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ABSTRACT

DEVELOPMENT OF BAYESIAN TEMPORAL MODELS
FOR GLOBAL HEALTH ESTIMATION IN

DATA-LIMITED SETTINGS

FEBRUARY 2022

ZHENGFAN WANG

B.Sc., BEIJING NORMAL UNIVERSITY & HONG KONG BAPTIST

UNIVERSITY UNITED INTERNATIONAL COLLEGE

M.Sc., GEORGETOWN UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Leontine Alkema

Estimation of health indicators globally is complicated because of data sparsity

and data quality issues, especially in low and middle income countries without well-

functioning registration systems. This dissertation introduces Bayesian methods for

the estimation of stillbirth rates and adult mortality in data-limited settings.

Motivated by statistical challenges in the estimation of stillbirth rates globally,

we develop a Bayesian hierarchical temporal sparse regression model (BHTSRM).

Bayesian hierarchical temporal regression models combine a hierarchical regression

model with a temporal smoothing process. This type of model has been used for

estimating health indicators for multiple populations in data-sparse settings to track

high-quality data while producing covariate-driven estimates for populations with

vi



limited or no data. To extend its usage to settings where the number of candidate

covariates is large relative to data availability, we propose the use of BHTSRMs that

impose sparsity by using horseshoe priors on regression coefficients. We also develop

a method to adjust observations with alternative stillbirth definitions and account

for varying levels of uncertainty associated with different data sources in fitting the

BHTSRM to stillbirth data. The proposed model has been used by the United Nations

to estimate stillbirth rates globally.

To facilitate prediction based on BHTSRMs, we propose an associated variable

selection method: horseshoe shrinkage parameter reference distribution variable se-

lection (HSS-VS). We check the performance of the new method through simulation

exercises and use it for variable selection in the estimation of stillbirth rates.

In low and middle income countries without well-functioning registration systems,

sibling survival history (SSH) data can be used to estimate adult mortality but it may

be subject to substantial reporting errors. We propose a new Bayesian survival model

to estimate age-cohort specific survival probabilities from SSH data while accounting

for bias and uncertainty introduced by SSH reporting errors. In the model, the

cumulative hazard function is captured with a two-dimensional spline function. We

apply it to estimate adult survival in Senegal.
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CHAPTER 1

GLOBAL ESTIMATION AND PROJECTION OF
STILLBIRTH RATE

Estimation of stillbirth rates globally is complicated because of the paucity of reliable

data from countries where most stillbirths occur. We compiled data and developed a

Bayesian hierarchical temporal sparse regression model for estimating stillbirth rates

for 195 countries from 2000 to 2019. The model combines covariates with a temporal

smoothing process so that estimates are data-driven in country-periods with high-

quality data and determined by covariates for country-periods with limited or no data.

Horseshoe priors are used to encourage sparseness. The model adjusts observations

with alternative stillbirth definitions and accounts for various sources of uncertainty.

In-sample goodness of fit and out-of-sample validation results suggest that the model

is reasonably well calibrated. The model is used by the UN Inter-agency Group for

Child Mortality Estimation to monitor the stillbirth rate for 195 countries.
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1.1 Introduction

The United Nations Inter-agency Group for Child Mortality Estimation (UN

IGME) defines a stillbirth as a baby born with no signs of life at 28 weeks or more of

gestation (UN Inter-agency Group for Child Mortality Estimation [2020]), consistent

with the International Classification of Diseases (ICD-11, World Health Organiza-

tion [2019]) definition of a “late gestation fetal death”. Prior estimates highlighted

the large global burden of stillbirths with an estimated 2.6 million stillbirths for the

year 2015 (Blencowe et al. [2016]). Ending preventable stillbirths is one of the core

goals of the UN’s Global Strategy for Women’s, Children’s and Adolescents’ Health

from 2016 until 2030 (Kuruvilla et al. [2016]) and the Every Newborn Action Plan

(ENAP, World Health Organization [2014]). These global initiatives aim to reduce

the stillbirth rate (SBR, the number of stillbirths per 1,000 total births) to 12 or

fewer stillbirths per 1,000 births in every country by 2030.

Monitoring of SBRs is challenging because of data paucity in countries where most

stillbirths occur. Estimates of SBRs for a country can be derived from administra-

tive data from registration systems (e.g., civil registration and vital statistics (CRVS)

and medical birth and death registries). The reliability of SBR estimates from such

data sources depends on the accuracy and completeness of reporting and recording of

stillbirths and live births. Not all countries maintain an accurate, timely, and com-

plete registration system for stillbirths. Moreover, in many low- and middle-income

countries (LMICs), stillbirths are not reported in registration systems at all. For such

countries, stillbirth data can be obtained from health management information sys-

tems (HMIS), with limitations similar to the registration systems: stillbirth data from

registries and HMIS may be reported in different stillbirth definitions, and may be

biased due to underreporting, misclassification, and other data quality issues. Lastly,

SBR data can be obtained from household surveys and population-based studies but

– in addition to limitations similar to the other data sources regarding definitions –
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these data are typically not available for all years of interest and may be subject to

potentially large biases and/or non-sampling errors.

Blencowe et al. [2016] produced estimates of the SBR for all countries, from 2000 to

2015. Yearly estimates for developed countries with high-quality data were obtained

from the data directly, using a Loess smoother. Estimates for all other countries were

obtained from a regression model with country-specific intercepts and global regres-

sion coefficients. The main limitation of this work is the use of the regression model

for countries with limited data: resulting trend estimates are covariate-driven, even if

available data suggest deviations away from covariate-predicted trends. In addition,

a stepwise approach was taken to carry out variable selection, which underestimates

uncertainty since the model selection process is not accounted for.

In this paper, we propose a new approach to estimating the SBR for all coun-

tries, using a Bayesian hierarchical temporal sparse regression model (BHTSRM).

The model is used by the UN IGME to monitor the SBR globally (UN Inter-agency

Group for Child Mortality Estimation [2020], Hug et al. [2021]). Our approach up-

dates and extends the work of Blencowe et al. [2016]. As its name implies, BHT-

SRM combines a hierarchical regression model with a temporal smoothing process.

This type of model produces estimates that track high-quality data while producing

covariate-driven trend estimates for countries with limited or no SBR data. While

this kind of model has been used for estimating global health indicators in other

settings, e.g., in Alkema et al. [2017], prior work does not address sparsity. Here

we extend upon previous work by introducing sparsity-inducing priors for estimating

regression coefficients. In particular, we use horseshoe priors (Piironen and Vehtari

[2017b]) to shrink the less important coefficients toward zero, which makes BHTSRM

an approach that can deal with a large number of covariates.

As compared to Blencowe et al. [2016], our proposed model also introduces new

statistical approaches to address various data quality issues. Firstly, we propose a
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statistical procedure for data exclusion based on comparing observed ratios of SBR

to the neonatal mortality rate (NMR). Secondly, we add to the model an estimation

approach to incorporate observations with alternative definitions of a stillbirth (e.g.,

based on 22 weeks gestational age or 1000 grams birthweight) while accounting for

the additional uncertainty associated with such observations.

This paper is organized as follows: in Section 3.2, we provide an overview of

data sources and definitions that are available for measuring SBR. We introduce the

exclusion of data based on the ratio of SBR to NMR in Section 1.3. We describe

the SBR estimation model in Section 1.4, including the BHTSRM. In Section 3.4, we

present estimates of SBR, data quality parameters and validation results. Last, we

conclude with a discussion of limitations and future research directions in Section 3.5.

1.2 Data

1.2.1 Database construction

SBR data were compiled by the UN IGME from various sources for the year 2000

and onwards. The majority of data collected on stillbirths were obtained from ad-

ministrative data systems and health management information systems (HMIS). UN

IGME conducts an annual country consultation to solicit up-to-date administrative

data on stillbirths from ministries of health or national statistics offices. Population-

based study data were obtained from a review of the academic literature and a WHO

data call to maternal-newborn health experts. Nationally representative household

surveys (e.g., Demographic and Health Surveys, Multiple Indicator Cluster Surveys,

Reproductive Health Surveys) are another source of stillbirth data.

After data were compiled, general exclusion rules were applied. The evaluation

and assessment for data quality were applied to all data sources based on pre-defined

exclusion criteria. Data were excluded if they lacked information on definition or

data collection systems, if the proportion of reported stillbirths with unknown gesta-
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tional age or birthweight was above 50 per cent, if data were internally inconsistent,

or if coverage of live births in administrative data systems was estimated as below

80 per cent. Vital registration data with incomplete coverage of child deaths were

also excluded, where incompleteness was taken from the WHO CRVS completeness

assessment (WHO Department of Information, Evidence, and Research [2018]).

1.2.2 Notation

We use lowercase Greek letters for unknown parameters and uppercase Greek

letters for variables which are functions of unknown parameters (modeled estimates).

Roman letters indicate variables that are known or fixed, including data (in lowercase)

and estimates provided by other sources or the literature (in uppercase).

Data compilation and general exclusion resulted in a global database of observed

SBR values. Observations are available across countries over time and are indexed by

i; For each i, c[i] refers to the country for which the i-th observation was recorded,

and t[i] to the calendar year of observation i. Index j[i] is used to refer to the source

category of observation i. We define an observed value yi as the SBR calculated from

the number of reported stillbirths zi and number of live births qi from a given source

for a country-period with yi = zi/(zi + qi) . Periods referring to calendar years when

available, or longer if the source does not provide information on annual SBR. In the

database, data source types are categorized as (1) administrative data; (2) HMIS data;

(3) household survey data; and (4) population-based study data. Among population-

based studies, we distinguish between population-based prospectively-collected data

with recruitment prior to 28 weeks of gestation, and follow-up to at least 28 days for

live births, referred to here as PopPros data (Bose et al. [2015], Ahmed et al. [2018])

and additional data (PopLR).

We denote the set of all available observations resulting after the general exclusion

step as B. The data set B forms the basis of all analyses, as outlined in Figure 1.
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Firstly, an exclusion procedure is introduced for observations in the global data set B

based on the ratio of SBR yi to NMR oi. The NMR oi is calculated from the number

of neonatal deaths mi and number of live births qi with oi = mi/qi. The ratio of SBR

to NMR is analyzed using the PopPros data set P . The details of the exclusion are

described in Section 1.3. Other subsets of data set B are used for fitting the definition

adjustment model and the SBR estimation model.

Figure 1.1. Data sets and exclusion steps. This chart summarizes the data sets used
for estimating the SBR. Data sets are indicated in rectangle boxes and the processing
steps are summarized by the thick arrows. The global SBR data set B consists
of administrative data (“Admin.”) , HMIS, survey and population studies (“Pop.
study”) including population-based prospectively data (“PopPros”) and additional
data (“PopLR”).

To allow for international comparison, we focus on estimating SBRs reported us-

ing the standard definition (gestational age ≥ 28 weeks). In fitting the SBR model,

we used data based on the standard definition when available. However, for a subset

of country-periods in B, stillbirths were reported using an alternative definition only,

based on birthweight or a different gestational age cut-off. Four kinds of alternative

definitions are incorporated in the analysis: definitions referring to a baby born with

no signs of life at (1) 24 weeks or more of gestation; (2) 22 weeks or more; (3) birth-

weight ≥ 1000 grams; and (4) birthweight ≥ 500 grams. To use these observations
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for estimating the SBR, we estimated adjustments and uncertainties associated with

alternative definition d using the definition adjustment data set Dd. The data set and

definition adjustment model are given in Section 1.4.3.

We denote the subset of observations used for SBR estimation by B−. This

database is obtained after (i) excluding observations that are identified as outly-

ing based on the SBR to NMR ratio exclusion approach, and (ii) selecting a subset

of country-period-specific data in cases where multiple observations are available for

the same country-period, see Figure 1.1. The approach in (ii) is as follows: (iia) we

keep observations from non-administrative data only if administrative data are not

available and (iib) if observations are recorded in multiple definitions, we select only

one definition based on the following order of preference: (1) standard definition, (2)

birthweight ≥ 1000 grams; (3) 22 weeks or more of gestation; (4) 24 weeks or more

of gestation; (5) birthweight ≥ 500 grams. There are 1531 observations from 133

countries in this SBR model data set B−. Table 1.1 summarizes the breakdown of

observations based on definition and source.

Data availability is illustrated for selected countries in Figure 1.2. Data availability

ranges in the selected countries from no included data in Afghanistan to an annual

time series of national administrative data based on the standard 28 weeks definition

for Ireland. Botswana, Malawi, Uganda and Ukraine are examples of countries with

SBR data from multiple sources, available for selected periods only. In Ukraine, SBR

data are available from 2007 to 2017 from administrative systems but recorded using

22 weeks definition. In Uganda, the only available data comes from surveys and

population-based studies. In Malawi, available data sources are HMIS, population-

based studies, and household surveys.
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1.2.3 Covariates

Blencowe et al. [2016] identified a large number of candidate covariates for es-

timating SBR based on a conceptual framework. The framework includes distal

determinants such as socio-economic factors, demographic and biomedical factors,

associated perinatal outcome markers, and access to health care. Covariate database

C contains information on the 16 covariates for all country-years. Further details are

given in Supplementary Table A.3.

Data Source Number of Countries Number of Obs
Administrative 75 1157
HMIS 26 162
Household Survey 44 95
Population Study 23 117

Definition Number of Countries Number of Obs
28 weeks 124 1220
24 weeks 3 44
22 weeks 15 85
1000 grams 20 146
500 grams 5 36

Table 1.1. Data set B− used for fitting the SBR estimation model by source and
definition for countries in 2000-2019. For example, there are 75 countries with ad-
ministrative data. “28 weeks” represents the standard definition. “22 weeks” and “24
weeks” represent 22/24 weeks or more of gestation; “500 grams” and “1000” grams
represent birthweight ≥ 500/1000 grams.
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Figure 1.2. SBR data and estimates for 2000-2019 for selected countries. Posterior
median point estimates from BHTSRM (red line) with 90% credible intervals (red
area), and covariate-based estimates (dashed green line) with 90% credible intervals
(green area) are shown. Observed but unadjusted observations are displayed as hollow
symbols. Adjusted data (based on definition adjustments and accounting for survey
biases where applicable) and data that do not require adjustments (non-survey data
with standard definition) are shown for all source types. Colors indicate the definition
of the observation. Error bars displayed with adjusted observations indicate 95%
confidence interval of the SBR based on the observation, accounting for its estimated
bias and error variance. Note that the y-axis varies across countries, and that data
excluded based on the data quality assessment are not shown.

