not prevent V
0 ă D1

0
from being in the set, either. The same logic also

applies to V
0 ă N

0
.

Now, let’s look at the TopP domain, the structure of which is shown in (17).
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(17) TopP

CP

TP2

TP1

vP

VP

DP1

NP

N
0

D1

0

V
0

v1

0

v
0

T1

0

T
0

DP2

D2

0

C
0

Top1

0

Top
0

In the TopP Spell-out domain, the Maximal X
0

Nodes of TopP are shown in (18).

(18) Maximal X
0

Nodes of TopP = {Top1

0
, C

0
, D2

0
, T1

0
, D1

0
, N

0
}

Table 6.3 shows the sisterhood relationship and the required orders by the Language

Speci�c Constraints for all Maximal X
0

Nodes α and β of VP if α and β are ordered as a

pair in a given set.

relationship ordering statements

Top1

0
CP sisters

{Top1

0 ă C
0
, Top1

0 ă D2

0
, Top1

0 ă T1

0
,

Top1

0 ă D1

0
, Top1

0 ă N
0

}

C
0

TP2 sisters {C
0 ă D2

0
, C

0 ă T1

0
, C

0 ă D1

0
, C

0 ă N
0

}

DP2 TP1 sisters {D2

0 ă T1

0
, D2

0 ă D1

0
, D2

0 ă N
0

}

T1

0
vP sisters {T1

0 ă D1

0
, T1

0 ă N
0

}

D1

0
NP non-sisters {D1

0 ă N
0

}

Table 6.3: TopP Spell-out domain

The relevant paths and full-dominance relationship are shown in (19) and (20).
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(19) a. Top1

0
= (TopP)

b. CP = (TopP)

c. p(C
0
) = (CP, TopP)

d. TP2 = (CP, TopP)

e. TP1 = (TP2, CP, TopP)

f. p(D2

0
) = (DP2, TP2, CP, TopP)

g. p(T1

0
) = (TP1, TP2, CP, TopP)

h. p(D1

0
) = (DP1, VP, vP, TP1, TP2, CP, TopP)

i. p(N
0
) = (NP, DP1, VP, vP, TP1, TP2, CP, TopP)

(20) a. TopP fully dominates Top1

0
and CP.

b. CP fully dominates C
0
, TP2, D2

0
, T1

0
, D1

0
and N

0
.

c. TP2 fully dominates D2

0
, T1

0
, D1

0
and N

0
.

d. TP1 fully dominates T1

0
, D1

0
and N

0
.

e. vP fully dominates D1

0
and N

0
.

f. DP1 D1

0
and N

0
.

The following set in (21) for the TopP Spell-out domain satis�es all the constraints.

(21)

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

Top1

0 ă D1

0

Top1

0 ă N 0

C0 ă D1

0

C0 ă T 1

0

C0 ă D2

0

C0 ă N 0

D2

0 ă T 1

0

D2

0 ă D1

0

D2

0 ă N 0

T 1

0 ă D1

0

T 1

0 ă N 0

D1

0 ă N 0

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

The union set of TopP, CP and VP is shown in (22).
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(22)

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

Top1

0 ă D1

0

Top1

0 ă N 0

C0 ă D1

0

C0 ă T 1

0

C0 ă D2

0

C0 ă N 0

D2

0 ă T 1

0

D2

0 ă D1

0

D2

0 ă N 0

T 1

0 ă D1

0

T 1

0 ă N 0

D1

0 ă N 0
V

0 ă D2

0

V
0 ă N

0

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

Since the �nal union set is formed, Ordering Deletion should be applied, which is

repeated below in (23). After Ordering Deletion, the union set becomes the one in (24).

Note that V
0 ă D2

0
is deleted since (i) T

0
dominates V

0
and (ii) T

0
also precedes D2

0
. The

same logic applies to the reason V
0 ă N

0
is deleted.

(23) Ordering Deletion

For a given set of ordering statements, Y ă α must be deleted if X dominates Y

and X ă α, and α ă Y must be deleted if X dominates Y and α ă X; unless there

exists β such that β ă X and Y ă β, or X ă β and β ă Y.

(24)

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

Top1

0 ă D1

0

Top1

0 ă N 0

C0 ă D1

0

C0 ă T 1

0

C0 ă D2

0

C0 ă N 0

D2

0 ă T 1

0

D2

0 ă D1

0

D2

0 ă N 0

T 1

0 ă D1

0

T 1

0 ă N 0

D1

0 ă N 0

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

Now, implement the Set-to-String algorithm, starting with Stage 1.
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Stage 1:

1. Find the intersection sets: For each distinct node n1, n2, n3, ... in the set of ordered

pairs O = {n1 ă n3, n3 ă n2, ...}, get the set X = {..., n1, ...} that contains all the nodes

that precedes n and the set Y = {..., n2, ...} that contains all the nodes that follows n,

and get the set I = X X Y, which is the intersection of set X and set Y.

2. Check the intersection sets: If all the intersection sets are empty, run the String

Forming Mechanism on set O and the set will be turned into a string. Otherwise,

proceed to Stage 2.

The intersection sets for all the nodes in the union set in (24) are shown in (25).

Since all the intersection sets are empty, String Forming Mechanism should be applied to

the union set and yields a string, and the Set-to-String algorithm stops at Stage 1.

(25) a. Top1

0
: H =HX {C

0
, D2

0
, T1

0
, D1

0
, N

0
}

b. C
0
: H = {Top1

0
} X {D2

0
, T1

0
, D1

0
, N

0
}

c. D2

0
: H = {Top1

0
, C

0
} X {T1

0
, D1

0
, N

0
}

d. T1

0
: H = {Top1

0
, C

0
, D2

0
} X {D1

0
, N

0
}

e. D1

0
: H = {Top1

0
, C

0
, D2

0
, T1

0
} X {N

0
}

f. N
0
: H = {Top1

0
, C

0
, D2

0
, T1

0
, D1

0
} XH

After applying the String Forming Mechanism on the union set, the stringăS C
0
D2

0
T1

0
D1

0
N

0

ą is generated.

Next, form lexical insertion sites, which are shown in (26).
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(26) a. Top1

0 „ #V
0
v

0
Top

0
#

b. C
0 „ #C

0
#

c. D2

0 „ #D2

0
#

d. T1

0 „ #V
0
v

0
T

0
#

e. D1

0 „ #D1

0
#

f. N
0 „ #N

0
#

The �nal step is to implement lexical insertion, which is shown in (27).

(27) a. #V
0
v

0
Top

0
# “ liknot ‘to buy’

b. C
0 “H

c. D1

0 “ hi ‘she’

d. T1

0 “ kanta ‘bought’

e. D2

0 “ ha ‘the’

f. N
0 “ praxim ‘�owers’

The string is updated as ăS liknot hi kanta et ha-praxim ą, which is repeated below as

(28).

(28) Hebrew (in�nitival)

Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

In the following, I discuss the Yiddish verb-doubling case, where the verb upstairs

has an aspectual form. the example is repeated below in (29), the structure of which is

shown in (30).
1

1
The auxiliary verb should have an extra VP layer, but for ease of presentation, I ignore this VP layer,

which will not a�ect the analysis.
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(29) Yiddish (aspectual form)

Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’

(30) TopP

CP

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

DP2

D2

0

C1

0

C
0

Top1

0

Top
0

There are three Spell-out domains in (30): VP, CP and TopP. The structure of the VP Spell-

out domain is shown in (31) (note that for ease of presentation, I simplify the structure of

the DPs).

(31) VP

DP

D1

0

V
0

The following set in (32) for the VP Spell-out domain satis�es all the constraints.

(32) {V
0 ă D1

0
}

Now, let’s proceed to the CP Spell-out domain, the structure of which is shown

in (33).
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(33) CP

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

DP2

D2

0

C1

0

C
0

In the CP Spell-out domain, the Maximal X
0

Nodes are shown in (34).

(34) Maximal X
0

Nodes of CP = {C1

0
, D2

0
, Asp1

0
, D1

0
}

Table 6.4 shows the sisterhood relationship and and the required orders by the Language

Speci�c Constraints for all Maximal X
0

Nodes α and β of CP if α and β are ordered as a

pair in a given set.

relationship ordering statements

C1

0
TP2 sisters {C1

0 ă D2

0
, C1

0 ă Asp1

0
, C1

0 ă D1

0
}

DP2 TP1 sisters {D2

0 ă Asp1

0
, D2

0 ă D1

0
}

Asp1

0
vP sisters {Asp1

0 ă D1

0
}

Table 6.4: CP Spell-out domain

The following set in (35) for the CP Spell-out domain satis�es all the constraints.

(35)

$

’

’

’

’

&

’

’

’

’

%

C1

0 ă D2

0

C1

0 ă Asp1

0

C1

0 ă D1

0

D2

0 ă Asp1

0

D2

0 ă D1

0

Asp1

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-
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The union set of CP and VP is shown in (36).

(36)

$

’

’

’

’

&

’

’

’

’

%

C1

0 ă D2

0

C1

0 ă Asp1

0

C1

0 ă D1

0

D2

0 ă Asp1

0

D2

0 ă D1

0

Asp1

0 ă D1

0
V

0
< D1

0

,

/

/

/

/

.

/

/

/

/

-

Now, let’s go to the TopP Spell-out domain. The structure of it is shown in (37).

(37) TopP

CP

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

DP2

D2

0

C1

0

C
0

Top1

0

Top
0

In the TopP Spell-out domain, the Maximal X
0

Nodes are shown in (38).

(38) Maximal X
0

Nodes of TopP = {Top1

0
, C1

0
, D2

0
, D1

0
}

Table 6.5 shows the sisterhood relationship and the ordering statements allowed by the

Language Speci�c Constraint in the TopP Spell-out domain.
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relationship ordering statements

Top1

0
CP sisters {Top1

0 ă C1

0
, Top1

0 ă D2

0
, Top1

0 ă D1

0
}

C1

0
TP2 sisters {C1

0 ă D2

0
, C1

0 ă D1

0
}

DP2 TP1 sisters {D2

0 ă D1

0
}

Table 6.5: TopP Spell-out domain

The following set in (39) for the TopP Spell-out domain satis�es all the constraints.

(39)

$

’

’

’

’

&

’

’

’

’

%

Top1

0 ă C1

0

Top1

0 ă D2

0

Top1

0 ă D1

0

C1

0 ă D2

0

C1

0 ă D1

0

D2

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

The union set of TopP, CP and VP is shown in (40).

(40)

$

’

’

’

’

&

’

’

’

’

%

Top1

0 ă C1

0

Top1

0 ă D2

0

Top1

0 ă D1

0

C1

0 ă D2

0

C1

0
< Asp1

0

C1

0 ă D1

0

D2

0 ă Asp1

0

D2

0 ă D1

0

Asp1

0 ă D1

0
V

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Since the �nal union set is formed, Ordering Deletion should be applied.

(41) Ordering Deletion

For a given set of ordering statements, Y ă α must be deleted if X dominates Y

and X ă α, and α ă Y must be deleted if X dominates Y and α ă X; unless there

exists β such that β ă X and Y ă β, or X ă β and β ă Y.

Since (i) Asp1

0
dominates V

0
, (ii) both Asp1

0
and V

0
precede D1

0
, and (iii) there does not

exist β such that β ă Asp1

0
and V

0 ă β, or Asp1

0 ă β and β ă V
0
, the ordering statement

V
0 ă D1

0
should be deleted. However, despite the fact that (i) Top1

0
dominates Asp1

0
, and

(ii) they both precede D1

0
, there exists C1

0
such that C1

0 ă Asp1

0
and Top1

0 ă C1

0
, and thus

the ordering statement Asp1

0 ă D1

0
cannot be deleted. After applying Ordering Deletion,
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the union set is changed to the one in (42).

(42)

$

’

’

’

’

&

’

’

’

’

%

Top1

0 ă C1

0

Top1

0 ă D2

0

Top1

0 ă D1

0

C1

0 ă D2

0

C1

0
< Asp1

0

C1

0 ă D1

0

D2

0 ă Asp1

0

D2

0 ă D1

0

Asp1

0 ă D1

0

,

/

/

/

/

.

/

/

/

/

-

Notice that both Asp1

0
and V

0
become dominated by another node during the

derivation, but only the ordering statement regarding V
0

is deleted but not the ordering

statements regarding Asp1

0
. This corresponds to the condition in the Ordering Deletion

rule that there cannot exist β such that β ă X and Y ă β, or X ă β and β ă Y if deletion

is to apply. In other words, every node preceding Y must also precede X and every node

following Y must also follow X for deletion to apply. Thus, the fact that Top1

0
and Asp1

0

are ordered di�erently regarding C1

0
prevents the ordering statements regarding Asp1

0

to be deleted. Conceptually, deleting C1

0 ă Asp1

0
will cause information loss since C1

0 ă

Asp1

0
cannot be represented by Top1

0 ă C1

0
, which is ordered di�erently relative to C1

0
.

In other words, in this case, the position of Asp1

0
cannot be represented by Top1

0
since

they are ordered di�erently relative to some nodes. This is why the verb will show up

twice in the string.
2

Next, implement the Set-to-String algorithm. Similar to the Hebrew verb-doubling

case that has been previously discussed, the set does not have non-empty intersection

sets (i.e., no violation of the Asymmetry Constraint) and the algorithm does not need to

proceed to Stage 2 but only needs to run the String Forming Mechanism on (42), which

yields the string ăS Top1

0
C1

0
D2

0
Asp1

0
D1

0 ą.

The next step is to form lexical insertion sites, which are shown in (43).

2
In chapter 4, I mentioned that unlike Kayne (1994), my analysis does not include the “’Transitivity”

constraint, and the reason is that having it does not add new information. This can be seen in (42) — there is

no ordering statement Top1

0 ă Asp1

0
despite the fact that the set has Top1

0
< C1

0
and C1

0
< Asp1

0
. In fact,

since the set already has Top1

0
< C1

0
and C1

0
< Asp1

0
, it can be deduced that Top1

0
should be linearly placed

before Asp1

0
in order to form a string. In other words, having the ordering statement Top1

0 ă Asp1

0
does

not add any new information, and thus, transitivity is not needed as a constraint. Note that at least for the

cases discussed in this dissertation, transitivity is not needed for forming a string.
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(43) a. Top1

0 „ #V
0
v

0
Asp

0
Top

0
#

b. C1

0 „ #T
0
C

0
#

c. D2

0 “ #D2

0
#

d. Asp1

0 „ #V
0
v

0
Asp

0
#

e. D1

0 “ #D2

0
#

Now, implement lexical insertion, which is shown in (44).

(44) a. #V
0
v

0
Asp

0
Top

0
# “ gegessen ‘eaten’

b. #T
0
C

0
# “ hot ‘has’

c. D2

0 “ Maks ‘Max’

d. #V
0
v

0
Asp

0
# “ gegessen ‘eaten’

e. D1

0 “ �sh ‘�sh’

Thus, the string is updated asăS gegessen hot Max gegessen �shą. The utterance is shown

in (45).

(45) Yiddish (aspectual form)

Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’

As a quick summary, in Hebrew, the verb root is doubled since during the derivation,

v1

0
becomes part of T1

0
and later becomes part of Top1

0
, which makes T1

0
and Top1

0

both Maximal X
0

Nodes in the TopP Spell-out domain, and they are both ordered in the

linearization. The Yiddish case is a bit di�erent from the Hebrew case in the sense that the

doubling comes from the fact that the union set gathers ordering statements regarding

both Top1

0
and Asp1

0
and the ordering statements regarding Asp1

0
cannot be deleted (i.e.,

despite the fact that in the TopP Spell-out domain, Asp1

0
is part of Top1

0
, which makes

only Top1

0
but not Asp1

0
a Maximal X

0
Node, the Deletion Rule cannot be applied since

there exists some nodes to which Asp1

0
and Top1

0
are ordered di�erently).
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6.2 V-doubling with VP fronting

In the previous section, I discussed the verb-doubling examples with only the verb being

fronted. In this section, I examine the Hebrew verb-doubling case with the VP being

fronted in (105), which is repeated below in (46). For ease of presentation, I assume et

ha-kelim are all together under D1

0
.

(46) Hebrew (in�nitival form)

Lishtof

washinf

maher

quickly

et

acc

ha-kelim,

the-dishes

hu

he

shataf

wash.pst

‘As for washing the dishes quickly, he washed.’

The structure of (46) is shown in (47). I will provide more discussions about the key steps

in (47) when discussing the XP Spell-out domain.
3

3
Not that in (47), CP is an empty projection. However, I keep the empty CP projection here because in

the next section, the empty CP layer is required in order to produce VP-doubling. To be consistent, I keep

the empty CP projection in (47), too.
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(47) XP

TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

‘the-dishes’

V
0

v1

0

v
0

AdvP

Adv
0

‘quickly’

T1

0

T
0

DP2

D2

0

‘he’

C
0

Top
0

X1

0

X
0

In�1

0

In�
0

There are three Spell-out domains in (47): VP, CP2 and XP. The structure of VP Spell-out

domain is shown in (48).

(48) VP

DP1

D1

0

V
0

In the VP Spell-out domain, the Maximal X
0

Nodes are shown in (49).

(49) Maximal X
0

Nodes of VP = {V
0
, D1

0
}

The following set in (50) for the VP Spell-out domain satis�es all the constraints.

(50) {V
0 ă D1

0
}
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Now, let’s look at the CP Spell-out domain. The structure of the CP Spell-out

domain is shown in (51), where there are V-to-v-to-T movement and vP-to-Spec, CP

movement.

(51) CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

In the CP Spell-out domain, the Maximal X
0

Nodes are shown in (52).