1.3 Exclusion based on the ratio of SBR to NMR

Stillbirths are typically more poorly recorded than deaths of liveborn neonates,

which are themselves under-recorded in many settings (Stanton et al. [2006] and

Woods [2008]). We exclude data points whose stillbirths are likely to be underreported

based on the ratio of observed SBR to NMR, making use of the fact that in settings

where stillbirth case ascertainment is poor, the ratio of SBR to NMR is expected to

be low.

We describe the approach in detail in the remainder of this section. In summary,

we assume that each observed log-ratio is the sum of a setting-specific expected log-

ratio and random error. We use the PopPros database P to build a model for the

expected log-ratio. We then calculate observed log-ratios for all observations in the

global data set B and exclude observations that – based on a comparison between the

observation and its predictive distribution using the model for the expected log-ratio

– are deemed subject to underreporting. The exclusion process is summarized in

Figure 1.3.

The proposed approach improves upon the approach used previously for SBR

estimation in Blencowe et al. [2016]. In the previously used approach, observations

were excluded based on a percentile of the observed distribution of SBR to NMR
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ratios. This approach did not account for varying uncertainty associated with the

observed ratios and – contrary to our approach – the previous approach did not make

explicit the probability of a false exclusion.

Figure 1.3. SBR to NMR ratio exclusion process. This chart summarizes the 2-step
exclusion process based on SBR:NMR ratios. The thin arrows indicate the flow of
data and parameters.

1.3.1 Predictive model for the SBR to NMR ratio

In the predictive model for the SBR to NMR ratio, we assume that each observed

log-ratio is the sum of a setting-specific expected log-ratio and random error. This

model is specified as follows. Let ri = yi/oi denote the observed ratio of SBR yi to

NMR oi. We assume that

log(ri)|θi ∼ N(θi, v
2
i ), (1.1)

where θi = E(log(ri)) refers to the expected log-ratio of SBR to NMR and v2i refers

to the error variance.

12



The error variance v2i is calculated using a Monte Carlo approximation. Specifi-

cally, denote zi as the number of observed stillbirths and mi as neonatal deaths. Then

we have:

zi|yi ∼ Bin(gi, yi),

mi|oi ∼ Bin(qi, oi),

where gi refers to total births and qi refers to the number of live births. Assuming

independence between stillbirths and neonatal deaths, we obtain samples (z
(s)
i ,m

(s)
i )

and calculate the associated ratio r
(s)
i :

r
(s)
i =

z
(s)
i /gi

m
(s)
i /qi

.

The variance v2i is given by the empirical variance of the samples log(r
(s)
i ).

We specify the distribution of the expected log-ratios θi as follows: assuming

conditionally independence and a normal distribution, we set

θi|µθ, σ
2
θ ∼ N(µθ, σ

2
θ), (1.2)

with µθ referring to the mean log-ratio across different SBR and NMR settings and

σ2
θ referring to variability across settings. We assign vague priors to µθ and σ2

θ .

The model is fitted to data from PopPros data set P . Based on the data collection

procedure used by the studies in this data set, data are assumed to be based on

complete reporting of stillbirths. The data set contains 73 data points from 10 LMICs

in different years. Based on the data set, the estimated mean ratio on the log scale is

µ̂θ = −0.180 (-0.250, -0.111) and variance across settings is estimated as σ̂2
θ = 0.083.

The estimates of θi are shown in Appendix Figure A.1.
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1.3.2 Exclusion procedure

If stillbirths are underreported relative to neonatal deaths for a specific observa-

tion, its associated observed log-ratio of SBR to NMR log(ri) is biased downwards as

compared to the true log-ratio θi. We calculate observed SBR to NMR ratios for all

observations in data set B and use the fitted model described above to construct a

predictive distribution for each log-ratio. We exclude an observation if its observed

ratio is less than the 5% lower bound of its corresponding predictive distribution of

the SBR to NMR ratio. Specifically, the predictive distribution of the SBR to NMR

ratio for the i-th observation follows from Equations 1.2 and is given by

log(ri) ∼ N(µ̂θ, σ̂
2
θ + v2i ),

where µ̂θ and σ̂2
θ refer to point estimates for the mean and across-setting variance of

θ and v2i to the error variance of the log-ratio specific to that observation. Let Λi

denote the lower 5% quantile of the predictive distribution for observation i, Λi =

µ̂θ + z.05
√
σ̂2
θ + v2i . We exclude observation i if its observed log ratio log(ri) < Λi.

Based on the point estimates of µθ and σ2
θ , the 5% lower bound of the predictive

distribution of the SBR to NMR ratio is exp(Λi) = 0.52 for observations with variance

vi = 0. For the data with alternative stillbirth definitions, we apply the exclusion

procedure after definition adjustment (see Section 1.4.3).

1.4 Methods for SBR estimation

1.4.1 SBR estimation model summary

The SBR estimation model is summarized in Figure 1.4. We let Ωc,t denote

the main outcome of interest, which is the SBR for country c in year t using the

standard definition. The process model specification, referring to the specification of

Θc,t = log(Ωc,t), is explained in Section 1.4.4.
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Ωc,t is estimated using data set B−. Following earlier notation, observations are

available across countries over time and are indexed by i; c[i] refers to the country

for which the i-th observation was recorded, t[i] the calendar year of the observation,

j[i] the data source type of the observation, and d[i] to its stillbirth definition. The

index r[c] refers to the region of country c. The data model is

log(yi)|Θc[i],t[i], ψj[i], σ
2
j[i] ∼ N(Θc[i],t[i] + ψj[i] + γ̂d[i], s

2
i + φ̂2

d[i] + σ2
j[i]), (1.3)

where Θc,t = log(Ωc,t) refers to the log-transformed true SBR Ωc,t for that country-

year, s2i to variance of log(yi) (see Section 1.4.2.1), ψj[i] and σ2
j[i] refer to its source

type-specific bias and variance respectively (see Section 1.4.2.2), and γ̂d and φ̂2
d to

definition-specific adjustment and variance for observations that are reported using

alternative definitions.

Definition adjustment parameters are estimated prior to model fitting. As com-

pared to the approach used previously in Blencowe et al. [2016], we have made two

improvements. Firstly, we developed predictive models for the differences in SBRs

that capture how stillbirths based on the alternative definition relate to stillbirths re-

ported according to the standard definition. Secondly, we assess the variability in the

relationship between standard and alternative SBRs and account for this uncertainty

in the SBR estimation model. The approach is described in Section 1.4.3.

1.4.2 Estimation of data quality parameters

1.4.2.1 Variance of log(yi)

The term s2i in the data model Eq. (2.1) refers to the variance of log(yi). For obser-

vations administrative data, HMIS, and population studies, we assume a Poisson data-

generating process to obtain s2i . Specifically, for SBR rate yi = zi/gi, with stillbirth
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Figure 1.4. SBR estimation model overview. This chart summarizes the inputs
and set up of the SBR estimation model. The input data includes SBR data set B−,
covariate data set C, and point estimates from the definition adjustment model (see
Section 1.4.3).
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zi and total births gi for the i-th observation, we assume zi | Ωi ∼ Poisson(gi · Ωi).

Then var(yi) = zi/g
2
i and by using the delta method, we obtain:

ˆvar(log(yi)) =
1

zi · yi
. (1.4)

Therefore, the variance s2i for the i-th observation is set to 1
zi·yi . For observations

from surveys, sampling error si is pre-calculated using a jackknife method (Pedersen

and Liu [2012]), to reflect the survey sampling design.

1.4.2.2 Source type bias ψj and measurement error variance term σ2
j

Source type bias terms ψj are included in model fitting to capture systematic

biases associated with specific source types. We assume there is no source type biases

for administrative, HMIS, and population-based studies, i.e. ψj = 0 for j referring to

these three source types

ψ1,2,4 = 0.

Liu et al. [2016] and Bradley et al. [2015] suggest that stillbirths tend to be

underreported in surveys, so we assume that data from surveys have a negative bias

term and estimate this bias term, assigning a a half-normal vague prior to ψ3:

ψ3 ∼ N−(0, 52). (1.5)

The measurement error variance term σ2
j captures non-systematic errors due to

errors introduced in reporting. These variance parameters are estimated and assigned

vague priors

σj ∼ N+(0, 1), j = 1, ..., 4
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Definition Income Group Number of Countries Number of Obs
22 weeks Low 14 59
22 weeks High 34 369
24 weeks High 8 28

1000 grams High 34 477
500 grams High 30 355

Table 1.2. Data availability in definition adjustment data sets Dd. “22 weeks” and
“24 weeks” represent 22/24 weeks or more of gestation; “500 grams” and “1000”
grams represent birthweight ≥ 500/1000 grams.

1.4.3 Definition adjustment

To estimate the definition-specific adjustment γd and variance φ2
d in Eq. (2.1), we

use data sources that reported stillbirths using multiple definitions. Specifically, we

construct definition adjustment data set Dd for each definition d, which contains all

available paired observations of stillbirth counts (z
(d)
i , zi), where z

(d)
i is the number

of stillbirths under the alternative definition d, zi is the number of stillbirths under

standard definition, and the pair refers to the same source, country, and year. We use

the paired counts to estimate γd and φ2
d for definition d without controlling for year

and source, but separately for high-income countries (HICs) and LMICs. Due to lack

of data, in LMICs we assume that 500 grams birthweight is equivalent to 22 weeks of

gestational age, and 1000 grams birthweight is equivalent to 28 weeks of gestational

age. Table 1.2 summarizes the data used for the analysis of the definition and income

group combinations.

We define κ
(d)
i as the log-ratio of the SBR as per alternative definition d to standard

definition for observation i: κ
(d)
i = log(

(
Ω

(d)
c[i],t[i]

Ωc[i],t[i]

)
. With this definition of κ, the true

log-transformed SBR for observation i under definition d[i], Θ
(d)
c[i],t[i], can be written as

Θ
(d)
c[i],t[i] = Θc[i],t[i] + κ

(d)
i , (1.6)
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where Θc,t refers to the log-transformed SBR under the standard definition. We use

this relation to define the adjustment term γd and variance φ2
d in Eq. (2.1): we set the

adjustment γd and variance φ2
d in the SBR data model equal to the posterior median

and variance of the predictive distribution for κ
(d)
i for each alternative definition d.

In the derivation of the predictive density of κ, we approximate the log-ratio of

SBRs κ
(d)
i by the ratio of stillbirths, justified by the fact that the number of stillbirths

are small relative to live births. Specifically, the true SBR for alternative definition

d can be written as follows: Ω
(d)
c,t =

Υ
(d)
c,t

qc,t+Υ
(d)
c,t

, where Υ
(d)
c,t refers to the “true” stillbirth

count associated with the true SBR under alternative definition d, and qc,t the number

of live births. Given that Υ
(d)
c,t << qc,t, we approximate κ as follows:

κ
(d)
i = log

(
Ω

(d)
c[i],t[i]

Ωc[i],t[i]

)
≈ log

(
Υ

(d)
c[i],t[i]

Υc[i],t[i])

)
. (1.7)

The assumptions made to obtain the predictive distribution for κ varies by the

definition. Alternative definitions fall into two categories: definitions containing the

standard definition and definitions overlapping with the standard definition. We

consider each of these below. In each set up, we work towards providing a predictive

distribution for κ
(d)
i by introducing probabilities that relate the survival based on the

alternative definition to that based on the standard definition.

Definitions containing the standard 28 weeks definition

Stillbirths zi recorded using the 28 weeks definition are a subset of stillbirths

recorded using the 22 or 24 weeks definitions, zi ≤ z
(d)
i for d referring to 22 and 24

weeks. Given that stillbirths based on 22 or 24 weeks definitions contain those with

28 weeks definitions, we may assume

zi|ω(d)
i ∼ Binomial(z

(d)
i , ω

(d)
i ), (1.8)
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where ω(d) is the definition-specific probability of a stillbirth with gestational age

beyond 28 weeks conditional on being dead after 22 or 24 weeks. The probability ω
(d)
i

relates to κ
(d)
i as follows (as per Eq. (1.7) and the definition of ω

(d)
i ):

κ
(d)
i ≈ log(Υ

(d)
c[i],t[i]/Υc[i],t[i]) = − log(ω

(d)
i ).

Based on this equation, we estimate the adjustment γ̂d and variance φ̂2
d in Eq. (2.1) by

the median and variance of the predictive distribution for − log(ω
(d)
i ). This predictive

distribution is based on the following assumption:

logit(ω
(d)
i )|µω,d, σ

2
ω,d ∼ N(µω,d, σ

2
ω,d), (1.9)

where µω,d is the mean of the logit-transformed probabilities, and σω,d the standard

deviation. We use vague prior for the mean and variance parameters:

σω,d ∼ N+(0, 1),

expit(µω,d) ∼ U(0, 1).

Definitions overlapping with the standard 28 weeks definition

Stillbirths z
(d)
i recorded using the 1000 or 500 grams definitions are overlapping

with the stillbirths zi using the standard definition.

In this setting, let Ni = n
(r&d)
i + n

(r)
i + n

(d)
i refer to the total number of stillbirth

based on the standard definition or an alternative definition, with n
(r&d)
i the count

of stillbirths that satisfy the 28-week and alternative definition, n
(r)
i the count of

stillbirth with standard definition rather than alternative definition, and finally n
(d)
i
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the counts of stillbirth with alternative definition rather than standard definition. We

can assume

(n(r&d), n(r), n(d))|(ω(r&d)
i , ω

(r)
i , ω

(d)
i ) ∼Multinom

(
Ni, (ω

(r&d)
i , ω

(r)
i , ω

(d)
i )
)
,

where ω
(r&d)
i , ω

(r)
i and ω

(d)
i refer to the probabilities of a stillbirth satisfying both

definitions, the standard definition only, and the alternative definition only, respec-

tively.