(52) Maximal X
0

Nodes of CP = {Adv
0
, D1

0
, C

0
, D2

0
, T1

0
}

Table 6.6 shows the sisterhood relationship and the ordering statements allowed by the

Language Speci�c Constraint in the CP Spell-out domain.
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relationship ordering statements

vP2 CP1 sisters

{Adv
0 ă C

0
, Adv

0 ă D2

0
, Adv

0 ă T1

0
,

D1

0 ă C
0
, D1

0 ă D2

0
, D1

0 ă T1

0
}

AdvP vP1 sisters {Adv
0 ă D1

0
}

C
0

TP2 sisters {C
0 ă D2

0
, C

0 ă T1

0
}

DP2 TP1 sisters {D2

0 ă T1

0
}

T1

0
vP2 non-sisters N/A

Table 6.6: CP Spell-out domain

Note that CP1, TP2 and TP1 do not fully dominate Adv
0

and D1

0
(see (53a-i) and

(53b-i)). Also, T1

0
and vP2 are not sisters since their immediate dominating mother TP1

does not fully dominate vP2 (see (53f-i)). The relevant paths are shown in (53).

(53) a. (i) p2(Adv
0
) = {AdvP, vP2, CP2}

(ii) p1(Adv
0
) = {AdvP, vP2, TP1, TP2, CP1, CP2}

b. (i) p2(D1

0
) = {DP1, VP, vP1, vP2, CP2}

(ii) p1(D1

0
) = {DP1, VP, vP1, vP2, TP1, TP2, CP1, CP2}

c. p(C
0
) = {CP1, CP2}

d. p(D2

0
) = {DP2, TP2, CP1, CP2}

e. p(T1

0
) = {TP1, TP2, CP1, CP2}

f. (i) p2(vP2) = {CP2}

(ii) p1(vP2) = {TP1, TP2, CP1, CP2}

The following set in (54) for the CP Spell-out domain satis�es all the constraints.
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(54)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Adv0 ă D1

0

Adv0 ă C0

Adv0 ă D2

0

Adv0 ă T 1

0

D1

0 ă C0

D1

0 ă D2

0

D1

0 ă T 1

0

C0 ă D2

0

C0 ă T 1

0

D2

0 ă T 1

0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

The union set of CP and VP is shown in (55) and it satis�es all the constraints.

(55)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Adv0 ă D1

0

Adv0 ă C0

Adv0 ă D2

0

Adv0 ă T 1

0

D1

0 ă C0

D1

0 ă D2

0

D1

0 ă T 1

0

C0 ă D2

0

C0 ă T 1

0

D2

0 ă T 1

0
V

0 ă D1

0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

Now, let’s look at the XP domain, the structure of which is shown in (56).

(56) XP

TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

Top
0

X1

0

X
0

In�1

0

In�
0
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Before going in to the linearization process, I show some key steps from CP to

XP below.

In (57), vP2 merges with TopP1, forming TopP2.

(57) TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

Top
0
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In (58), X1

0
merges with TopP2, forming XP.

(58) XP

TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

Top
0

X1

0
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In (59), v1

0
merges with I

0
, forming I1

0
.

(59) XP

TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

Top
0

X1

0

In�1

0

In�
0
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In (60), In�1

0
moves to X1

0
.

(60) XP

TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

Top
0

X1

0

X
0

In�1

0

In�
0

Note that after TopP2 is built (57), an XP phrase is built and v1

0
further moves to adjoin X

0

and ends being at the left edge.

To better understand the V-to-In�-to-X movement, I would like to start with some

observations regarding the position of the verb in Hebrew. In Pollock (1989), it is argued

that if one takes the assumption that adverbs and �oating quanti�ers are located at the

edge of VP (in the Hebrew cases, I assume that they are located at vP), if the verb ends

up preceding the adverbs/quanti�ers and below the subject, it has to move out of the vP,

perhaps adjoining with T
0

(61); in addition, if the subject ends up being in the Spec, TP

position,
4

the verb also has to move out of vP to precede the subject, perhaps adjoining

with C
0

(62).

4
Even if the subject stays inside the vP, the verb still has to move out of vP to precede the subject
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(61) TP

TP

vP

vP

v
0

Adv/Quanti�er

T1

0

T
0

Subject

(62) CP

TP

TP

vP

v
0

T1

0

T
0

Subject

C1

0

C
0

Doron (1999) shows that these patterns are found in Hebrew and thus claims that Hebrew

has V
0
-to-T

0
movement. For instance, in (63a) and (63b), verbs appear in a position that

precedes the adverb lif’amim ‘sometimes’ and the quanti�er Hebrew-move-quan but below

the subject, which is evidence showing V-to-T movement; in (63c), the verb occurs before

the subject dani ‘Dani’, which is evidence showing V-to-T-to-C movement. Thus, verbs in

Hebrew seem to have to move out of vP to adjoin with higher heads.

(63) a. Adverb placement

Dani

Dani

menasek

kisses

lif’amim

sometimes

et

acc

dina

Dina

‘Dani kisses Dina sometimes.’ (Doron 1999: 126, ex.3(a))

b. Floating quanti�ers

ha-yeladim

the-children

nisku

kissed

sneyhem

both

et

acc

dina

Dina

‘The children both kissed Dina.’ (Doron 1999: 136, ex.4(a))
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c. Subject-verb Inversion

et

acc

mi

whom

nisek

kissed

dani

Dani

etmol

yesterday

‘Who did Dani kiss yesterday?’ (Doron 1999: 126, ex.2(a))

In addition, Landau (2006) makes the observation that verbs must occur at the left edge

of vP in the verb doubling constructions. He discusses two contrastive examples: in (64),

negation is not allowed to occur at the left edge, and in (65), the adverb tamid ‘always’ is

prohibited in the initial position in the verb-doubling constructions. There are two possible

explanations for the contrastive examples in (64) and (65). One possible explanation is that

the verb in the fronted vP must further move to the left edge of vP, otherwise, the sentence

will be ungrammatical. The other is that the fronted vP cannot be too large (i.e., the fronted

vP can only include a verb and an object at most). I found evidence that seems to be against

the second explanation: I constructed examples in (66), where the adverb maher ‘quickly’

is a low adverb, and my consultant told me that it is grammatical to have the adverb in the

sentence with the verb being at the initial position (66a) and ungrammatical to have the

adverb in the initial position (66b). This shows that the fronted vP can include an adverb

as long as the verb is at the initial position, which is against the second explanation where

the fronted vP cannot be too large. In this sense, I suggest that the facts in (65) - (66) are

derived by verbs obligatorily moving out of a fronted vP.

(64) a. le’horid

to-�ush

et

acc

ha-maym,

the-water

Gil

Gil

lo

not

morid

�ushes

‘Flush the toilet, Gil does not.’

b. *lo

not

le’horid

to-�ush

et

acc

ha-maym,

the-water

Gil

Gil

morid

�ushes

(65) a. le’horid

to-�ush

et

acc

ha-maym,

the-water

Gil

Gil

tamid

always

morid

�ushes

‘Flush the toilet, Gil always �ushes.’

b. *tamid

always

le’horid

to-�ush

et

acc

ha-maym,

the-water

Gil

Gil

morid

�ushes

(Landau 2006: 38, ex.10)
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(66) a. Lishtof

wash.inf

maher

quickly

et

acc

ha-kelim,

the-dishes

hu

he

shataf

wash.pst

‘As for washing the dishes quickly, he washed.’

b. *maher

quickly

lishtof

wash.inf

et

acc

ha-kelim,

the-dishes

hu

he

shataf

wash.pst

Here, I assume that low adverbs, such as maher ‘quickly’, is at the left edge of vP, not VP;

and vP is fronted. Also, note that the verb in the fronted VP is in its in�nitival form. Thus,

in order to capture the observation that the in�nitival verb has to occur at the left edge, I

propose the structure in (60), where v1

0
moves out of VP and ends up adjoining with X

0

and being at the left edge.
5

So far, I have shown evidence supporting that in Hebrew,

(i) verbs move out of vP to adjoin with higher heads (i.e., V-to-T(-to-C) movement);

(ii) in verb-doubling constructions, verbs move out of vP and end up adjoining with a

higher head (i.e., X
0
).

I propose that (i) and (ii) both follow from the fact in (67). In (i), verb roots move

to T
0

to get the tense morphology to be spelled out as a tensed verb; and in (ii) verb roots

move to In�
0

so that the verb can be in the in�nitival form and there is a lexical item in

the lexicon that can be inserted for the in�nitival verb.
6

(67) In Hebrew, verb roots cannot be pronounced.

(Landau 2006)

Having explained why v moves to In�
0
, there is still the mystery about what this

X head is and what triggers the I1

0
-to-X

0
movement. Note that if the complex I1

0
does not

5
If one assumes that the adverb is at the left edge of VP and vP is fronted, the verb will always be at the

left edge since in vP the verb always precedes VP-adverbs, and the VP-adverb can never occur to the left

of the verb regardless of whether there is v(P) fronting, which leaves the movement of the verb out of the

moved vP unmotivated.

6
In Landau (2006), it is claimed that the verb root is spelled out as its “default form”, which is the in�nitival

form; my proposal here is consistent with this claim but provides a syntactic mechanism for the verb root to

be spelled out as an in�nitival form.
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adjoin with X
0
, the structure will have two root nodes, which are shown in (68), where

TopP2 and I1

0
are two root nodes. I assume that there can only be one root node in a

structure, so I propose that I1

0
adjoining with X

0
and X1

0
adjoins with TopP2 to form XP is

a technique to combine two root nodes into one (i.e., there is no semantic interpretation

associated with X
0

projections, which can be treated as a functional empty category). I

propose that the projection of X
0

is a last resort and can only be implemented when needed

(i.e., in this case, to combine two root nodes to one).

(68) TopP2

TopP1

CP2

CP1

TP2

TP1

vP2

vP1

VP

DP1

D1

0

V
0

v1

0

v
0

AdvP

Adv
0

T1

0

T
0

DP2

D2

0

C
0

Top
0

In�1

0

In�
0

Now that I have clari�ed the details of the structure, I continue with the linearization in

the XP Spell-out domain. In the XP Spell-out domain, the Maximal X
0

Nodes are shown in

(69).

(69) Maximal X
0

Nodes of XP = {X1

0
, Adv

0
, D1

0
, Top

0
, C

0
, D2

0
, T1

0
}

Table 6.7 shows the sisterhood relationship and the required orders by the Language
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Speci�c Constraints for all Maximal X
0

Nodes α and β of VP if α and β are ordered as a

pair in a given set.

relationship ordering statements

X1

0
TopP2 sisters

{X1

0 ă Top
0
, X1

0 ă C
0
, X1

0 ă D2

0
, X1

0 ă T1

0
},

X1

0 ă Adv
0
, X1

0 ă D1

0

vP2 TopP1 sisters

{Adv
0 ă Top

0
, Adv

0 ă C
0
, Adv

0 ă D2

0
, Adv

0 ă T1

0
,

D1

0 ă Top
0
, D1

0 ă C
0
, D1

0 ă D2

0
, D1

0 ă T1

0
}

AdvP vP1 sisters {Adv
0 ă D1

0
}

Top
0

CP2 sisters {Top
0 ă C

0
, Top1

0 ă D2

0
, Top1

0 ă T1

0
}

vP2 CP1 non-sisters N/A

C
0

TP2 sisters {C
0 ă D2

0
, C

0 ă T1

0
}

DP2 TP1 sisters {D2

0 ă T1

0
}

T1

0
vP2 non-sisters N/A

Table 6.7: XP Spell-out domain

Note that TopP1, CP2, CP1, TP2 and TP1 do not fully dominate Adv
0

and D1

0
. Also,

T1

0
and vP2 are not sisters since their immediate dominating mother TP1 does not fully

dominate vP2; vP2 and CP1 are not sisters since their immediate dominating mother CP2

does not fully dominate vP2. The relevant paths are shown in (70).

(70) a. (i) p3(Adv
0
) = {AdvP, vP2, TopP2, XP}

(ii) p2(Adv
0
) = {AdvP, vP2, CP2, TopP1, TopP2, XP}

(iii) p1(Adv
0
) = {AdvP, vP2, TP1, TP2, CP1, CP2, TopP1, TopP2, XP}

b. (i) p3(D1

0
) = {DP1, VP, vP1, vP2, TopP2, XP}

(ii) p2(D1

0
) = {DP1, VP, vP1, vP2, CP2, TopP1, TopP2, XP}

(iii) p1(D1

0
) = {DP1, VP, vP1, vP2, TP1, TP2, CP1, CP2}
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c. p(C
0
) = {CP1, CP2, TopP1, TopP2, XP}

d. p(D2

0
) = {DP2, TP2, CP1, CP2, TopP1, TopP2, XP}

e. p(T1

0
) = {TP1, TP2, CP1, CP2, TopP1, TopP2, XP}

f. (i) p3(vP2) = {TopP2, XP}

(ii) p2(vP2) = {CP2, TopP1, TopP2, XP}

(iii) p1(vP2) = {TP1, TP2, CP1, CP2, TopP1, TopP2, XP}

The following set in (71) for the XP Spell-out domain satis�es all the constraints.

(71)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

X1

0 ă Adv0

X1

0 ă D1

0

X1

0 ă Top0

X1

0 ă C0

X1

0 ă D2

0

X1

0 ă T 1

0,

Adv0 ă D1

0

Adv0 ă Top0

Adv0 ă C0

Adv0 ă D2

0

Adv0 ă T 1

0

D1

0 ă Top0

D1

0 ă C0

D1

0 ă D2

0

D1

0 ă T 1

0

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

C0 ă D2

0

C0 ă T 1

0

D2

0 ă T 1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

The union set of XP, CP and VP is shown in (72).

(72)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

X1

0 ă Adv0

X1

0 ă D1

0

X1

0 ă Top0

X1

0 ă C0

X1

0 ă D2

0

X1

0 ă T 1

0,

Adv0 ă D1

0

Adv0 ă Top0

Adv0 ă C0

Adv0 ă D2

0

Adv0 ă T 1

0

D1

0 ă Top0

D1

0 ă C0

D1

0 ă D2

0

D1

0 ă T 1

0

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

C0 ă D2

0

C0 ă T 1

0

D2

0 ă T 1

0
V
0 ă D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Since the �nal union set is reached, Ordering Deletion should be implemented,

which changes the union set to the following one in (73). Note that since (i) X1

0
dominates

V
0
, (ii) both X1

0
and V

0
precede D1

0
, and (iii) there is no β such that β ă X1

0
and V

0 ă β or

β ă V
0

and X1

0 ă β, V
0 ă D1

0
should be deleted.
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(73)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

X1

0 ă Adv0

X1

0 ă D1

0

X1

0 ă Top0

X1

0 ă C0

X1

0 ă D2

0

X1

0 ă T 1

0,

Adv0 ă D1

0

Adv0 ă Top0

Adv0 ă C0

Adv0 ă D2

0

Adv0 ă T 1

0

D1

0 ă Top0

D1

0 ă C0

D1

0 ă D2

0

D1

0 ă T 1

0

Top1

0 ă C0

Top1

0 ă D2

0

Top1

0 ă T 1

0

C0 ă D2

0

C0 ă T 1

0

D2

0 ă T 1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Now, implement the Set-to-String algorithm. This union set in (73) satis�es all

the constraints (i.e., all the intersection sets are empty), so as before, the linearization

algorithm stops at Stage 1. Then, the String Forming Mechanism runs on (73), which yields

the string ăS X1

0
Adv

0
D1

0
Top

0
C

0
D2

0
T1

0 ą.

Next, lexical insertion forms sites. (74) shows the sites for complex heads.

(74) a. X1

0 „ #V
0
v

0
I
0
X

0
#

b. T1

0 „ #V
0
v

0
T

0
#

Lastly, implement lexical insertion, which is shown in (75).

(75) a. #V
0
v

0
I
0
X

0
# “ lishtof ‘to wash’

b. Adv
0 “ maher ‘quickly’

c. D1

0 “ et ha-kelim ‘acc the dishes’

d. Top
0 “H

e. C
0 “H

f. D2

0 “ hu ‘he’

g. T1

0 “ shataf ‘washed’

Finally, we get the utterance in (105), which is repeated below in (76).
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(76) Hebrew (in�nitival form)

lishtof

wash.inf

maher

quickly

et

acc

ha-kelim,

the-dishes

hu

he

shataf

wash.pst

‘As for washing the dishes quickly, he washed.’

Note that in this Hebrew example, the verb upstairs is in the in�nitival form and

the verb downstairs is in the past form. In Mandarin, there are also cases where both the

verb upstairs and the verb downstairs are marked with aspect. An example is shown in

(77), the structure of which is shown in (78). I will not go through the linearization process

again since it is quite similar to the Hebrew example in (76).

(77) Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

chi-guo

eat-asp

‘As for having eaten Guava before, Lili indeed has eaten (them) before.’
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(78) XP

TopP2

TopP1

CP2

CP1

TP3

TP2

TP1

AspP1

vP

VP

DP

D2

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

AdvP

Adv
0

DP

D1

0

C
0

Top
0

X1

0

X
0

Asp2

0

Asp
0

6.3 VP-doubling

Now, let’s turn to the Mandarin VP-doubling example in (79). The structure of it is shown

in (80), where AspP moves directly to Spec, TopP.

(79) Mandarin (aspectual form)

Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’
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(80) TopP2

TopP1

CP

TP4

TP3

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

NegP

Neg
0

AdvP

Adv
0

DP2

D2

0

C
0

Top
0

There are three Spell-out domains in (80): VP, CP and TopP2. The structure of the VP

Spell-out domain is shown in (81) (note that for ease of presentation, I simplify the structure

of the DPs).

(81) VP

DP

D1

0

V
0

The following set in (82) for the VP Spell-out domain satis�es all the constraints.

(82) {V
0 ă D1

0
}

Now, let’s proceed to the CP Spell-out domain, the structure of which is shown in (83).
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(83) CP

TP4

TP3

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

NegP

Neg
0

AdvP

Adv
0

DP2

D2

0

C
0

In the CP Spell-out domain, the Maximal X
0

Nodes are shown in (84).