Based on the expression for κi in Eq. (1.7), and the definitions of the ω
(·)
i s, we

obtain the following relation:

κ
(d)
i ≈ log(

Υ
(d)
c[i],t[i]

Υc[i],t[i]

) = log

(
ω
(r&d)
i + ω

(d)
i

ω
(r&d)
i + ω

(r)
i

)
.

Based on this equation, we estimate the adjustment γ̂d and variance φ̂2
d in Eq. (2.1) by

the median and variance of the predictive distribution for log-ratio of the definition-

specific probabilities Γ
(d)
i = log

(
ω
(r&d)
i +ω

(d)
i

ω
(r&d)
i +ω

(r)
i

)
.

We assume that the Γ
(d)
i s are normally distributed:

Γ
(d)
i |µΓ,d, σ

2
Γ,d ∼ N(µΓ,d, σ

2
Γ,d), (1.10)

with µΓ,d and σ2
Γ,d referring to the across-setting mean and variance of the log-ratios.

To guarantee that the estimation results in sets of ω
(r&d)
i , ω

(r)
i and ω

(d)
i that add up

to one, we introduce the constraint 1

1+exp(Γ
(d)
i )

< ω
(r)
i + ω

(d)
i < 1

max{1,exp(Γ(d)
i )}

and

incorporate this constraint through a prior on the sum:

(
ω
(r)
i + ω

(d)
i

)
|Γ(d)

i ∼ U

(
1

1 + exp(Γ
(d)
i )

,
1

max{1, exp(Γ(d)
i )}

)
.
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Vague priors are used for the mean and variance parameters of Γ
(d)
i :

σΓ,d ∼ N+(0, 1),

µΓ,d ∼ N(0, 20).

When fitting the model to the database Dd for the overlapping definition, we

typically have available data pairs (zi, z
(d)
i ), as opposed to n

(r&d)
i , n

(r)
i and n

(d)
i . It

follows that zi = n
(r&d)
i + n

(r)
i and z

(d)
i = n

(r&d)
i + n

(d)
i . We implemented an exact

likelihood function to estimate the ωs from the overlapping data sets.

1.4.4 Bayesian hierarchical temporal sparse regression model

We developed a Bayesian hierarchical temporal regression model (BHTRM) to

estimate the SBR for all country-years. It combines country-specific intercept ςc,

linear regression function
∑

kXk,c,tβk, and a temporal smoothing process δc,t:

Θc,t = ςc +
∑
k

Xk,c,tβk + δc,t, (1.11)

Country-specific intercepts ςc are estimated hierarchically, with

ςc|ηr[c], σ2
ς ∼ N(ηr[c], σ

2
ς ),

ηr|ξw, σ2
η ∼ N(ξw, σ

2
η),

where ηr[c] refers to the regional mean, σ2
ς to the across-country variance within re-

gions, ξw to the global mean, and σ2
η to the across-region variance. Vague priors were

used for the global mean and variances:

ξw ∼ N(2.5, 22),

σς , ση ∼ N+(0, 1).
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A penalized spline regression model is used for δc,t,

δc,t =
H∑

h=1

kh(t)αh,c, (1.12)

where kh(t) refers to the h-th spline function evaluated at time t and αh,c to its

regression coefficient for country c.

We use equally spaced quadratic B-splines, with knots spaced 1 year apart and

placed at each integer year (Eilers and Marx [1996], Currie and Durban [2002]). The

spline regression coefficients are modeled with a first-order random walk process with

a sum-to-zero constraint 1
H

∑
h αh,c = 0 to ensure identifiability. For each country, we

define first order difference ∆αh,c:

∆αh,c = αh,c − αh−1,c.

First-order differences are penalized as follows

∆αh,c|σ2
∆ ∼ N(0, σ2

∆),

where the variance term σ2
∆ determines the smoothness of the fit. We address the

sensitivity to these settings in Section 1.5.4.

Estimating regression coefficients using sparsity-inducing priors Blencowe

et al. [2016] identified 16 candidate covariates for estimating SBR based on a con-

ceptual framework and used a stepwise approach variable selection. In this study,

we refrain from stepwise selection methods and instead use regularized horseshoe pri-

ors on regression coefficients (Piironen and Vehtari [2017a]) to impose sparsity by

allowing shrinkage of coefficients to zero. We expand upon BHTRM by introduc-

ing sparsity-inducing priors for estimating regression coefficients βk and refer to the
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resulting model set up as a Bayesian hierarchical temporal sparse regression model

(BHTSRM) which can be applied when the number of candidate covariates is large.

Regularized horseshoe priors for the regression coefficients are defined as follows:

βk|λk, τ, ρ ∼ N(0, τ 2λ̃2k),

λ̃2k =
ρ2λ2k

ρ2 + τ 2λ2k
,

where τ and ρ are global shrinkage parameters, and the λks are local (coefficient-

specific) parameters. Priors are set as follows:

λk ∼ C+(0, λ0),

τ ∼ C+(0, τ0),

ρ2 ∼ Inv-Gamma(ρ1, ρ2),

where C+(0, s) refers to a half-Cauchy distribution with location parameter 0 and

scale parameter s; λ0, τ0, ρ1, and ρ2 are fixed. The Cauchy distribution, which –

compared to a normal distribution – has greater density around 0 and a heavier tail,

allows the global hyperparameter τ to shrink all the parameters towards zero, while

the heavy tail allows the coefficient-specific parameters λk’s to make some coefficients

escape from the global shrinkage. This set up allows for the inclusion of a larger set

of candidate covariates and encourages sparseness by shrinking irrelevant covariates

toward zero. It is not a variable selection method because it does not shrink all

posterior samples to zero.

We set λ0 = τ0 = 1, ρ1 = 2, and ρ2 = 8, as per the recommended defaults

in Piironen and Vehtari [2017b], Carvalho et al. [2009b], and Gelman [2006]. We

address the sensitivity to these settings in Section 1.5.4.
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1.4.5 Computation

A Hamiltonian Monte Carlo (HMC) algorithm is employed to sample from the

posterior distribution of the parameters of the SBR estimation model with the use of

Stan (Carpenter et al. [2017]) and R package Rstan (Stan Development Team [2018]).

Six parallel chains are run with a total of 6,000 iterations in each chain. The first

2,000 iterations in each chain are discarded as burn-in so that the resulting chains

contain 4,000 samples each. Point estimates are given by medians of the posterior

samples. Standard diagnostic checks are used to check convergence and sampling

efficiency. These checks are based on trace plots, the improved Rhat diagnostic using

rank-normalized draws (Gelman and Rubin [1992], Vehtari et al. [2020b]), and various

calculations of effective sample size (ESS), including the bulk ESS and the tail ESS -

giving the minimum of the effective sample sizes of the 5% and 95% quantiles.

1.4.6 Model validation and comparison

Performance of the SBR estimation model is assessed through two out-of-sample

validation exercises. In the first exercise, we randomly leave out 20% of the obser-

vations and repeat this exercise 20 times (leaving out 306 observations each time).

In the second exercise, we leave out the last observation for each country to check

the predictive performance. To evaluate model performance, we calculate various

measures based on a comparison between left-out observations and their predictive

distributions. We define prediction errors ei as the difference between the left-out ob-

servation and the median of its predictive posterior distribution based on the training

set:

ei = (log(yi)− log(ỹi))/Si,

where yi is the left-out observations, and ỹi and Si refer to the estimated median

and standard deviation of the predictive distribution for yi based on the training set.

Coverage of prediction intervals is given by N−1
∑N

i=1 1[li ≤ yi ≤ ui], where N denotes
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the total number of left-out observations considered, and li and ui are the lower and

upper bounds of the prediction interval for the ith observation. We also carry out

approximate leave-one-out cross-validation (LOO), which is implemented in the loo

package in R (Vehtari et al. [2019]).

For comparing models, we consider the expected log pointwise predictive den-

sity (ELPD) and Pareto K diagnostic (Vehtari et al. [2017]). The ELPD is the log

pointwise predictive density for a new data set, which can be used to evaluate the

performance of the model to predict the future data. The Pareto K diagnostic refers

to the estimates of the shape parameter k of the generalized Pareto distribution.

Values larger than one may indicate that the observation is outlying and influential.

1.5 Results

1.5.1 Data quality and data adjustments

Adjustments γ̂d and standard deviations φ̂d associated with alternative definitions

are given in Table 1.3. For example, adjustments on the log-scale for 1000 grams

definition is -0.065 (-0.074, -0.056), suggesting that the 1000 grams definition data

are on average 0.937 (0.929, 0.946) times lower than the standard definition.

Definition
Income
group

γ̂d (95% CI) eγ̂d(95% CI) φ̂d

22 weeks Low 0.214 (0.101, 0.426) 1.239 (1.106, 2.031) 0.084
22 weeks High 0.389 (0.175, 0.777) 1.476 (1.192, 2.175) 0.156
24 weeks High 0.222 (0.058, 0.709) 1.248 (1.060, 2.031) 0.172

1000 grams High -0.065 (-0.074, -0.056) 0.937 (0.929, 0.946) 0.073
500 grams High 0.244 (0.232, 0.257) 1.277 (1.261, 1.293) 0.087

Table 1.3. Adjustments and standard deviation of alternative definition versus the
28 week definition.

Table 1.4 summarizes the differences in error standard deviation σj associated with

the different source types, ranging from a standard deviation of 0.017 for national

administrative data to 0.239 for population study data. The bias ψj for survey data
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is estimated at -0.165 (-0.229, -0.100) on the log-transformed scale, suggesting that

survey data are on average 0.848 (0.795, 0.905) times lower than the truth.

Source type ψ̂j σ̂j
Administrative - 0.017

HMIS - 0.045
Population study - 0.239

Survey -0.165 (-0.229, -0.100) 0.135

Table 1.4. Source type bias and source type standard deviation.

1.5.2 Illustrative findings

Estimates for selected countries1 are given in Figure 1.2, with final estimates

displayed in red and underlying covariate-based estimates (obtained by removing the

smoother term δc,t from the model) in green. As highlighted earlier in the paper,

data availability ranges in the selected countries from no data (Afghanistan) to an

annual time series of national administrative data based on the standard definition

for Ireland. The BHTSRM produces estimates for both countries. Point estimates

for Ireland track the observed SBR from administrative system closely and credible

intervals are close to the uncertainty associated with each observed SBR. Estimates

for Afghanistan are driven by covariates and the estimates are uncertain due to the

absence of data.

Botswana, Malawi, Ukraine, and Uganda are examples of countries with SBR data

that are either subject to bias, substantial error variance, or missing for periods of

interest. In Ukraine, SBR data are available from 2007 to 2017 from administrative

systems but recorded using a 22 week definition. SBR estimates are informed by

the adjusted observations and uncertainty increases in extrapolations past the ob-

servation period. The survey data point has a large associated uncertainty and has

1Estimates for all countries see childmortality.org

27



little influence on the resulting model fit. In Uganda, the only available data come

from HMIS, surveys, and population-based studies. There is substantial uncertainty

associated with survey and population-based study data and resulting SBR estimates

reflect this. There are four different data sources in Botswana and Malawi. Resulting

estimates are more certain in years with administrative or HMIS data as compared

to population-based, survey, or no data.

The effect of adding the smoother to the regression model on point estimates

is most visible in Ireland where final point estimates differ from the covariate-driven

ones. In general, credible intervals are wider for the model that includes the smoother

as shown in Figure 1.2. Exceptions include countries where data are limited except for

a short period with low-variance data such as Malawi: in such countries, the addition

of the smoother results in reduced uncertainty in the period with low-variance data

(when the estimates are data-driven).

1.5.3 Covariates

Table 1.5 summarizes the estimates for regression coefficients, ordered by absolute

point estimates of the coefficients. Given that covariates were standardized, the

coefficients are measured in units of standard deviation of the covariate, which are

added to the table for reference. In the analysis by Blencowe et al. [2016], NMR, low

birthweight, gross national income, mean years of female education, and coverage of

4 antenatal care visits (log(nmr), log(lbw), log(gni), edu, and anc4 in Table 1.5) were

selected for inclusion in the regression model. Here we find that these covariates are

ranked among the top in terms of their absolute regression coefficient along with C-

section (csec). Comparisons between the model with horseshoe priors and additional

models for sensitive checks are given in Section 1.5.4.

28



Covariates Estimate β̂ 2.5% 97.5% SD(covariate)
log(nmr) 0.414 0.336 0.492 0.999
log(gni) -0.102 -0.212 0.001 1.20
log(lbw) 0.078 0.009 0.141 0.439
edu -0.037 -0.104 0.007 3.41
csec -0.027 -0.082 0.008 11.9
anc4 -0.025 -0.094 0.014 21.8
pab -0.018 -0.050 0.006 11.6
abr -0.017 -0.109 0.023 46.5
urban -0.012 -0.087 0.024 23.1
gini 0.010 -0.017 0.061 8.17
sab -0.010 -0.083 0.026 0.215
anc1 -0.009 -0.067 0.021 14.7
mmr 0.003 -0.057 0.109 288.5
pfpr -0.002 -0.045 0.030 0.118
gdp 0.001 -0.047 0.063 207 · 102
gfr 0.000 -0.057 0.054 0.049

Table 1.5. Estimates for regression coefficients under BHTSRM fit. Point esti-
mates of regression coefficients, 95% credible interval given by the 2.5th and 97.5th
percentiles of the posterior, and the standard deviation of the covariate prior to stan-
dardization. Details on covariates are given in Table A.3.

1.5.4 Model validation, comparison and sensitivity analyses

Validation results for the BHTSRM are given in Table 1.6. For all scenarios, mean

residuals are close to zero, and the mean of the absolute residuals are around 0.1.

The approximate leave-one-out validation exercise suggests that predictive distribu-

tions are overdispersed as compared to the left-out observations, with the percentages

outside of 80% and 90% prediction intervals being lower than expected. The out-of-

sample exercises suggest that the model is reasonably well calibrated, with slightly less

left-out observations falling below their respective predictive intervals than expected.