(84) Maximal X
0

Nodes of CP = {C
0
, D2

0
, Adv

0
, Neg

0
, T

0
, Asp1

0
, D1

0
}

The set for the CP Spell-out domain that satis�es all the constraints is shown in (85).

(85)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

C0 ă D2

0

C0 ă Adv0

C0 ă Neg0

C0 ă T 0

C0 ă Asp1

0

C0 ă D1

0

D2

0 ă Adv0

D2

0 ă Neg0

D2

0 ă T 0

D2

0 ă Asp1

0

D2

0 ă D1

0

Adv0 ă Neg0

Adv0 ă T 0

Adv0 ă Asp1

0

Adv0 ă D1

0

Neg0 ă T 0

Neg0 ă Asp1

0

Neg0 ă D1

0

T 0 ă Asp1

0

T 0 ă D1

0

Asp1

0 ă D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

The union set of CP and VP is shown in (86).
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(86)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’
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This union set satis�es all the constraints. Note that for the union set, the Totality

Constraint and the Language Speci�c Constraints are evaluated against the structure in

the CP Spell-out domain. Regarding the Totality Constraint, the Maximal X
0

Nodes are

the same as the ones in the CP Spell-out domain, which are shown in (87). Note that V
0

is

not a Maximal X
0

Node in the CP Spell-out domain, so the Totality Constraint does not

consider whether V
0

is evaluated relative to the other Maximal X
0

Nodes.

(87) Maximal X
0

Nodes of CP = {C
0
, D2

0
, Adv

0
, Neg

0
, T

0
, Asp1

0
, D1

0
}

In addition, regarding the Language Speci�c Constraints, especially the head constraint

(i.e., if x contains αă β or β ă α, and α is a head, there must be an ordering statement of α

preceding β if β is fully dominated by YP, where YP is the sister of α.), having the ordering

statement V
0 ă D1

0
does not make the set violate the Language Speci�c Constraints. The

reason is that though (i) the set has the ordering statement V
0 ă D1

0
, (ii) V

0
is a head,

and (iii) D1

0
is fully dominated by DP1, V

0
and DP1 are not sisters (i..e, VP, which is the

immediate dominating mother of V
0

and DP1, does not fully dominate V
0

- V
0

does not have

to go through VP to reach the root node since it is multidominated). Thus, the existence of

the ordering statement V
0 ă D1

0
does not require any ordering statement to be present in

the union set of VP and CP. Since the Language Speci�c Constraints do not forbid V
0 ă

D1

0
to appear in the union set either, having V

0 ă D1

0
does not violate any constraint.

Now, let’s go to the TopP2 Spell-out domain. The structure of it is shown in (88).
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(88) TopP2

TopP1

CP

TP4

TP3

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

NegP

Neg
0

AdvP

Adv
0

DP2

D2

0

C
0

Top
0

In the TopP2 Spell-out domain, the Maximal X
0

Nodes are shown in (89).

(89) Maximal Nodes of TopP2 = {Asp1

0
, D1

0
, Top

0
, C

0
, D2

0
, Adv

0
, Neg

0
, T

0
}

Table 6.8 shows the sisterhood relationship and the ordering statements allowed by the

Language Speci�c Constraint in the TopP2 Spell-out domain.
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relationship ordering statements

AspP Top1 sisters

{Asp1

0 ă Top
0
, Asp1

0 ă C
0
, Asp1

0 ă D2

0
,

Asp1

0 ă Adv
0
, Asp1

0 ă Neg
0
, Asp1

0 ă T
0
,

D1

0 ă Top
0
, D1

0 ă C
0
, D1

0 ă D2

0
,

D1

0 ă Adv
0
, D1

0 ă Neg
0
, D1

0 ă T
0

}

Asp1

0
vP sisters {Asp1

0 ă D1

0
}

Top
0

CP sisters

{Top
0 ă C

0
, Top

0 ă D2

0
, Top

0 ă Adv
0
,

Top
0 ă Neg

0
, Top

0 ă T
0

}

C
0

TP4 sisters {C
0 ă D2

0
, C

0 ă Adv
0
, C

0 ă Neg
0
, C

0 ă T
0

}

D2

0
TP3 sisters {D2

0 ă Adv
0
, D2

0 ă Neg
0
, D2

0 ă T
0
}

Adv
0

TP2 sisters {Adv
0 ă Neg

0
, Adv

0 ă T
0
}

Neg
0

TP1 sisters {Neg
0 ă T

0
}

T
0

AspP non-sisters N/A

Table 6.8: TopP2 Spell-out domain

The following set in (90) for the TopP2 Spell-out domain satis�es all the constraints.

(90)
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ă Neg0
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0

ă T 0
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0

ă Top0

D1

0

ă C0
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0

D1

0

ă Adv0

D1

0

ă Neg0

D1

0

ă T 0

Top0

ă C0

Top0

ă D2

0

Top0

ă Adv0

Top0

ă Neg0

Top0

ă T 0

C0
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0

C0

ă Adv0
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ă Neg0

C0

ă T 0

D2

0
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0

ă Neg0

D2
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Adv0
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-
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The union set of CP and VP is repeated in (91).

(91)
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The union set of TopP2, CP and VP is shown in (92).

(92)
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Since the �nal union set is formed, Ordering Deletion should be applied, which is

repeated below in (23). After Ordering Deletion, the union set becomes the one in (93) (V
0

ă D1

0
is deleted since Asp1

0
dominates V

0
and Asp1

0
also precedes D1

0
).

168



(93)
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Next, implement the Set-to-String algorithm. Note that this union set satis�es all

the constraints except for the Asymmetry Constraint. For instance, this union set has both

Asp1

0 ă C
0

and C
0 ă Asp1

0
. Based on Stage 1 of the Set-to-String algorithm, when there

exists a non-empty intersection set, the Set-to-String algorithm should proceed to Stage 2.

The intersection sets for all nodes are shown in (94).

Stage 1:

1. Find the intersection sets: For each distinct node n1, n2, n3, ... in the set of ordered

pairs O = {n1 ă n3, n3 ă n2, ...}, get the set X = {..., n1, ...} that contains all the nodes

that precedes n and the set Y = {..., n2, ...} that contains all the nodes that follows n,

and get the set I = X X Y, which is the intersection of set X and set Y.

2. Check the intersection sets: If all the intersection sets are empty, run the String

Forming Mechanism on set O and the set will be turned into a string. Otherwise,

proceed to Stage 2.

(94) a. Asp1

0
: {C

0
, D2

0
, Adv

0
, Neg

0
, T

0
} = {D1

0
, Top

0
, C

0
, D2

0
, Adv

0
, Neg

0
, T

0
} X {C

0
,

D2

0
, Adv

0
, Neg

0
, T

0
}

b. D1

0
: {C

0
, D2

0
, Adv

0
, Neg

0
, T

0
} = {Top

0
, C

0
, D2

0
, Adv

0
, Neg

0
, T

0
} X {Asp1

0
, C

0
,

D2

0
, Adv

0
, Neg

0
, T

0
, V

0
}
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c. Top
0
: {H} = {C

0
, D2

0
, Adv

0
, Neg

0
, T

0
} X {Asp1

0
, D1

0
}

d. C
0
: {Asp1

0
, D1

0
} = {D2

0
, Adv

0
, Neg

0
, T

0
, Asp1

0
, D1

0
} X {Asp1

0
, D1

0
, Top

0
}

e. D2

0
: {Asp1

0
, D1

0
} = {Adv

0
, Neg

0
, T

0
, Asp1

0
, D1

0
} X {Asp1

0
, D1

0
, Top

0
, C

0
}

f. Adv
0
: {Asp1

0
, D1

0
} = {Neg

0
, T

0
, Asp1

0
, D1

0
} X {Asp1

0
, D1

0
, Top

0
, C

0
, D2

0
}

g. Neg
0
: {Asp1

0
, D1

0
} = {T

0
, Asp1

0
, D1

0
} X {Asp1

0
, D1

0
, Top

0
, C

0
, D2

0
, Adv

0
}

h. T
0
: {Asp1

0
, D1

0
} = {Asp1

0
, D1

0
} X {Asp1

0
, D1

0
, Top

0
, C

0
, D2

0
, Adv

0
, Neg

0
}

In Stage 2, the algorithm examines each non-empty intersection sets and see whether there

exists an intersection set that can form a quali�ed constituent. The set that contains all

the non-empty intersections sets are shown in (95).

Stage 2:

1. Collect all the non-empty intersection sets: Form a set M = {I1, I2,...} that contains

all the non-empty intersection sets.

2. Try forming a string:

(a) No quali�ed constituent: For all given intersection sets I1 = {n1, n2, ...}, I1 =

{n3, ...}, ... in set M, if none of them forms a quali�ed constituent, the linearization

process crashes.

(b) Quali�ed constituent: If there exists intersection set I
*

that forms a quali�ed

constituent, proceed to Stage 3.

(95) M = {I1 = {C
0
, D2

0
, Adv

0
, Neg

0
, T

0
}, I2 = {Asp1

0
, D1

0
}}

Note that the nodes in I2 of (95) form a constituent, and it is also a quali�ed constituent

(i.e., in Mandarin, [VP V bare-NP] is a quali�ed constituent). Thus, proceed to Stage 3.