We compare the performance of the BHTSRM, using sparse priors, to that of a

model with vague priors on the regression coefficient, labeled BHTRM. Regression

coefficients estimates for both the BHTSRM and BHTRM are given in Appendix

Figure A.2 and Table A.1. Some of the coefficients are closer to zero in the BHTSRM
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as compared to in the BHTRM, due to the shrinkage by the regularized horseshoe

prior. We compare predictive performance between the BHTSRM and the BHTRM

in Table A.2 and find that the mean error and mean absolute error are close to

each other. Validation results by income group do not suggest difference in model

performance either. The ELPD is higher for our reference BHTSRM as compared to

the BHTRM, the 95% CI for the difference is (-12.6, -0.06) (see Table 1.7), suggesting

improved predictive performance due to the horseshoe prior.

We also compare the reference model to another BHTSRM that is fitted using an

alternative choice of hyperparameters for the horseshoe prior based on Piironen and

Vehtari [2017b]. For standard regression models with yi ∼ N((Xiβ, σ
2), Piironen and

Vehtari propose to set the scale parameter τ0 in the prior for τ as follows:

τ ∼ C+(0, τ0),

τ0 =
p0

D − p0

σ√
n
,

where p0 is the guess of number of relevant predictors, D is the total number of

predictors, σ is the standard deviation of observation log(y), and n is the number

of observations. We cannot directly follow this recommendation because our mod-

eling context differs from the one where this setting was explored, i.e. our setting

includes heteroskedasticity of observations and the regression model is combined with

a temporal smoothing term. We obtain a model fit based on the recommendation

as a sensitivity test. Specifically, we obtain the fit for p0 = 5, D = 16, σ = 0.094

(the median standard deviation across observations), and n = 1531, corresponding to

τ0 = 0.001. Its ELPD is lower than the reference BHTSRM, but the difference is not

significant according to the 95% CI (-6.62, 3.07).

We checked the sensitivity of the choice of the splines in the smoothing term

δc,t in Eq. (1.12) by comparing the reference model fit to the fits obtained from two
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alternative models. Model specifications were the same for the three models except

for the specification of the smoothing term. In the reference model, a quadratic B-

spline model was used, with knots spaced 1 year apart and placed at each integer

year. In model “smooth1”, a cubic B-splines model was used while in “smooth2” the

knots were spaced 2 years apart. Table 1.7 summarizes the differences in ELPD and

Pareto K values for different models. There are no improvements when comparing

the alternative smoothers with our reference SBR model.

Model ELPD Pareto K diag.
estimate SE 95% CI for difference

BHTSRM 1194.5 40.6 reference model 0.5%
HS τ0 = 0.001 1192.7 40.6 (-6.62, 3.07) 0.7%
BHTRM 1188.2 40.7 (-12.59 , -0.06) 0.8%
smooth1 1185.9 40.5 (-13.08, -4.15) 0.5%
smooth2 1176.7 40.9 (-11.1, 3.0) 0.3%

Table 1.7. Model comparison based on expected log pointwise predictive density and
Pareto K diagnostic values. BHTSRM is our proposed model, and BHTRM is model
with vague prior on covariates. The HS τ0 = 0.001 model stands for BHTSRM with
τ0 = 0.001. Smooth1 and Smooth2 are two models with different settings of smoothers
described in the text. When comparing models, larger ELPD value suggests better
model performance. The percentage of high influential points (Pareto K values ¿ 1)
for all models are presented in the “Pareto K diag.” column, lower outcomes are
preferred.

1.6 Discussion

We developed a Bayesian hierarchical temporal sparse regression model (BHT-

SRM) for estimating SBRs for all countries from 2000 until 2019. Estimating SBRs is

challenging because of data paucity, especially for many LMICs where most stillbirths

occur, and the substantial uncertainty associated with observations due to reporting

issues and errors associated with the observations. Our BHTSRM extends the ap-

proach previously proposed by Blencowe et al. [2016] to produce estimates that are

informed by a covariate model and available data, accounting for different definitions
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and uncertainty associated with the available data. Model validation exercises suggest

that the model is reasonably well calibrated.

The BHTSRM extends upon previous applications of Bayesian hierarchical tem-

poral regression models through the introduction of sparsity-inducing priors and new

statistical approaches to addresses data quality issues. Sparsity-inducing priors allow

for the inclusion of larger sets of (potentially correlated) candidate covariates into

the model. While validation exercises do not indicate improved performance of the

model with the horseshoe prior over a model with vague priors, improved predictive

performance was suggested by higher ELPD in our application.

To address data quality issues, we developed a statistical procedure for data ex-

clusion based on comparing observed ratios of SBR to NMR for the population of

interest to a reference distribution of such ratios. This approach improves upon the

previously used approach for data exclusion by defining a predictive distribution for

the ratio and a decision rule that makes explicit the probability of a false exclusion.

Secondly, we developed a new approach to adjust and estimate additional uncertainty

associated with observations using a different definition of stillbirths. In the model

fitting, we used a data model that accounts for bias and varying sources of random

error associated with the observations.

While our approach to estimating the SBR improves upon existing approaches,

there are limitations related to the model and data availability. Limited data avail-

ability restricted the analyses we are able to carry out and result in stricter modeling

assumptions. For example, we excluded data based on observed SBR to NMR ratios.

In this analysis, we combined data across settings when constructing a predictive

distribution for the expected ratio and chose 5% as the threshold for data exclusion.

We acknowledge that the choice of a higher (or lower) threshold would have resulted

in the exclusion of more (or less) data. Additional data related to the quality of

reporting would allow for more detailed analyses and may allow for avoiding having
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to set a threshold. Relative differences in SBRs associated with the use of different

definitions, i.e., gestational age, may vary across settings. Data limitations resulted

in the use of a simple dichotomy of high income and low income countries to capture

this difference. With additional data, this relationship can be studied in more detail.

Lastly, although the horseshoe prior allows for the inclusion of a larger set of candi-

date covariates and shrinkage toward zero of irrelevant covariates, it is not a variable

selection method because it does not shrink all posterior samples to zero.

The BHTSRM as described in this paper is used by the UN IGME to generate es-

timates for the SBR globally (UN Inter-agency Group for Child Mortality Estimation

[2020], Hug et al. [2021]). While the modeling approach allows for the construction of

estimates for all countries, we find that uncertainty associated with the estimates is

substantial in many settings, including countries with high SBRs. This highlights the

need for additional data collection to produce more precise information for monitoring

and program planning, especially in high-burden settings.
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CHAPTER 2

SELECTION OF PREDICTORS BASED ON HORSESHOE
PRIOR

Bayesian hierarchical temporal regression models (BHTRMs) are used in vari-

ous applications, including the estimation of national-level stillbirth rates from 2000

to 2019 for countries around the world. In a BHTRM, a regression model is com-

bined with a temporal smoothing process so that estimates are data-driven in periods

with high-quality data and determined by covariates for periods with limited or no

data. Horseshoe priors can be used to encourage sparseness - shrinkage towards zero

of regression coefficients of irrelevant predictors - in settings where the number of

candidate covariates is large. Although the use of horseshoe priors can result in

models with good predictive performance, posterior samples of regression coefficients

are not shrunk to zero exactly to inform the exclusion of irrelevant covariates. The

performance of existing approaches to variable selection have not been validated for

BHTRMs.

Motivated by the demand for a parsimonious model for estimating stillbirth rates,

we explored the use of existing methods for variable selection in a BHTRM. Through

simulation exercises, we find that existing approaches may be subject to high false

exclusion rates in settings that mimic that of the stillbirth estimation problem, where

weak signals may be present.

To improve upon existing methods, we propose a new computationally-efficient

approach to variable selection. The new approach for variable selection is based on

a model fit using horseshoe priors on regression coefficients. In the proposed set up,
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we introduce noise covariates in the model of interest to obtain a distribution of a

shrinkage parameter for irrelevant covariates. For each candidate covariate in the

model of interest, we propose an exclusion rule based on comparing the estimate

shrinkage for the candidate covariate to the distribution obtained from the noise

covariates.

We use a simulation study to assess the predictive performance of the proposed

approach and compare its performance to existing methods. We find that the new

method improves upon the false exclusion rates of other methods in BHTRMs with

weak signals, while giving comparable performance in terms of prediction errors and

coverage. We apply the new approach to stillbirth estimation problem and compare

its estimates and goodness of fit to a reference BHTRM that is fitted with horseshoe

priors.
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2.1 Introduction

In the previous chapter (Wang et al. [2020]), we develop a Bayesian hierarchical

temporal regression model (BHTRM) to estimate stillbirth rates (SBR) globally. This

type of model combines a temporal smoothing process to produce estimates that track

high quality, and a hierarchical regression model to produce covariate-driven trend

estimates for countries with limited data. In this particular model, horseshoe priors

were used to shrink the coefficients of the irrelevant covariates to zero to encourage

sparseness. Although the use of horseshoe priors results in models with good predic-

tive performance (Piironen and Vehtari [2017b]), posterior samples in the resulting

model fit are not shrunk to zero exactly to identify the irrelevant covariates. Hence it

cannot identify the irrelevant covariates. Given the demand for a parsimonious model

for estimating stillbirth rates, we explored variable selection approaches for BHTRMs

Numerous methods for Bayesian model selection have been proposed but no

standard variable selection methods have been designed or even tested for a semi-

parametric model like the BHTRM. Various approaches with their theoretical prop-

erties have been reviewed by Piironen and Vehtari [2017a]. However, given that no

standard variable selection methods have been designed or even tested for a semi-

parametric model like the BHTRM, their performance in these settings is unknown.

Obviously, the temporal smoother and the hierarchical intercepts could introduce

difficulties in selecting relevant covariates or optimizing predictive performance. Fur-

thermore, there are two additional features of the SBR application which may affect

the selection accuracy: high correlation among covariates and possibly weak signals.

The candidate covariates used in SBR project consist many socio-economic factors,

demographic and biomedical factors, which are highly correlated. Based on estimated

regression coefficients obtained in Wang et al. [2020], the great majority of signals

may be very weak.
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Motivated by the demand for a parsimonious model for estimating stillbirth rates,

we explored the use of existing methods for variable selection in a BHTRM and

propose a new approach. The new approach is referred to as the horseshoe shrinkage

parameter reference distribution variable selection method (HSS-VS). As the name

suggested, the HSS-VS is developed based on horseshoe prior. The basic idea of

our approach is summarized as follow: we introduce dummy covariates in the model

of interest and use horseshoe priors for all coefficients to obtain a distribution of

shrinkage parameters for irrelevant covariates. For each candidate covariate in the

model of interest, we propose an exclusion rule based on comparing the estimate

shrinkage for the candidate covariate to the distribution obtained from the dummy

covariates. We use a simulation study to assess the predictive performance of the

proposed approach and compare its performance to existing methods.

This paper is organized as follows. In Section 2.2, we summarize the BHTRM

using for estimation the SBR. In Section 2.3, we summarize some existing variable

selection methods, and discuss the feasibility of using each method for BHTRMs.

We introduce our proposed HSS-VS method in Section 2.4. In Section 2.5, we ex-

plain how we compare predictive performance and selection accuracy across different

variable selection methods. A simulation study is presented in Section 2.6 and in

Section 2.7, we apply the variable selection methods to the SBR estimation problem.

We conclude with a summary of findings and a discussion of limitations and future

research directions in Section 2.8.

2.2 Summary of the BHTRM used for SBR estimation

This section gives a simplified introduction to the BHTRM used for SBR estima-

tion, focusing on the presenting the details relevant for the variable selection problem.

A full model description is given in Wang et al. [2020].
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We denote yi as an observed SBR outcome for country c[i] in year t[i] from source

d[i], Θc,t as the true outcome for that country-year, and σ2
d as the source type variance.

We have following data model,

yi|Θc[i],t[i], σ
2
d[i] ∼ N(Θc[i],t[i], σ

2
d[i]), (2.1)

with following BHTSRM specification for Θc,t:

Θc,t = αc +
K∑
k=1

xk,c,tβk + δc,t, (2.2)

where αc refers to the country-specific intercept, δc,t refers to a temporal smoothing

process, and
∑

k xk,c,tβk refers to the linear regression part. In the regression part,

covariates xk are standardized. The shrinkage of regression coefficients toward zero

is encouraged by regularized horseshoe priors, which are defined as follow:

βk|λk, τ, ρ ∼ N(0, τ 2λ̃2k), (2.3)

λ̃2k =
ρ2λ2k

ρ2 + τ 2λ2k
, (2.4)

where τ and ρ are global shrinkage parameters, and the λks are local (coefficient-

specific) parameters. Priors are set as follows:

λk ∼ C+(0, λ0), (2.5)

τ ∼ C+(0, τ0), (2.6)

where C+(0, s) refers to a half-Cauchy distribution with location parameter 0 and

scale parameter s. λ0, τ0, q and g are fixed.
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Country-specific intercepts αc are estimated hierarchically, with

αc|ηr[c], σ2
α ∼ N(ηr[c], σ

2
α), (2.7)

ηr|ξw, σ2
η ∼ N(ξw, σ

2
η), (2.8)

where ηr[c] refers to the regional mean, σ2
ς to the across-country variance within re-

gions, ξw to the global mean, and σ2
η to the across-region variance.

A penalized spline regression model is used for δc,t,

δc,t =
H∑

h=1

kh(t)ςh,c, (2.9)

where kh(t) refers to the h-th spline function evaluated at time t and ςh,c to its

regression coefficient for country c. We use equally spaced quadratic B-splines, with

knots spaced 1 year apart and placed at each integer year. The spline regression

coefficients are modeled with a first-order random walk process with a sum-to-zero

constraint 1
H

∑
h ςh,c = 0 to ensure identifiability. For each country, we define first

order difference ∆ςh,c:

∆ςh,c = ςh,c − ςh−1,c. (2.10)

First-order differences are penalized as follows

∆ςh,c|ς2∆ ∼ N(0, ς2∆), (2.11)

where the variance term σ2
∆ determines the smoothness of the fit.

2.3 Existing approaches for Bayesian variable selection

Numerous methods for Bayesian model selection and assessment have been pro-

posed. Various approaches and their theoretical properties have been reviewed in
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prior work, for example by Bernardo and Smith [1994], Vehtari and Ojanen [2012],

and Piironen and Vehtari [2017a]. Drawing from these prior studies, we summarize

some widely used Bayesian variable selection methods in section B.1 in the Appendix.