Stage 3:

1. Form set S: Form the subset S = {n1 ă n2, ...} of set O that contains all the ordered

pairs α ă β, where both α and β are in the intersection set I
*
.
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2. Forming a string: Run the String Forming Mechanism algorithm, which is stated

in (35), on set S and get the string str = ăS n1n2...ą.

In Stage 3, �rst, form a subset S of O, which contains all the ordering statements

that order the nodes that form a quali�ed constituent. These nodes are in intersection

set I2: {Asp1

0
, D1

0
}}. Thus, the subset S is {Asp1

0 ă D1

0
}. Then, run the String Forming

Mechanism on subset S, which yields the string ăS Asp1

0
D1

0ą.

Now that a string is formed out of the nodes in the moved item, the next step is to

replace the corresponding nodes with the string, which is the �nal stage (i.e., Stage 4).

Stage 4:

1. Replace nodes with string:

(a) Get set D = O - S Form set D = O - S (i.e., D = {n1 ă n3, n3 ă n2 ...}, O = {n1 ă

n3, n3 ă n2, n1 ă n2, ...} and S = {n1 ă n2})

(b) Replace For every ordering statementαă β in the original set O, if the ordering

statement is in set D, replace the node with the string str = ăS n1n2...ą if the

node is in the intersection set I
*

and in the α position. The updated set O = {ăS

n1n2...ą ă n3, n3 ă n2, n1 ă n2, ...}.

2. Linearizing O: Run the String Forming Mechanism algorithm in (35) on the updated

set O.

In Stage 4, the algorithm needs to replace all the nodes in the intersection set I2

with the string ăS Asp1

0
D1

0ą for all the ordering statements in O except for the one that

orders Asp1

0
and D1

0
(i.e., the ordering statement in subset S). To do so, set D is derived by

subtracting S from the original set O, which is shown in (96).

171



(96)
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To make sure that the moved item is only ordered as a string in its higher position,

replacement is only applied to the preceding positions for the nodes within the moved

item (i.e., nodes in intersection set I2). Formally, for every ordering statement s in O, if s is

in set D, replace the node in s with the string ăS Asp1

0
D1

0ą if the node is in intersection

set I2 = {Asp1

0
, D1

0
} and in the preceding position. This is shown in (97). Note that since

Asp1

0
< D1

0
is not in set D, no replacement occurs there.

(97)
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ă Neg0

Top0

ă T 0

C0

ă D2

0

C0

ă Adv0

C0

ă Neg0

C0

ă T 0

C0

<Asp1

0

C0

<D1

0

D2

0

ă Adv0

D2

0

ă Neg0

D2

0

ă T 0

D2

0

<Asp1

0

D2

0

<D1

0

Adv0

ă Neg0

Adv0

ă T 0

Adv0

<Asp1

0

Adv0

<D1

0

Neg0

ă T 0

Neg0

<Asp1

0

Neg0

<D1

0

T 0

<Asp1

0

T 0

<D1

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/
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/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Now, the last step is to run the String Forming Mechanism on the updated union

set in (97), which yields the string ăS ăS Asp1

0
D1

0ąTop
0
C

0
D2

0
Adv

0
Neg

0
T

0
Asp1

0
D1

0ą.
7

7
Notice that in this set, there are no ordering statements between Top

0
and Asp1

0
or D1

0
. However, since
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The next step is to form lexical insertion sites, which is shown in (98).

(98) a. ăS Asp1

0
D1

0ą „ ăS #V
0
v

0
Asp

0
##D1

0
#ą

b. Top
0 „ #Top

0
#

c. C
0 „ #C

0
#

d. D2

0 „ #D2

0
#

e. Adv
0 „ #Adv

0
#

f. Neg
0 „ #Neg

0
#

g. T
0 „ #T

0
#

h. Asp1

0 „ #V
0
v

0
Asp

0
#

i. D1

0 „ #D1

0
#

Now, implement lexical insertion, which is shown in (99).

(99) a. ăS Asp1

0
D1

0ą “ chi-H-guo bale ’eaten Guava’

b. Top
0

=H

c. C
0

=H

d. D2

0
= Lili ‘Lili’

e. Adv
0

= dique ‘indeed’

f. Neg
0

= mei ‘not’

g. T
0

=H

h. #V
0
v

0
Asp

0
# “ chi-H-guo ‘eaten’

i. D1

0
= bale ‘Guava’

Thus, the string is updated as:

ăS ăS eaten Guava ąHH Lili indeed notH eaten Guavaą

Finally, the string becomes the utterance in (106), which is repeated below as (100).

the set contains Top
0 ă C

0
and C

0 ă Asp1

0
and D1

0
, in the actual utterance, Top

0
can only be pronounced

before Asp1

0
and D1

0
in the linear order. See the chapter for system design for more details.

173



(100) Mandarin (aspectual form)

Chi-guo

eat-H-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-H-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

Before ending this section, I would like to present more VP-doubling data in Mandarin. I

asked my consultants’ judgements about data from (101) to (103). All my consultants accept

VP-doubling when the object is a short bare noun (101a) or a pronoun (101b). However,

their judgements vary for the rest of the data and it is not clear to me what factor(s) is

relevant for their judgment. To be more speci�c, one consultant consistently accepts

objects without a determiner but gives a question mark for objects with a determiner

(the objects with determiner in the data have a speci�c meaning and the ones without a

determiner have a non-speci�c meaning). However, whether an object has a determiner is

not su�cient to decide the grammaticality because another consultant accepts sentences

with a bare noun object but only when the object has su�ciently few number of syllables

(for the bare noun that has the greatest number of syllables (101e), the consultant judges

it ungrammatical). However, it is still not su�cient if both determiner and the number

of syllables are taken into consideration. One consultant judges (103a) to be better than

(103b) despite the fact that (103a)’s object has fewer syllables than (103b)’s object ((103a)

has an adjective and a noun, with two syntactic layers; and (103b) has a number, a classi�er

and a noun, with three syntactic layers).
8

For now, I leave it as an open question as to what

factors in�uence the grammaticality judgment of the VP-doubling cases and why those

factors matter.

8
Note that if in these examples, the main clauses are positive, the degree of acceptance gets much better.

In this dissertation, I leave it as an open question why the polarity of the main clause makes a di�erence and

only focuses on cases where the main clause has a negative force.
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(101) Bare nouns

a. Chi-guo

eat-H-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-H-asp

bale.

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten

Guava before.’

Repeat of ex.(100)

b. Jian-guo

see-H-asp

ni,

pronoun

Lili

Lili

dique

indeed

mei

not

jian-guo

see-H-asp

ni.

you

‘As for having seen you before, Lili indeed hasn’t seen you before.’

c. (?/ok) qu-guo

go-asp

aisaiebiya

Ethiopia

ta

3.sg

kending

sure

mei

not

chi-guo

go-asp

aisaiebiya

Ethiopia

‘As for having been to Ethiopia before, s/he sure hasn’t been to

Ethiopia before(, but s/he has seen it on TV before).’

d. (?/ok) qu-guo

go-asp

jiekesiluofake

Czechoslovakia

ta

3.sg

kending

sure

mei

not

chi-guo

go-asp

jiekesiluofake

Czechoslovakia

‘As for having been to Czechoslovakia before, s/he sure hasn’t been to

Czechoslovakia before(, but s/he has seen it on TV before).’

e. (*/ok) qu-guo

go-asp

buyinuosiailisi

Buenos.Aires

ta

3.sg

kending

sure

mei

not

chi-guo

go-asp

buyinuosiailisi

Buenos.Aires

‘As for having been to Buenos.Aires before, s/he sure hasn’t been to

Buenos.Aires before(, but s/he has seen it on TV before).’