While various approaches to variable selection exist, not all of them are feasible

to apply in a BHTRM model as given in Eq. (2.2), where the outcome of interest

is the sum of a linear regression model, group-specific intercepts αc, and temporal

smoother terms δc,t. Moreover, given the run time associated with the SBR estimation

model and its implementation in Stan (Stan Development Team [2018], Carpenter

et al. [2017]), methods that require repetitive model fitting or are based on a discrete

parameter (such as spike and slab priors Mitchell and Beauchamp [1988]) are not an

option. This is explained in more detail in Appendix section B.2.

In the remainder of this section, we summarize existing methods that we explored

for variable selection in BHTRMs in general, and the SBR estimation model in par-

ticular.

2.3.1 Expected log posterior predictive: approximate leave-one-out CV

(loo)

Information criteria offer a computationally appealing way of estimating the pre-

dictive performance of the model. The ELPD is the log pointwise predictive density

for a new dataset which can be used to evaluate the performance of the model to pre-

dict the future data. Vehtari et al. [2017] proposed the Pareto Smoothed Importance

Sampling (PSIS) for approximate leave-one-out cross validation (LOO) implemented

in the loo package (Vehtari et al. [2020a]). It is computationally efficient as it does not

require completely re-fitting the model, unlike cross-validation, and it is more robust

than widely applicable information criterion (WAIC) (Watanabe [2010]) in finite case

with weak priors or influential observations.
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We will use an iterative forward method to test the performance of a variable

selection method using ELPDs in the BHTRM setting:

1. Start from the empty model and compute ELPD.

2. Add covariate which increases the ELPD by the largest amount.

3. Repeat step 2 until no improvement of ELPD is observed.

2.3.2 Variable selection based on 95% credible intervals (CI)

One of the most simple methods to select variable is to use credible intervals

based on the posterior distributions of regression coefficients. However, models with

non-informative priors on the covariates’ coefficient usually results in wide credible

intervals which make it hard to detect the weak signals. van der Pas et al. [2017] show

that the marginal credible intervals given by horseshoe priors are narrow enough to

be informative for variable selection in the normal means problem. Bhattacharya

et al. [2016] compare various aspects of horseshoe prior to frequentist procedures in

the linear regression problem, and obtain highly promising results.

We will consider the performance of using 95% CIs for variable selection. The

procedure is as follows: Denote (lk, uk) as the 95% CI for βk from a model using

regularized horseshoe priors. We select covariate k if lk < 0 < uk.

2.3.3 Variable selection based on Projection method (proj)

The key characteristic of a projection approach (Goutis and Robert [1998], Pi-

ironen et al. [2020]) is to find an optimal trade-off between sparsity and predictive

accuracy. The goal is to simplify the full model by projecting the information in the

posterior onto a candidate submodel so that the predictive distribution of the sub-

model is as close to the reference model as possible. However, the projection approach

as proposed by Goutis and Robert [1998],Dupuis and Robert [2003a],Piironen et al.

[2020] cannot be applied to the BHTRM directly.
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We revised the approach as follows: First, we project the full model M∗ onto a

submodelM b (with parameters indicated with superscript b) by setting the smoothing

term equal to 0, i.e., δbc,t = 0. Then the projected parameters βp in the parameter

space of sub-submodel Mp can be defined as

βp = argmin
β

1

n

n∑
i=1

D(p(ỹb | xi, β∗, α, σ, δb,M b) || p(ỹp | xi, β, α, σ, δb,Mp)), (2.12)

where D refers to the divergence between two posterior distributions, and ỹb refers to

the data without smoothing term, i.e.,

ỹbi ∼ N(αc[i] +
∑
k

xkiβk, σ
2
d[i]) (2.13)

The discrepancy between the first projection submodel, M b, and the submodel of the

projection submodel, Mp, is then defined to be the expectation of this divergence

over the posterior of the first order projection model. Dupuis and Robert [2003b]

introduce the notation of explanatory power to measure the distance between models.

In BHTSRM setting, we use the mean square error to obtain the best sub-submodel.

We calculate the discrepancy ∆(M b||Mp) based on samples {β∗, α, σ}Ss=1 from the

posterior of the reference model, the samples of the projected parameters {βp}Ss=1, as

follows:

∆(M b||Mp) =
1

n

n∑
i=1

(ỹbi − ỹpi )
2, (2.14)

where ỹbi =
1
S

∑
ỹ
b(s)
i , and ỹpi = 1

S

∑
ỹ
p(s)
i , with

ỹ
b(s)
i ∼ N(α

(s)
c[i] +

∑
k

xikβ
∗(s)
k , σ

2(s)
d[i] ). (2.15)

ỹ
p(s)
i ∼ N(α

(s)
c[i] +

∑
k

xikβ
p(s)
k , σ

2(s)
d[i] ). (2.16)
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After fitting the model with all the variables using regularized horseshoe prior, we

use the projection predictive variable selection strategy above. As a search heuristic,

we use forward searching, that is, starting from the empty model, we add variables

one at a time, each time choosing the variable that decreases the mean square error

the most.

2.4 HSS-VS method

In this section, we introduce the HSS-VS method to carry out variable selection for

a BHTRM with process model as specified in Eq. (2.2). The new approach for variable

selection is based on a model fit using horseshoe priors on regression coefficients. In

the proposed set up, we introduce noise covariates in the model of interest to obtain

a distribution of a shrinkage parameter for irrelevant covariates. For each candidate

covariate in the model of interest, we propose an exclusion rule based on comparing

the estimate shrinkage for the candidate covariate to the distribution obtained from

the noise covariates.

This section is organized as follows: we first introduce a shrinkage measure asso-

ciated with each regression coefficient. We then explain how we obtain a reference

distribution of the shrinkage parameter for irrelevant covariates, and how we use

that reference distribution to carry out variable selection. Finally, we summarize the

approach.

2.4.1 Shrinkage measure ωk for regression coefficient k in a sparse regres-

sion model

When fitting a regression model with horseshoe priors on regression coefficients

βk, we set (as explained in Section 2.2):

βk|λk, τ, ρ ∼ N(0, τ 2λ̃2k), (2.17)
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where τ is a global shrinkage parameter, and the λks are local (coefficient-specific)

parameters. We denote ψk as the standard deviation of the prior on βK :

ψk = τ λ̃k. (2.18)

When using the horseshoe prior, shrinkage toward zero is achieved when the variance

ψ2
k −→ 0, such that more weight is assigned around 0 for irrelevant covariates. The

smaller (larger) ψ2
k, the more (less) shrinkage is encouraged. To obtain a standardized

measure of shrinkage, we introduce shrinkage measure 0 ≤ ωk ≤ 1, given by

ωk =
1

1 + ψ̂k

, (2.19)

where ψ̂k denotes the posterior median of ψk, such that ωk closer to 1 indicates

shrinkage while values closer to 0 suggest that the regression coefficient is more likely

to escape from shrinkage. Thus, the ω2
k will differ between relevant covariates and

irrelevant covariates. This property motivates the new proposed approach for variable

selection.

2.4.2 HSS-VS method details

In the HSS-VS approach, we aim to compare the shrinkage measures ωk to a

reference distribution that quantifies shrinkage for coefficients that are equal to zero,

to then exclude covariates that are likely to be irrelevant.

We obtain a reference distribution by adding dummy noise covariates oms in the

model as described in Eq. (2.2) as follows:

Θc,t =αc +
K∑
k=1

xk,c,tβk + δc,t (2.20)

+
M∑

m=1

om,c,tνm, (2.21)
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where νm is the coefficient of the dummy covariate om, with νm set to be 0 and dummy

covariate om,c,t sampled from a standard normal distribution. We also assign the same

regularized horseshoe prior on νm as

νm | ψ′
m ∼ N(0, ψ′

m
2), (2.22)

ψ′
m = τλ′m, (2.23)

where priors for τ and λ′m are defined as in Eq. (2.3). Based on the estimates of

the shrinkage parameters ω̂′
m for the coefficients for the dummy covariates om, we

obtain a shrinkage parameter reference distribution Ω. This distribution is typically

skewed towards one, given the irrelevant coefficients are shrunk toward zero. Figure

2.1 includes a illustration.

We define the variable selection procedure using the reference distribution Ω. This

reference distribution quantifies the range of outcomes for shrinkage parameters when

the true regression coefficient equals zero. We assume that the shrinkage parameter

ωk for candidate covariate k that equals zero follows distribution Ω. For significance

level α, we carry out variable selection as follows: the k-th covariate xk is included

in the model if its shrinkage parameter ωk < Ωα, where Ωα denotes the (α) · 100-th

percentile of reference distribution Ω. This rule results in exclusion of covariates with

shrinkage that is in the lower tail of the reference distribution, see Figure 2.1 for an

illustration of the approach. If the shrinkage parameters ωk are distributed according

to Ω, the false inclusion rate is 5%.

2.4.2.1 Summary of implementation of HSS-VS method

Variable selection is carried out with the HSS-VS method in two steps:

1. Fit the BHTRM that includes dummy covariates, using horseshoe priors for

all regression coefficients, and obtain the reference distribution of the shrinkage
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Figure 2.1. Illustration of reference distribution Ω. The black line is the density
and the dashed line is the threshold Ωα. The estimated shrinkage parameters for two
example candidate covariates are given by the circle with shrinkage parameter ω1 and
cross ω2. Because ω1 < Ωα and ω2 > Ωα, the two covariates are selected as signal and
noise respectively.
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parameter for the dummy covariates. In simulations and application in this

study, we set M = 30 and run the model 10 times to estimate Ω based on

300 estimates of ω′
m. It may be possible to improve upon this approach, see

discussion.

2. Select candidate covariates based on comparing their shrinkage estimates to

the distribution obtained from the dummy covariates: include covariate k if

ωk < Ωα, exclude otherwise.

2.5 Assessing performance of variable selection methods

We calculate various measures to asses the performance of our proposed variable

selection method and compare our approach with other existing approaches. We first

present measures to use in simulation exercises, where the truth is known, followed

by measures used in real data applications.

2.5.1 Measure of prediction accuracy

We quantify a model’s predictive performance in terms of estimating the outcome

of interest Θi using mean error (ME), mean absolute error (MAE) and coverage rate

(Pϕ). The ME and MAE are defined as follows:

ME =
1

N

N∑
i=1

(Θ̂i −Θi), (2.24)

MAE =
1

N

N∑
i=1

|Θ̂i −Θi|, (2.25)

where Θ̂i it the median of the posterior sample of Θi. Probability integral transform

(PIT) values are defined as,

Pϕ =
1

N

N∑
i=1

1[Θi ≤ ui] (2.26)
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where ui refers to the ϕ percentile of the posterior distribution of Θi from the model

fit.

We calculate the selection accuracy T , false exclusion rate F−, and false inclusion

rate F+. Let K = K1+K2 where K1 equals to the number of relevant covariates with

non-zero coefficients and K2 denotes the number of irrelevant covariates. Accuracy T

is defined as the number of correct excluded or included covariates over total number

of covariates K:

T =
1

K

K∑
k=1

1T (β̂k), (2.27)

where 1T (β̂k) is defined as

1T (β̂k) : =


1 If correct exclude/include kth covariate,

0 Otherwise.

(2.28)

False exclusion rate F− is defined as the number of false excluded covariates over

total number of relevant covariates K1:

F− =
1

K1

K1∑
k=1

1F−(β̂
( ̸=0)
k ) (2.29)

where 1F−(β̂
(̸=0)
k ) is defined as

1F−(β̂
(̸=0)
k ) : =


1 If false exclude xk

0 otherwise

(2.30)

False inclusion rate F+ is defined as the number of false included covariates over

total number of irrelevant covariates K2:

F+ =
1

K2

K2∑
k=1

1F+(β̂
(=0)
k ) (2.31)
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where 1F+(β̂
(=0)
k ) is defined as

1F+(β̂
(=0)
k ) : =


1 If false include xk

0 Otherwise

(2.32)

2.6 Simulation study

We evaluate our proposed approach in the multiple regression setting in Sec-

tion 2.6.1, and then compare its performance with other existing approaches in the

BHTRM setting in Section 2.6.2.

2.6.1 Multiple regression

In this simulation, we generate data from a multiple regression model:

Θi =
K∑
k=1

βkxki, yi ∼ N(Θi, σ
2), (2.33)

with error variance σ2 = 1 and sample size N = 2000.

We set the total number of covariates to K = 20. The covariates are divided into

four groups of five covariates. Each covariate xk has a zero mean and unit variance

and is correlated with the same variables across the groups with coefficient ρ = 0.5.

Covariates in one group are not correlated in other groups.

The regression coefficients of covariates for the first group are βk = k · σ for

k = 1, . . . , 5 and for the second group β5+k = k/10 · σ, corresponding to coefficients

increasing from 0.1 to 0.5. Regression coefficients are set to 0 for k > 10.

We generated 30 datasets and added 30 dummy covariates each dataset and run

each model 10 times to estimate reference distribution with regularized horseshoe

prior as per Eq. (2.3).

We summarize findings from the multiple linear regression setting with uncorre-

lated and correlated covariates in Table 2.1. The PIT value is as expected. Selection
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accuracy (T), false exclusion rate (F−) and false inclusion rate (F+) are (0.968, 0.01,

0.053) for uncorrelated covariates and (0.958, 0, 0.083) for correlated covariates. Note

that the default threshold value α = 0.05, which means that the expected false inclu-

sion rate is 5% in both settings. We find that the false inclusion rate in the correlated

setting is slightly greater than our expected α level.

Simulation ME MAE PIT(5%,10%,90%,95%) ACC (T) FER (F−) FIR (F+)
uncorrelated -.0006 .101 (6%, 10%, 91%, 95%) 0.968 0.01 0.053
correlated -.0003 .090 (4%, 8%, 92%, 97%) 0.958 0 0.083

Table 2.1. Linear regression simulation results. ”ME” and ”MAE” represent the
mean error and mean absolute error. The values in ”PIT(5%,10%,90%,95%)” are the
desirable PIT values. ”ACC”, ”FER” and ”FIR” represent the accuracy rate, false
exclusion rate, and false inclusion rate, respectively.

2.6.2 BHTRM

We compare the performance of the HSS-VS approach for variable selection in

BHTRM settings with 4 existing approaches. The existing approaches are information

criteria using ELPD LOO (loo), credible intervals (95%CI), and projection method

(proj).

Simulation setting The simulations are based on the following BHTRM model,

yi|Θc[i],t[i], σ
2
d[i] ∼N(Θc[i],t[i], σ

2
d[i]), i = 1, ..., N

Θc,t =αc +

K1∑
k=1

xk,c,tβ
(̸=0)
k + δc,t,

δc,t =
H∑

h=1

kh(t)ςh,c,

with - based on the SBR application - αc generated hierarchically and δc,t generated

based on the splines setup as explained in Section 2.2. Mean and variance parameters
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associated with αc and δc,t were fixed at estimates from the SBR model fit (Wang

et al. [2020]).

We simulate N = 2000 observations and introduce varying error variance, as

observed in the SBR estimation. The observations are divided into three groups with

error standard deviation σ2
d = {0.1, 0.2, 0.3}.

The simulation settings for the covariates and regression coefficients are also mo-

tivated by the stillbirth estimation problem. We use K = 16 candidate covariates.

Given that the candidate covariates for predicting the SBR are highly correlated, and

the signals are relatively weak compared to the outcome variance, it is necessary to

check the impact of correlation and weak signals on the selection accuracy of the ap-

proaches. We use four scenarios: (1) strong signals and median correlation; (2) weak

signals and median correlation; (3) weak signals and high correlation; (4) strong sig-

nals and high correlation. In scenarios 1 and 2, the covariates and their correlation

structure are taken from the correlated linear regression setting from the previous

exercise with only first 16 covariates are used as candidate covariates (to make it

comparable to true SBR covariates), thus the correlation with the same variables

across the group is still ρ = 0.5. In scenarios 3 and 4, the SBR covariates are used.

The correlation between those covariates is around 0.8. The β( ̸=0)s are summarized

in Table 2.2.

Scenario N σ2
d ρ (K,K1) β (̸=0)

1 2000 (.1,.2,.3) 0.5 (16, 5) (5,5,5,5,5)
2 2000 (.1,.2,.3) 0.5 (16, 9) (.4,-.2,.2,-.15,.15,0.8,.06,.04,.02)
3 2000 (.1,.2,.3) - (16, 9) (.4,-.2,.2,-.15,.15,0.8,.06,.04,.02)
4 2000 (.1,.2,.3) - (16, 5) (5,5,5,5,5)

Table 2.2. Summary of BHTRM simulation settings. ”N”, ”σ2
d”, and ρ are number

of observations, the three-group error variance, and correlation between covariates.
”(K,K1)” represents the number of candidate covariates K and relevant covariates
K1. β

(̸=0) represents the true coefficients.
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BHTRM Results The results for each of the four scenarios are summarized in

Tables 2.3-2.6.

In scenarios 1 and 4 (strong signals and median/high correlation), all approaches

have a prediction accuracy of around 0.95 or greater. There is no false decision for loo

and projection methods. In the strong signal and increased correlation setting, there

are some false inclusions when using HSS and 95% CI. For HSS, the false inclusion

rate of 0.086 is slightly greater than our expected α level. Performance in terms of

prediction errors and coverage is comparable.

In the weak signal settings in scenario 2 and 3, the selection accuracy of all methods

becomes worse. In these settings, HSS has the smallest false exclusion rate among the

four methods, which suggests that HSS is more sensitive to the weak signals. However,

its false inclusion rate increases from 0.152 (scenario 2 with median correlation) to

0.305 (scenario 3 with high correlation), suggesting that HSS is more likely to include

unrelated predictors. Performance in terms of prediction errors and coverage is again

comparable.

The simulation results suggest that the HSS method is a promising approach for

variable selection in settings similar to the SBR estimation problem, if the goal is to

obtain a parsimonious model with predictive performance that is comparable to the

full model, while minimizing false exclusion of covariates with weak signals.

Simu ME MAE PIT(5%,10%,90%,95%) ACC (T) FER (F−) FIR (F+)
HSS .0009 .101 (3%, 6%, 94%, 98%) .965 0 .082
loo .0006 .109 (2%, 6%, 95%, 98%) 1 0 0
proj .0006 .109 (2%, 6%, 95%, 98%) 1 0 0

95%CI -.0003 .090 (2%, 6%, 95%, 97%) .975 0 .036

Table 2.3. Scenario 1: strong signals and median correlation
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Simu ME MAE PIT(5%,10%,90%,95%) ACC (T) FER (F−) FIR (F+)
HSS -.0005 .100 (3%, 5%,95%,98%) .894 .070 .152
loo .0004 .099 (3%,4%, 95%, 97%) .823 .156 .205
proj .0004 .099 (3% 4%, 96%, 98%) .817 .159 .210

95%CI .0003 .101 (3%, 5%, 95%, 98%) .894 .185 .005

Table 2.4. Scenario 2: weak signals and median correlation

Simu ME MAE PIT(5%,10%,90%,95%) ACC (T) FER (F−) FIR (F+)
HSS -.0002 .098 (2%, 5%,96%,98%) .821 .081 .305
loo -.0002 .097 (2%,4%, 96%, 98%) .829 .207 .224
proj -.0005 .099 (2% 5%, 95%, 98%) .813 .167 .214

95%CI -.0002 .098 (2%, 5%, 95%, 98%) .896 .181 .005

Table 2.5. Scenario 3: weak signals and high correlation

Simu ME MAE PIT(5%,10%,90%,95%) ACC (T) FER (F−) FIR (F+)
HSS -.0004 .103 (3%, 6%,96%,97%) .942 0 .086
loo .0002 .101 (2%,5%, 96%, 98%) 1 0 0
proj -.0001 .104 (2% 6%, 96%, 98%) 1 0 0

95%CI .0002 .100 (3%, 5%, 95%, 98%) .965 0 .082

Table 2.6. Scenario 4: strong signals and high correlation
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2.7 Case study: SBR estimation

We use the four variable selection methods, HSS, proj, and 95% CI, to carry out

variable selection for the SBR estimation problem. In addition to the four methods,

we also include variable selection as carried out by UN IGME for producing SBR

estimates, which is to select variables based on an absolute cut-off value 0.02 (i.e.,select

covariate k if |β̂k| > 0.02).

Selected variables and their estimated coefficients are illustrated in Figure A.2.

Additional information about the covariates is given in the previous chapter. Esti-

mates of coefficients for subsetted models were obtained from model fits using the

selected covariates, with vague priors on the regression coefficients. The selection of

covariates varies across the different methods. Five covariates are selected by the HSS

method: log NMR, log GNI, log LBW, edu and csec. The 95% CI method selects the

smallest number of two covariates: log NMR and log LBW. The log NMR, log GNI,

and ANC1 are selected by the projection method. Using an absolute cut-off value

of 0.02 results in the selection of log NMR, log GNI, log LBW, edu, csec and anc4.

Focusing on HSS, we find that HSS selects all covariates included in the union of

covariates selected by other selection methods, with the exception of ANC1/ANC4.

We compare SBR estimates as obtained from the different (subsetted) models

and the full model in Figure 2.3. We use the full model, fitted with horseshoe priors

as the reference model, and plot the standardized differences between the estimates

from the reference model and subsetted model, where the standardized differences is

defined as the median of the estimated true SBR from the plotted model divided by

the standard deviation of this estimates of the posterior samples from the full model.

The differences based on the comparison between the reference model and the CI

model have greater variance.

We compare SBR estimates across models for four countries Afghanistan, Ireland,

Malawi and Ukraine in Figure 2.4. The estimates are similar across model in most
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Figure 2.2. Estimates of regression coefficients for full HS model, and for subsetted
models obtained by different variable selection methods.
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Figure 2.3. Standardized differences between SBR estimates for all countries ob-
tained from the BHTSRM and subsetted models (y-axis), plotted against the SBR
estimates from the BHTSRM. The variable selection method is given in the title of
each plot. The regions are represented by colors.

country-years and the median are covered by the uncertainty estimated from the

BHTSRM, but all estimates are slightly different in Afghanistan where do not have

any observed SBR data.

To compare the predictive performance, We use the expected log pointwise pre-

dictive density (ELPD) and PSIS diagnostics (See Table 2.7). We find that the CI

model has the largest ELPD but there is no significant difference among the models.
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Figure 2.4. SBR estimates (per 1,000 births) of different models for Afghanistan,
Ireland, Malawi and Ukraine. The 95% credible interval of full HS model is shown
by grey.
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Model ELPD Pareto K diag.
estimate SE 95% CI for difference

HSS 1195.3 40.3 reference model 0.5%
CI 1198.1 40.6 (-3.8, 9.4) 0.7%
proj 1194.8 40.5 (-6.7 , 5.7) 0.7%
UNIGME 1187.7 40.7 (-124.2, 109.0) 0.6%

Table 2.7. Model comparison based on expected log pointwise predictive density and
Pareto K diagnostic values. When comparing models, larger ELPD value suggests
better model performance. If 95% CI for difference of ELPD contains 0, it suggests
that the difference between two model is not significant. The percentage of high
influential points (Pareto K values ¿ 1) for all models are presented in the “Pareto K
diag.” column, lower outcomes are preferred.

2.8 Discussion

Motivated by the demand for a parsimonious model for estimating stillbirth rates,

we explored variable selection methods for Bayesian hierarchical temporal regression

models (BHTRMs) and developed a new method. Through simulation exercises, we

find that existing approaches may be subject to high false exclusion rates in set-

tings that mimic that of the stillbirth estimation problem, where weak signals may

be present. As an alternative option, we developed a horseshoe shrinkage param-

eter reference distribution variable selection method (HSS-VS) to select predictors.

In a simulation study, we find that the new method improves upon the false exclu-

sion rates of other methods in BHTRMs with weak signals, while giving comparable

performance in terms of prediction errors and coverage.

We apply the new approach to stillbirth estimation problem and compare its

estimates and goodness of fit to a reference BHTRM that is fitted with horseshoe

priors. The subsetted model produces estimates that are generally comparable to the

full model and has comparable predictive performance. We also show the subsetted

models that would be obtained by other variable selection methods that may be

subject to increased false exclusion of covariates. As expected, we find that these

methods typically select fewer covariates.
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The simulation study suggest that the HSS method is a promising approach for

variable selection in settings similar to the SBR estimation problem, if the goal is to

obtain a parsimonious model with predictive performance that is comparable to the

full model, while minimizing false exclusion of covariates with weak signals. We also

found that predictive performance of the HSS-VS method was comparable to other

methods.

While the HSS-VS method was designed to bound the false inclusion rate, the

method may results in higher-than-expected exclusion rates. The HSS-VS method

is based on setting a threshold for the expected false inclusion rate. However, the

simulation study suggested that the method may result in higher-than-expected rates

of false inclusion, especially in settings where covariates are strongly correlated. Fur-

ther research can focus on assessing in greater detail the properties of the proposed

method.

The HSS-VS method is computationally efficient and convenient method to im-

lement. Although the HSS-VS approach requires fitting the full model, it does not

require refitting of models, as is needed in other approaches. Moreover, the method

does not depend on discrete parameters, like the binary parameter used in the spike-

and-slab prior, which facilitates easy use in software like STAN (Stan Development

Team [2018],Carpenter et al. [2017]).

Other areas of future work include the assessment of the performance of HSS-VS

in setting with larger numbers of covariates, relative to the data availability, and the

choice of dummies. Our simulation study was limited to settings that mimicked the

SBR application. The performance of HSS has not been tested yet for settings where

the number of covariates is close to (or greater than) the number of observations.

Another question that can be addressed in more detail is the effect of the choice of

the number of dummy variables on predictive performance and selection accuracy,

varying the number of dummies and possibly, their correlation with the covariates.
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CHAPTER 3

ESTIMATING SURVIVAL PROBABILITIES FROM SSH
DATA

In countries with limited civil registration vital statistics data, information on

adult mortality can be obtained through asking survey respondents about survival

status of their siblings, current age, or age at death and time since death if deceased.

These data are referred to as sibling survival history (SSH) data and can be used to

estimate survival probabilities. However, SSH data are subject to various reporting

errors, i.e. a respondent may misreport the age of their sibling or age at death,

resulting in reported survival probabilities that are subject to error.

To estimate true age-cohort specific survival probabilities accounting for related

reporting errors, in populations with only SSH data available, we developed a two-

stage approach. In stage I, we predict reporting errors obtained from SSH data using

covariates related to the respondent and their sibling, and the the error-free validation

collected in health and demographic surveillance system (HDSS). Given data sparsity,

we explore the use of regression models with horseshoe prior and the approach as

proposed in chapter 2 for variable selection in this setting. In stage II, we propose a

2-Dimensional B-spline conditional auto-regression survival (2D-BCAR-surv) model

to estimate survival probabilities from SSH data while accounting for reporting errors

using the estimates from stage I.

3.1 Introduction

Sibling survival history (SSH) data is a commonly used indirect method to obtain

demographic information in countries with limited civil registration vital statistics
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(CRVS) systemsGraham et al. [1989]. Many low- and middle income countries suffer

from incomplete and limited data from civil registration and vital statistics (CRVS)

systems Mikkelsen et al. [2015]. In countries with limited CRVS data, national esti-

mates of adult mortality, for age groups 15-49 by sex, can be derived from information

obtained by SSH respondents on their maternal siblings, i.e. siblings which share the

same biological mother Helleringer et al. [2014b], Masquelier et al. [2021]. The in-

formation includes their siblings’ vital status, current age or age at death and time

since death for deceased siblings. Age-cohort specific adult mortality and survival

rates can be estimated directly using information on current age, age at death and

time since death as reported by the surveyed respondents Helleringer et al. [2014b],

Masquelier et al. [2021].