(102) With determiner

a. Det + N

(*/ok) jian-guo

see-asp

na

that

ren

person

ta

3.sg

kending

sure

mei

not

jian-guo

see-asp

na

that

ren

person

‘As for having seen that person before, s/he sure hasn’t seen that

person before (, but s/he has heard about it before).’

b. Det + CL + N

(*/ok) jian-guo

see-asp

na-ge

that-cl

ren

person

ta

3.sg

kending

sure

mei

not

jian-guo

see-asp

na-ge

that-cl

ren]

person

‘As for having seen that person before, s/he sure hasn’t seen that

person before (, but s/he has heard about it before).’
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c. Det + Adj + N

(*/?) chi-guo

eat-asp

na

that

fense-de

pink-Adj

bale

Guava

ta

3.sg

kending

sure

mei

not

chi-guo

eat-asp

na

that

fense-de

pink-Adj

bale

Guava

‘As for having eaten that pink Guava before, s/he sure hasn’t eaten that

pink Guava before (, but s/he has seen it before).’

d. Det + CL + Adj + N

(*/?) jian-guo

see-asp

na-ge

that-cl

fense-de

pink-Adj

bale

Guava

wo

1.sg

kending

sure

mei

not

jian-guo

see-asp

na-ge

that-cl

fense-de

pink-Adj

bale

Guava

‘As for having seen that pink Guava before, I sure hasn’t seen that pink

Guava before (, but I have heard about it before).’

e. Det + Num + CL + N

(?/ok) jian-guo

see-asp

zhe

these

san-ge

three-cl

ren

person

ta

3.sg

kending

sure

mei

not

jian-guo

see-asp

zhe

these

san-ge

three-cl

ren

person

‘As for having seen these three persons before, s/he sure hasn’t seen

these three persons before (, but s/he has heard the voice of these three

persons before).’

f. Det + Num + CL + Adj + N

(*/?) jian-guo

see-asp

na

those

san-ge

three-cl

fense-de

pink-Adj

bale

Guava

ta

3.sg

kending

sure

mei

not

jian-guo

see-asp

na

those

san-ge

three-cl

fense-de

pink-Adj

bale

Guava

‘As for having seen those three pink Guavas before, s/he sure hasn’t

seen those three Guavas before (, but s/he has heard about it before).’
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(103) No determiner

a. Adj + N

(?/ok) chi-guo

eat-asp

fense-de

pink-Adj

bale

Guava

ta

3.sg

kending

sure

mei

not

chi-guo

eat-asp

fense-de

pink-Adj

bale

Guava

‘As for having eaten pink Guava before, s/he sure hasn’t eaten pink

Guava before (, but s/he probably has seen it before).’

b. Num + CL+ N

(*/?/ok) bangzhu-guo

help-asp

san-ge

three-cl

ren

person

ta

3.sg

kending

sure

mei

not

bangzhu-guo

help-asp

san-ge

three-cl

ren

person

‘As for having helped three persons before, s/he sure hasn’t helped

three persons before (, but s/he has helped two people).’

c. Num + CL + Adj + N

(*/ok) chi-guo

eat-asp

san-ge

three-cl

fense-de

pink-Adj

bale

Guava

ta

3.sg

kending

sure

mei

not

chi-guo

eat-asp

san-ge

three-cl

fense-de

pink-Adj

bale

Guava

‘As for having eaten three pink Guavas before s/he sure hasn’t

eaten three pink Guavas before (, but s/he has eaten three pink

peaches before).’

6.4 Summary

In this section, I have discussed cases where the verb appears to be pronounced multiple

times. I presented three types of cases. The �rst type has a doubled verb, where only the

verb is fronted (i.e., (104)), repeated below in (104). For the Hebrew case in (104a), the verb

is doubled because there are two movement chains (i.e., V
0
-to-v

0
-to-T

0
and v

0
-to-Top

0
),

where v
0

forms two di�erent Maximal X
0

nodes (i.e., T
0

and Top
0
), and these two nodes

are both linearized and hence pronounced.
9

For the Yiddish case, the verb moves across a

9
Note that in this case, v

0
-to-Top

0
movement does not result in the verb being pronounced under v

0
and

Top
0

(the verb is pronounced under T
0

and Top
0
) despite that this movement across a Spell-out domain via a

177



Spell-out domain via a non-initial position, which results in multiple pronunciations.

(104) Verb-doubling (with verb-fronting)

a. Hebrew (in�nitival)

Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

b. Yiddish (aspectual form)

Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’

The second type has a doubled verb with more than the verb being fronted (i.e., (2)),

repeated below in (105). In this case, the verb further moves out of the fronted VP, which

results in multiple pronunciations.

(105) Verb-doubling (with VP-fronting)

Hebrew (in�nitival form)

Lishtof

to.wash

maher

quickly

et

acc

ha-kelim,

the-dishes

hu

he

shataf

wash.pst

‘As for washing the dishes quickly, he washed.’

The third type has VP doubling, where more than the verb is doubled. The example is in

(3), repeated below in (106). In this case, the VP moves across a Spell-out domain via a

non-initial position, and the VP is a quali�ed constituent, forming a substring that gets

linearized, which results in multiple pronunciations.

non-initial position. This is because the V
0
-to-v

0
-to-T

0
movement interferes with the v

0
-to-Top

0
movement

in the sense that V
0
-to-v

0
-to-T

0
movement makes v

0
dominated by T

0
, which makes v

0
not a Maximal X

0

node and thus cannot be linearized. If there is only the v
0
-to-Top

0
movement in the structure, it should be

predicted that the verb is pronounced under Top
0

and v
0
.
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(106) VP-doubling

Mandarin (aspectual form)

Chi-guo

eat-asp

bale,

Guava

Lili

Lili

dique

indeed

mei

not

chi-guo

eat-asp

bale

Guava

‘As for having eaten Guava before, Lili indeed hasn’t eaten Guava before.’

As a quick summary, the double pronunciations in the verb-doubling cases result

from moving across a Spell-out domain via a non-initial position or from two separate

chains.
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CHAPTER 7

Conclusion

7.1 Summary

In this section, I provide a summary of all the head/phrase movement cases that I have

shown in this dissertation. I �rst focus on the verb movement cases. In example (1) (repeat

of (27) in chapter 4) and (3) (repeat of (21) in chapter 5), the moved verbs are pronounced

only once. The T-to-C movement in (1) happens within one Spell-out domain, where only

the highest head C1

0
is collected. The V-to-v movement in (4) happens across Spell-out

domains but via the initial positions of the spell-out domains such that the Ordering

Deletion rule is triggered and ordering statements containing V are deleted. Thus, both of

the moved verbs are pronounced only once.

(1) Move within one Spell-out domain

Can she run it?
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(2) CP

TP2

TP1

VP

DP1

D1

0

it

V
0

run

T
0

can

DP2

D2

0

she

C1

0

C
0

(3) Move across Spell-out domains via the edge

She can run it.

(4) CP

TP2

TP1

vP

VP

DP1

D1

0

it

V
0

run

v1

0

v
0

T
0

can

DP2

D2

0

she

C
0

In contrast, if a head moves across di�erent spell-out domains but not via the

initial positions of the spell-out domains, the head is pronounced multiple times. An

example for this scenario is the verb-doubling case that I discussed in section 6.1, which is

repeated below in (5). In this case, v1

0
moves from the CP Spell-out domain to the TopP

Spell-out domain via a position that is not the initial position of the CP Spell-out domain.

As a result, the Ordering Deletion rule is not applied: despite the fact that Top1

0
dominates

v1

0
, there exist ordering statements like D2

0 ă v1

0
and Top

0 ă D2

0
, where v1

0
and its mother
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node Top
0

are ordered di�erently regarding D2

0
.

(5) Liknot,

buy.inf

hi

she

kanta

buy.pst

et

acc

ha-praxim

the-�owers

‘As for buying, she bought the �owers.’

(6) TopP

CP

TP2

TP1

vP

VP

DP1

NP

N
0

D1

0

V
0

v1

0

v
0

T1

0

T
0

DP2

D2

0

C
0

Top1

0

Top
0

As a quick summary, in my analysis, a moved verb is predicted to be pronounced once if it

moves in one spell-out domain or across di�erent spell-out domains via the initial positions

of the spell-out domains; otherwise, the moved verb has to be pronounced multiple times.

Now, let’s look at the phrasal movement cases. In (7) (repeat of (37) in chapter 5),

my analysis predicts that the moved phrase will be pronounced once if it moves within

one spell-out domain or across di�erent spell-out domains via the initial positions of the

spell-out domains. In this case, the phrase moves across di�erent spell-out domains via

the initial positions of the Spell-out domains.
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(7) CP2

CP1

TP2

TP1

VP2

VP1

PP2

PP1

DP1

D1

0

whom

P
0

to

DP2

D2

0

it

V
0

give

T
0

DP3

D3

0

she

C
0

will

Note that in the Object Shift case (8) (repeat of (7a) in chapter 5), the object moves from

a non-initial position in VP. However, since the verb in VP also moves and to a higher

position in CP, the precedence relation between the verb and the object is preserved, so

both the verb and the object are predicted to be pronounced once. In other words, during

the course of derivation, the object position becomes an initial position when the verb

moves out of VP.

(8) Jag

I

kysste

kissed

henne

her

inte

not

[VP tV tO]
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(9) CP

CP

...

...

...

VP

herkiss

not

kissed

her

kissed

I

In contrast, in the VP-doubling case in (10) (repeat of (88) in chapter 6), the moved

phrase is predicted to get pronounced twice since it does not move via the initial positions

of the spell-out domains such that the precedence relations between the nodes in the

moved item and some nodes are not preserved, which violates the Asymmetry Constraint.

However, I stipulate that in Mandarin, it is allowed that the string of the moved item,

instead of nodes, can be linearized, so the linearization process linearizes the moved item as

a string in its higher position, which gets rid of the violation of the Asymmetry Constraint

and produces multiple pronunciations of the moved phrase. Note that I stipulate that in

English, strings are not allowed to be linearized, so the movement in (10) will lead the

linearization process to crash in English.
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(10) TopP2

TopP1

CP

TP4

TP3

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

NegP

Neg
0

AdvP

Adv
0

DP2

D2

0

C
0

Top
0

Overall, my analysis states that a moved head/phrase will be pronounced only once if

movement happens in the same Spell-out domain or across di�erent Spell-out domains

via the initial positions of spell-out domains; otherwise, a moved head is predicted to be

pronounced multiple times while a moved phrase is predicted either to be pronounced

multiple times or to cause the linearization process to crash depending on the speci�c

languages.