A main concern with using SSH data to estimate age-specific mortality rates is

the effect of reporting errors on mortality estimates. Reporting errors include misre-

porting of age, and/or date errors by respondents, vital status, as well as omissions or

additions of maternal siblings Pison et al. [2014], Helleringer et al. [2014b], Masque-

lier [2012]. To assess errors, Helleringer et al. (2014) and Masquelier et al. (2021)

evaluated the completeness and accuracy of SSH data in a health and demographic

surveillance (HDSS) systems in Bandafassi and Niakhar, in Senegal. HDSS systems

monitor over time the entire population located in the geographic area. Taking the

data collected in the HDSS system as gold-standard data, and matching SSH data

with HDSS data, the studies that compared SSH data with HDSS data identified

several kinds of errors in SSH data. List errors occur when a maternal sibling was

not reported on by the respondent. Vital status errors occur when respondents re-

ported an incorrect survival status of a sibling at the time of the SSH survey. Finally,

age/date errors occur when age at death and/or birth date of sibling were misreported.

The objective of this study is to estimate true age-cohort specific survival probabil-

ities, accounting for SSH related reporting errors, in populations with only SSH data
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available. We focus on errors related to SSH reported birth year, and time since death

errors. To estimate age-cohort specific adult true mortality and survival rates, we use

a two-stage approach. In the first stage, we estimate the distribution of errors in birth

year and time since death based on matched SSH and HDSS data from Senegal, In

the second stage, we propose a survival model (B-Surv) to estimate age-cohort sur-

vival probabilities from SSH data, while accounting for reporting errors. In B-Surv,

we parametrize the age and-cohort specific cumulative hazard using a 2-dimensional

B-spline regression model. We verify the predictive performance of B-Surv in terms

of estimating HDSS-based survival when only SSH data are used for fitting. The

contribution of this work includes (1) the two-stage approach to incorporate errors

into the estimation of survival rates and the checking of predictive performance of

the survival model, and (2) parametrization of the survival function and associated

likelihood function for SSH data in terms of cumulative hazard function with the 2

dimensional B-spline setting, to allow for the estimation of survival functions while

accounting for errors.

This paper is organized as follow: Section 3.2 summarizes the data used in our

analysis of reporting errors. Section 3.3 outlines our proposed method to model

misreporting errors in birth year and time since death, and approach to estimate

survival probabilities given only SSH data. We summarize results in Section 3.4.

Section 3.5 summarizes the limitations of our approach and future work.

3.2 Data

The data used in this study comes from Niakhar, Senegal. In 2013, a SSH survey

was conducted among the population of Niakhar HDSS. This section discusses both

types of data, as well as covariate data used to inform analysis.

63



3.2.1 Health and Demographic Surveillance Data

HDSS data are obtained by monitoring an entire population located in a given small

geographic area, over time Pison et al. [2014]. These data typically include a baseline

census, followed by continuous registration of demographic events including births,

deaths, marriages, and migrations. Registration of events occurs yearly (or sometimes

more frequently). HDSS data are collected by in-person interviewers who visit every

household and ask household informants to provide information on recent events

among household membersHelleringer et al. [2014b], Masquelier [2012], Masquelier

et al. [2021], Obermeyer et al. [2010].

In this study we used data from the HDSS in Niakhar. This HDSS data set covers

the period 1962-2013, in which the population was consistently monitored Delaunay

et al. [2013].

3.2.2 Sibling Survival Histories

In SSH data collection, respondents are asked to list all siblings born to their

biological mother (maternal siblings) by birth order and then provide information

about each sibling’s survival status, current age if sibling is reported to be alive, or

age at death, as well as time since death if sibling is reported to be deceased.

In 2013, a SSH survey was conducted among the population of Niakhar HDSS.

Siblings were matched between SSH and HDSS databases using record linkage, i.e.,

matching the report of a particular sibling’s survival obtained through SSH to the

record of that same sibling’s survival in the HDSS dataset Masquelier et al. [2021].

3.2.3 Data Summary

Information on SSH birth and time since death errors is obtained by comparing

SSH data to HDSS data, which refers to the same (matched) sibling. Matched data are

available for 3,974 maternal siblings while 3,046 SSH reported observations (siblings)

could not be matched with HDSS Masquelier et al. [2021]. Unmatched siblings may
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occur due to respondents including others who are not true maternal siblings, siblings

migrated outside of follow-up region, and/or absence of unique identifier information

that would allow for linkage to HDSS.

Matched siblings are excluded from the data if they are not alive at the start of the

period of interest (1997) or older than age 60, corresponding to exclusion of sibling

born before 1947 and those who died before 1997. In addition, we exclude siblings

with survival status errors at the start or the end of the reference period: we exclude

(i) siblings who are alive at the end of the reference period but reported deceased

in SSH data, and (ii) siblings for whom SSH-reported vital status is incorrect at the

start of the reference period. The exclusion based on vital status results in a small

number of exclusions only (29 siblings excluded).

After data exclusions, the matched data set contains 1,294 observations (siblings)

matched between SSH and HDSS data. Table 3.1 and Table 3.2 gives demographic

information broken down by data source. The truly living siblings at the end of

the reference period, but reported deceased by SSH, are defined as false deceased in

Table 3.2.

SSH HDSS

Vital Status %(n)
Living at end of reference period 80 (1029) 79 (1021)

Deceased at end of reference period 20 (265) 21 (273)
Sex %(n)
Males 64 (842) 64 (842)
Females 36 (452) 36 (452)
Age

Mean (SD) 31.02(11.09) 31.58 (11.79)
Age at death
Mean (SD) 28.81 (13.56) 29.53 (13.31)

Years since death
Mean (SD) 6.53 (4.31) 6.52 (4.47)

Table 3.1. Demographic characteristics of maternal siblings matched between SSH
and HDSS data N = 1, 294.
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Vital status error
False deceased (% (n)) 0.6% (n = 8)
Birth year error

Mean (SD) -0.61 (4.17)
Age at death error

Mean (SD) -0.74 (4.15)
Time since death error

Mean (SD) -0.06 (2.56)

Table 3.2. Summary statistics of reporting errors of matched siblings

3.3 Methods

3.3.1 Objective and notation

We develop a 2-stage approach to estimate age-cohort survival probabilities from

SSH data collected at time t∗, for some period (t0, t
∗) prior to the time of the survey.

In stage I, we use a regression model to estimate the distribution of reporting errors

in SSH data, based on linked SSH and HDSS data. In Stage II, we propose a survival

model to estimate survival probabilities while accounting for reporting errors, using

the estimated joint densities of such errors from Stage I. As such, the second stage

model can produce estimates of true survival probabilities for populations with only

SSH data available, while accounting for reporting errors.

3.3.1.0.1 Notation We use lowercase Greek letters for unknown parameters and

uppercase Greek letters for variables which are functions of unknown parameters

(modeled estimates). Roman lower case letters indicate variables that are known or

fixed, including data. Roman letters are also used to denote functions.

The period of interest is denoted by (t0, t
∗). For our application in Senegal, t∗ =

2013 and we set t0 = t∗ − 15. The ages of interest are 15 to 60. We are interested in

estimating the conditional survival function denoted by S(b, t|α), where b refers to

time of birth, t to time since t0, and α to the parameters of the survival function.
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For matched sibling i, HDSS-reported data are as given by: (1) vital status, with

vital status at time t denoted by si(t), with si(t) = 1, if the sibling is alive at time

t; 0 otherwise, (2) birth year bi, (3) and time since death di for deceased siblings.

We add superscript (ssh) for data reported in the SSH, e.g., s
(ssh)
i (t) , b

(ssh)
i and d

(ssh)
i .

An example of SSH data is illustrated in the Lexis diagram Demeny et al. [2003] in

Figure 3.1. The diagram shows sibling j who is still alive at the end of the reference

period and a deceased sibling i.

Figure 3.1. Lexis diagram illustration information collected from SSH. x-axis rep-
resents the calendar year. For alive sibling i where s

(ssh)
i (t∗) = 1, the current age is

reported. For deceased sibling j where s
(ssh)
j (t∗) = 0, the age at death and time since

death d
(ssh)
j are collected in the survey.

3.3.1.0.2 Reporting errors In this study, SSH reporting errors refer to errors in

the reporting of the birth year and time since death of a deceased sibling. Information

on reporting errors is obtained by comparing SSH reported birth year b
(ssh)
i and time

since death d
(ssh)
i to those reported by HDSS. We defined the error in sibling birth

year e
(birth)
i as the difference in the SSH reported birth year b

(ssh)
i and the HDSS

reported birth year bi for sibling i:
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e
(birth)
i = b

(ssh)
i − bi.

Error in time since death applies to deceased siblings only, which is similarly defined

as, the difference in the SSH reported time since death d
(ssh)
i and the HDSS reported

time since death di for deceased sibling i:

e
(death)
i = d

(ssh)
i − di.

Figure 3.2 illustrates differences in reported survival experiences between HDSS

(blue) and SSH (red) data. In the case of the living sibling (sib i), error in birth year

is captured by the difference between the SSH and HDSS reported birth years shown

on the x-axis, b
(ssh)
i and bi, respectively. In the case of the deceased sibling (sib j),

in addition to birth year errors, time since death error is captured by the difference

between the SSH and HDSS reported time since death shown on the x-axis, d
(ssh)
j and

dj, respectively.

Figure 3.2. Information on reporting errors, alive sibling i (Left) and deceased

sibling j (Right). x-axis represents the calendar year. For alive sibling i, s
(ssh)
i (t∗) =

si(t
∗) = 1, and birth year error e

(birth)
i = b

(ssh)
i −bi. For deceased sibling j, s

(ssh)
j (t∗) =

sj(t
∗) = 0, the time since death error is e

(death)
j = d

(ssh)
j − dj.
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Summary of 2-stage approach Figure 3.3 illustrates the process by which age-

cohort specific probabilities are estimated by the two-stage approach. In the first

stage, referred to as the SSH Error Model, we use a regression model, summarized

in Section 3.3.2, to estimate the distribution of reporting errors in SSH data, based

on linked SSH and HDSS data. In stage II, the SSH Survival (B-Surv) model uses

posterior median estimates, obtained from the regression model in stage I, as fixed

inputs. In this stage, we estimate the survival function S(b, t|α).
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Covariates for
sibling i: (xki)

HDSS data for
sibling i: (bi, di)

SSH data
for sibling i:(
b
(ssh)
i , d

(ssh)
i

)

Stage I: SSH Error Model
• Goal: To estimate joint density of errors in SSH data based
on matched SSH and HDSS data.

• Model:

e
(birth)
i = b

(ssh)
i − bi

e
(death)
i = d

(ssh)
i − di

(
e
(birth)
i

e
(death)
i

)
∼ N2

((
λ+ λg[i] +

∑
k βkxki

η + ηg[i] +
∑

k γkxki

)
,

(
σ2
b δσdσb

δσdσb σ2
d

))

Obtain median point estimates of posterior

densities, i.e.,
(
λ̂, λ̂g, β̂k, η̂, η̂g, γ̂k, σ̂d, σ̂b, δ̂

)
Stage II: B-Surv Model

• Goal: To estimate true age-cohort survival function S(b, t|α)

• Data Model for SSH data:

b
(ssh)
i = Bi + ϵBi

d
(ssh)
i = Di + ϵDi

where

(
ϵBi
ϵDi

)
∼ N2

((
λ̂+ λ̂g[i] +

∑
k β̂kxki

η̂ + η̂g[i] +
∑

k γ̂kxki

)
,

(
σ̂2
b δ̂σ̂dσ̂b

δ̂σ̂dσ̂b σ̂2
d

))
(Bi, Di) denotes true birth year and time since death.(
ϵBi , ϵ

D
i

)
denotes error estimates obtained from Stage I.

• Process Model for S(b, t|α): 2-dimensional spline function on the
cumulative hazard.

Figure 3.3. Graphical representation of the Bayesian hierarchical two-stage SSH
error and survival models. Blue rectangle denotes SSH error model, green rectangle
denotes outputs obtained from Stage I, used as inputs in Stage II, and red rectangle
denotes SSH survival model). Solid arrows denote stochastic dependency. Hollow
boxes contain observed data.
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3.3.2 Model for reporting errors

Previous studies Masquelier et al. [2021] found associations between SSH-based

reporting errors and several demographic variables. We developed a bivariate hier-

archical regression model to predict sibling-level reporting errors for birth year and

time since death, using sibling-level covariate information xi.

Eight interviewers are employed to conduct the survey. Because of differences of

the personal characterstic, prior data collection experience and language skill, the

mean and variance of reporting errors could vary. Thus, we introduce the interviewer

effects and estimated it hierarchically centered around the overall intercepts.

Available covariates consisted of birth year, time since death, absolute age dif-

ference between sibling and respondent, siblings’ sex, indicator of same sex between

respondent and sibling, and respondents’ sex, which were selected based on a combi-

nation of expert knowledge of possible associations, and prior study results Helleringer

et al. [2014a], Masquelier et al. [2021]. The relationship between the observed report-

ing errors and covariates are shown in Figure C.2 in Appendix Section C.1.1.

The model for reporting errors is as follows:

e(birth)i

e
(death)
i

 ∼ N2


λ+ λg[i] +

∑
k βk · xki

η + ηg[i] +
∑

k γk · xki

 ,

 σ2
b δσdσb

δσdσb σ2
d


 , (3.1)

where this distribution simplifies into a univariate normal for siblings that are alive

at the end of the reference period, i.e with si(t
∗) = 1.

We use a regularized horseshoe prior Piironen and Vehtari [2017b] for βk and γk

to impose shrinkage of the irrelevant covariates,

βk, γk ∼ N(0, τ 2ω̃2
k), (3.2)

ω̃2
k =

ϑ2ω2
k

ϑ2 + τ 2ω2
k

, (3.3)
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where τ and ϑ are global shrinkage parameters, and the ωks are coefficient-specific

parameters with priors,

ωk ∼ C+(0, ω0), (3.4)

τ ∼ C+(0, ω0), (3.5)

ϑ ∼ Inv-Gamma(ϑ1, ϑ2), (3.6)

in which C+(0, c) refers to a half-Cauchy distribution with location parameter 0 and

scale parameter c. We set ω0 = τ0 = 1 , ϑ1 = 2, and ϑ2 = 8 as per the recommended

defaults in Piironen and Vehtari [2017b] and Carvalho et al. [2009c].

From Eq. (3.1) we obtain posterior median estimates of mean, variance, and corre-

lation parameters, which are used as fixed inputs in the B-Surv model further detailed

in Section 3.3.3.