7.2 Predictions about verb movement

In the previous chapters, I have shown that movement in (11) results in multiple pronunci-

ation while movement in (12) results in single pronunciation.
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(11) Movement that happens across di�erent spell-out domains via non-initial positions

in the spell-out domains

(12) Movement that happens in the same spell-out domain or across di�erent spell-out

domains via the initial positions in the spell-out domains

Concretely, focusing on the verb movement cases, the seemingly “long distance/non-local”

topicalization movement (i.e., verb-doubling cases) can be a case of movement in (11);

while the seemingly “short distance/local” T
0
-to-C

0
movement, V

0
-to-v

0
movement, etc.

are cases of movement in (12). This is summarized in Table 7.2.

Movement in (11)

(multiple pronunciation)

Movement in (12)

(single pronunciation)

long movement

(non-local)

topicalization (i.e., verb-doubling)

short movement

(local)

T
0
-to-C

0
movement, V

0
-to-v

0

Table 7.1: Movements

However, it is worth pointing out that movement in (11) is not equivalent to

“long/non-local movement”and (12) is not equivalent to “short/local-movement”. To be

more speci�c, the analysis predicts that multiple pronunciation is forced if movement

happens in the way de�ned in (11), and single pronunciation is forced if movement

happens in the way de�ned in (12), regardless of whether the movement is long or short.

A hypothetical example of movement being short and is of movement in (11) is shown in

(13).
1

1
It is not clear to me whether there is empirical data that has the structure in (13).
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(13) ...

vP

VP

VP

V
0

AdvP

...

v
0

...

In (13), the V
0
-to-v

0
movement is short/local but this movement is across a Spell-out

domain via a non-initial position (the initial position in (13) is AdvP). In this case, since

this movement is of the movement in (11), it is predicted that there should be multiple

pronunciations of the verb, though in this case the movement is short/local.

On the other hand, a hypothetical example in (14), where the v
0
-to-C

0
movement

is long/non-local but is of movement in (12) (i.e., movement happens in the same Spell-out

domain), should be predicted by the analysis to have a single pronunciation.

(14) CP

TP

vP

...v
0

T
0

C
0

A possible candidate for the hypothetical example in (14) is the Bulgarian data (48) in

Chapter 1, repeated below in (15). In this case, it seems that there is v
0
-to-C

0
movement,

across the auxiliary sǔm “I.have”, which is under T
0

(cf. Rivero (1994)).
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(15) Bulgarian

a. Pročel

read

sǔm

I.have

knigata

book.the

‘I have read the book.’

b. *Sǔm Pročel knigata (Rivero 1994: 87, ex. 34)

Assuming that Rivero (1994) is correct about v
0
-to-C

0
being long/non-local movement, to

explain the single pronunciation of the verb in (15) under my analysis, I need to assume

that this movement happens in the same Spell-out domain (perhaps the CP Spell-out

domain). If this v
0
-to-C

0
movement indeed happens in the same Spell-out domain, my

analysis predicts that it should be pronounced once; otherwise, the analysis makes the

wrong prediction.

Movement in (11)

(multiple pronunciation)

Movement in (12)

(single pronunciation)

long movement

(non-local)

topicalization (i.e., verb-doubling) Bulgarian v
0
-to-C

0
?

short movement

(local)

(13)? T
0
-to-C

0
movement, V

0
-to-v

0

Table 7.2: Movements

Recall that I presented an observation in chapter 1, repeated below in (16). If the

Bulgarian data is considered, the empirical generalization in (17) is more accurate.

(16) It seems that multiple pronunciations of a moved verb can occur in a long distance/non-

local movement, for instance, topicalization movement; and a single pronunciation

of a moved verb tends to occur in a short distance/local movement, for instance,

T
0
-to-C

0
movement.

188



(17) It seems that multiple pronunciations of a moved verb can occur occur in a long

distance/non-local movement, for instance, topicalization movement; and a single

pronunciation of a moved verb tends to occur in a short distance/local movement,

for instance, T
0
-to-C

0
movement, with a possible exception of the long movement

v0-to-C0
.

As a quick summary, the analysis predicts a moved verb to be pronounced multiple times

if it moves as the way in (11) and predicts a moved verb to be pronounced once if it moves

as the way in (12).

7.3 A potential problem

There is a potential problem for cases where head movement happens via the initial

position of the Spell-out domain. Take the English example in (18) as an example. If the

object DP moves to the initial position of the VP Spell-out domain and does not move

further, the analysis predicts that the v
0
-to-V

0
movement in this case will have multiple

pronunciations. To be more speci�c, in the VP Spell-out domain, D1

0 ă V
0

is collected. In

the CP Spell-out domain, v1

0 ă D1

0
is collected. As a result, the Ordering Deletion rule

cannot be applied to D1

0 ă V
0

because despite that v1

0
dominates V

0
, v1

0
precedes but V

0

follows D1

0
. Thus, the ordering statements that contain V

0
and v1

0
are all kept and both V

0

and v1

0
are pronounced, resulting in double pronunciation.

(18) She can run it.
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(19) CP

TP2

TP1

vP

VP

VP

DP1

D1

0

it

V
0

run

v1

0

v
0

T
0

can

DP2

D2

0

she

C
0

However, in the current literature, it had been argued that movement is available only as a

last resort; in other words movement is only applied when it is necessary (cf. Chomsky

(1991, 1998), Pesetsky (1989)). Thus, I propose that the problem in (18) can be avoided if

(20) is adopted.

(20) An item X can only move to a position Y, if Y has a feature that needs to be checked

by X or X needs to check the feature of Z, where Z is a position higher than Y.

In this case, I propose that the Spec, VP position does not have any feature that needs to be

checked by the object phrase, and there is no higher position than Spec, VP that triggers

the movement of the object phrase. Thus, it is illegitimate for the object phrase to move to

Spec, VP, and the derivation in (19) is ruled out by (20) and crashes.
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7.4 Open questions

7.4.1 How V(P)s move

Once a V(P) is speci�ed regarding how to move, the analysis in this dissertation makes

a prediction about whether the moved V(P) will be pronounced once or multiple times.

However, it is worth noting that this dissertation does not provide an answer for why

a certain V(P) moves the way it does. For instance, for the Yiddish example in (29) in

chapter 6, repeated below in (21), this dissertation provides a way to explain the double

pronunciation by assuming that (22) is a possible derivation but does not provide an answer

for why (21) can only have the derivation in (22). To be more speci�c, it still needs to be

explained why there cannot be Asp1

0
-to-T

0
-to-C

0
-to-Top

0
movement, where Asp1

0
moves

across the Spell-out domain via an initial position and should be predicted to have a single

pronunciation.
2

(21) Yiddish (aspectual form)

Gegessen,

eaten

hot

has

Maks

Max

gegessen

eaten

�sh

�sh

‘As for having eaten, Max has eaten �sh.’

2
One possible way to solve this problem is to say that T

0
/C

0
is occupied by the auxiliary hot “has” and

cannot serve as a landing position for Asp1

0
. However, it still needs to be explained why the auxiliary hot

“has” blocks Asp1

0
-to-T

0
-to-C

0
-to-Top

0
movement, considering that excorporation is argued to be possible

in some literature (cf. Roberts (2010)).
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(22) TopP

CP

TP2

TP1

AspP

vP

VP

DP1

D1

0

V
0

v1

0

v
0

Asp1

0

Asp
0

T
0

DP2

D2

0

C1

0

C
0

Top1

0

Top
0

7.4.2 The problem of mixed head-�nal/initial

This analysis seems to work �ne for languages where heads are consistently �nal or initial,

but if a language has a mixture of head-�nal and head-initial structures, this analysis makes

wrong predictions. One example is German. In German, C
0

is initial but V
0

is �nal (23).

(23) CP

TP

TP

T1

0

T
0

VP

V
0α

...

C1

0

C
0

In this case, in the VP Spell-out domain, the ordering statement α ă V
0

will be collected.

In the CP Spell-out domain, C1

0 ă α will be collected. Note that despite the fact that

C1

0
dominates V

0
, the ordering statement α ă V

0
cannot be deleted since C1

0
and V

0
are

ordered di�erently regarding α. As a result, the analysis wrongly predicts that the verb

192



will be pronounced twice (i.e., once in C1

0
, once in V

0
).

3

One possible way to solve this problem is to change the Spell-out domains: Spell-

out domains include DP, CP and the highest phrase, but not VP. In this way, since there is

no VP Spell-out domain, the only domain relevant here is the CP Spell-out domain, where

V
0

will not be linearized since it is dominated by C1

0
and thus is not a Maximal X

0
node.

Along this line, one has to assume that Spell-out domains can be di�erent across languages.

3
In the CP spell-out domain, there is T

0
-to-C

0
movement, and thus T

0
will be dominated by C1

0
. As a

result, T
0

will not be a Maximal X
0

node and will not be linearized.
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