3.3.3 The B-surv Model

We aim to estimate true age-cohort specific survival probabilities in the presence of

only SSH data. We developed a Bayesian survival model (B-Surv), which accounts for

reporting errors. In section 3.3.3.1 we introduce the likelihood in terms of cumulative

hazard function with birth year (cohort) b and survival time t since the start of

reference period t0. In Section 3.3.4 we describes the parametrization of the true

survival probabilities.

3.3.3.1 Likelihood function

When observing the survival status, time to death, and birth year without errors,

and accounting for right censoring (i.e., the sibling is still alive at the end of the

period of interest), the likelihood function is given by,
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p(b, t, s|α) =
N∏
i=1

{f(bi, ti|α)1−si [1− F (bi, ti|α)]si}, (3.7)

=
N∏
i=1

{h(bi, ti|α)1−siS(bi, ti|α)} (3.8)

where f(b, t|α), S(b, t|α), and h(b, t|α) refer to the density, survival function, and

instantaneous hazard, respectively, at time t for a sibling born in year b, si is binary

indicator taking value 1 if i-th sibling is alive at end of reference period t∗, bi refers

to the birth year, and ti refer to the survival time since the start of reference period

t0, i.e. t = a− (t0 − b), where a refers to the age at death for deceased sibling.

For SSH data, the birth year and survival time t, or equivalently, time since death

d, are subject to error and cannot be used directly in the likelihood function. Instead,

we assume as per stage I that the reported times are equal to the true time plus error:

b
(ssh)
i = Bi + ϵBi , (3.9)

d
(ssh)
i = Di + ϵDi , (3.10)

where Bi and Di refer to the true (latent) time of birth and time since death with

prior constraints Bi ∼ U(1947, 1997), Di ∼ U(0, 15), and the distribution for errors

ϵBi and ϵDi is given by the regression model from stage I

ϵBi
ϵDi

 ∼ N2


λ̂+ λ̂g[i] +

∑
k βkxki

η̂ + η̂g[i] +
∑

k γkxki

 ,

 σ̂2
b δ̂σ̂dσ̂b

δ̂σ̂dσ̂b σ̂2
d


 .

In this joint distribution, the parameter estimates (λ̂, λ̂g[i], β̂k, η̂, η̂g[i], γ̂k, σ̂
2
d, σ̂

2
b , δ̂) are

obtained from stage I using Eq. (3.1). Taking account of reporting errors in SSH data,

the likelihood function from Eq. (3.8) can be written in terms of the latent birth year

B, and time T = 15−D as follows:
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p(B,T , s|α) =
N∏
i=1

{h(Bi, Ti|α)1−siS(Bi, Ti|α)}. (3.11)

Inference using the likelihood in Eq. (3.8) is challenging due to the assumption of a

time-varying hazard, which means there is no closed form expression for the likelihood

function. To implement a computationally efficient model, we opt to parametrize the

likelihood function in terms of the cumulative hazard H(b, t). The reparametrized

likelihood function is as follows:

L(F ) =
N∏
i=1

{f(Bi, Ti|α)1−s
(ssh)
i [1− F (Bi, Ti|α)]s

(ssh)
i } (3.12)

=
N∏
i=1

{h(Bi, Ti|α)1−s
(ssh)
i S(Bi, Ti|α)} (3.13)

=
N∏
i=1

{
∂H(Bi, Ti|α)

∂t
}1−s

(ssh)
i {exp(−H(Bi, Ti|α))

}
(3.14)

logL(F ) =
N∑
i=1

{
(1− s

(ssh)
i )log

∂H(Bi, Ti|α)

∂t
−H(Bi, Ti|α)

}
(3.15)

where ∂H(b,t)
∂t

is the partial derivative of H(b, t) respect to t.

3.3.4 B-Surv process model: parameterization of cumulative hazard func-

tion

We parametrize the cumulative hazard using a 2 dimensional cubic spline function,

to capture age and cohort specific effects:

H(b, t) =
L∑
l=1

P∑
p=1

α̃l,pGl(b)Gp(t), (3.16)

with Gl(b) and Gp(t) referring to the l-th spline function evaluated at cohort (birth)

b and p-th spline function evaluated at survival time t since t0, and α̃l,p referring to
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the spline coefficients (see Figure 3.4) capturing changes in the cohort versus time

direction, respectively.

We use equally spaced cubic B-splines with knots spaced 3 years apart in the

reference period [t0, t
∗], and with knots spaced 5 years apart in the cohort (birth

year) interval [1947, 1997].

The partial derivative of H(b, t) with respect to t is given by

∂H(b, t)

∂t
=

L∑
l=1

P∑
p=1

α̃l,pGl(b)
∂Gp(t)

∂t
(3.17)

Definition of B-spline: Given the knots vector t = (t1, t2, ..., tp, ..., tP ). B-spline

function of d degree (d = 3 for cubic spline) is defined as

Gd
p(t) =

t− tp
tp+d − tp

Gd−1
p (t) +

tp+d+1 − t

tp+d+1 − tp+1

Gd−1
p+1(t), (3.18)

and

G0
p(t) =

1 , if t ∈ [tp, tp+1)

0 , if t /∈ [tp, tp+1)

Derivative of B-spline: The derivative ∂Gp(t)

∂t
is given by

∂Gd
p(t)

∂t
=

d

tp+d − tp
Gd−1

p (t)− d

tp+d+1 − tp+1

Gd−1
p+1(t) (3.19)

The coefficients are written as α̃l,p = exp(αl,p), such that the coefficients and

resulting cumulative hazard function H(b, t) is non-negative. To ensure the cumu-
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lative hazard is monotone increasing with the increase of time (age), we require the

additional constraints:

αl,p | αl,p−1, αl,p+1 ∼ U(αl,p−1, αl,p+1). (3.20)

Figure 3.4. Spline coefficients α, capturing changes across cohorts and time.

Conditional Autoregressive (CAR) model We parameterize the αl,p using a

conditional autoregressive (CAR) model De Oliveira [2012]:

αlp | αjk ∼ N(χ
JK∑
jk

wlp,jkαjk, ϕ
−1
lp ) (3.21)

where αjks are the neighbors of αlp such that the expectation of αlp is a function

in terms of average of αjk, ϕlp refers to a spatially varying precision parameter, and

wlp,jk is the adjacency indicator (wlp,jk = 1 if αlp is a neighbor of αjk. See Figure 3.4),

wlp,lp = 0.

Conditional autoregressive (CAR) models are popular as prior distributions for

spatial random effects with areal spatial data. Historically, MCMC algorithms for

CAR models have benefited from efficient Gibbs sampling via full conditional distri-

butions for the spatial random effects. But, these conditional specifications do not

work in Stan, where the joint density needs to be specified (up to a multiplicative

constant). CAR models can still be implemented in Stan by specifying a multivariate
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normal prior on the spatial random effects, parameterized by a mean vector and a

precision matrix Morris et al. [2019]. We reparameterize the model as,

αlp ∼ N(0, [ϕC(I − χC−1W )]−1) (3.22)

where C is an LP × LP diagonal matrix with diag(C)lp = the number of neighbors

for αlp, χ is a parameter that controls dependence (with χ = 0 implying independence

while χ = 1 collapses to an intrinsic conditional autoregressive specification), and W

is the adjacency matrix.

Then CAR prior specification simplifies to

αlp| ∼ N(0, [ϕ(C − χW )]−1), (3.23)

with priors

ϕ ∼Gamma(2, 2), (3.24)

χ ∼U(0, 1). (3.25)

3.3.5 Computation

A HMC algorithm is employed to sample from the posterior distribution of the

parameters of both model for reporting errors and B-surv model with the use of Stan

Carpenter et al. [2017] and R package Rstan Stan Development Team [2018]. Four

parallel chains are run with a total of 1,000 iterations in each chain. The first 500

iterations in each chain are discarded as burn-in so that the resulting chains contain

2,000 samples each. Point estimates are given by medians of the posterior samples.

Standard diagnostic checks are used to check convergence and sampling efficiency.

These checks are based on trace plots, the improved Rhat diagnostic using rank-

normalized draws (Gelman and Rubin [1992], Vehtari et al. [2020b]), and various
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calculations of effective sample size (ESS), including the bulk ESS and the tail ESS -

giving the minimum of the effective sample sizes of the 5% and 95% quantiles.

3.3.6 Model evaluation and validation

Based on the objective of this study, we focus on assessing whether B-Surv, when

fitted to SSH data in stage II, predicts well the HDSS data and associated survival

probabilities. We first compare fits of the survival model to

1. SSH data, not accounting for errors;

2. SSH data, accounting for errors;

3. DHSS data.

Model fit 2 corresponds to B-Surv as explained in the previous section. Model fit 1

is added to show the effect of accounting for errors. Model fit 3 is added to check

whether survival estimates based on the error-free data are comparable to those based

on the SSH data, accounting for error.

To formalize the comparison and assess model performance, we use model 2 to

predict birth year and time of death for deceased siblings, and compare it with the true

HDSS reported birth year and time of death, and summarize predictive performance

in terms of prediction errors and by checking probability integral transform (PIT).

The calculation of these measures for birth year and time of death are explained in

more detail in the remainder of this section.

3.3.6.1 Evaluating predictions of the birth year

To evaluate model performance, we summarize differences between the true HDSS-

reported birth year bi and the posterior predictive distribution obtained from B-Surv

in model fits 2. The procedure is as follows:

1. Fit the B-Surv model to SSH data and sample B
(s)
i for s = 1, 2, ..., S from its

respective posterior distribution.
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2. Summarize prediction errors: Calculate the difference between the true (HDSS-

reported) year and estimate birth year for sibling i:

err
(birth)
i = B̂i − bi. (3.26)

We report the median and mean square error of the errors.

3. Check PIT/coverage: PIT values are defined of birth year is defined as Pκ =

N−1
∑N

i=1 1[bi ≤ ui], where ui refers to the κ percentile of the posterior distri-

bution of Bi from the model fit. We use the same procedure to perform the

posterior predictive checks for the survival time Ti since t0 as well.

3.3.7 Evaluating estimated survival parameters

We perform the posterior predictive checks for the age-cohort specific survival

function S(b, t|α). The HDSS reported survival time ti among deceased siblings,

given HDSS reported birth year bi should obtained from the following estimated

cumulative density function if it captures the true survival probabilities (leaving out

the parameters of spline function α for simplicity of notation):

F (bi, t | t ≤ t∗ − t0) =
F (bi, t)

F (bi, t∗ − t0)
(3.27)

=
1− S(bi, t)

1− S(bi, t∗ − t0)
(3.28)

=
1− exp(−H(bi, t))

1− exp(−H(bi, t∗ − t0))
. (3.29)

We can assess the accuracy of the posterior predictive distribution of the survival

function using a probability integral transformation. We obtain u
(s)
i for each deceased

sibling i and posterior sample s as follows:
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u
(s)
i =1− 1− exp(−H(bi, ti|α(s)))

1− exp(−H(bi, t∗ − t0|α(s)))
, (3.30)

where

H(b, t|α(s)) =
L∑
l=1

P∑
p=1

exp(α
(s)
l,p )Gl(b)Gp(t) (3.31)

We assess the distribution of u
(s)
i , which should follow a Unif(0, 1) distribution if the

model is well calibrated. If the u
(s)
i ’s have greater density mass located close to 1

than expected under the uniform density, then this means that siblings tend to have

a survival time reported in the DHSS that is greater than expected under the model.

3.4 Results

3.4.1 Reporting errors

Table 3.3 lists posterior estimates and 95% credible intervals (CI), for the param-

eters of the regression model for the SSH reporting errors in birth year and time of

death (regression coefficients, standard deviations (σ̂b, σ̂d) and correlation δ̂). There

is a negative association between sibling birth year and birth year error (β̂ = -1.06

with 95% CI given by (-1.27, -0.85), and positive association between birth year and

time since death error (0.30 (-0.01, 0.62)). The standard deviation of birth year σb

and time since death error σd and their 95% CI are given by 2.22 (2.16, 2.27) and

2.28 (2.10, 2.52), and the correlation between birth year and time since death error

is given by -0.02 (-0.11, 0.06).

Figure C.3 in the appendix shows residual plots, with residuals for the birth year

error, and time since death error, plotted against covariates. The plots do not indicate

residual trends.
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Coefficients/parameters
Birth year error Time since death error

Est. 95% CI Est. 95% CI

Intercept 0.50 (-2.82,3.70) 1.12 (-1.97,4.29)
Birth year -1.06 (-1.27,-0.85) 0.30 (-0.01,0.62)

Time since death 0.06 (-0.06,0.21) -0.67 (-0.91,-0.43)
Sibling sex (ref: female) 0.05 (0.08,0.24) 0.06 (-0.12,0.32)

Respondent sex (ref: female) 0.01 (-0.18,0.15) -0.02 (-0.23,0.18)
Difference in sex (ref: same sex) -0.12 (-0.36,0.04) 0.10 (-0.10,0.40)
Difference in age (sib vs. resp) -0.05 (-0.25,0.09) 0.06 (-0.10,0.32)

standard deviation (σb, σd) 2.22 (2.16,2.27) 2.28 (2.10,2.52)
correlation δ -0.02 (-0.11,0.06) - -

Table 3.3. Posterior estimates of regression parameters: median estimate (Est.) and
95% credible intervals (95% CI).

3.4.2 B Surv model fits

As explained in the methods section, based on the objective of this study, we

focus on assessing whether B-Surv, when fitted to SSH data in stage II, predicts well

the HDSS data and associated survival probabilities. We compare fits of the survival

model to

1. SSH data, not accounting for errors;

2. SSH data, accounting for errors;

3. DHSS data.

Figure 3.5 illustrates the estimated survival functions from model fits 2 and 3.

There are differences between survival when using HDSS and SSH data accounting

for errors. We see notable differences between model fits in earlier cohorts, i.e., 1951

cohorts. The median of the model fit to SSH data while accounting for the reporting

error (blue) is slightly higher than the median of model fit to HDSS data (red) for

short time t and is smaller for later time, and it has more uncertainty than model fit

to HDSS data.
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Figure 3.6 illustrates the estimated survival function from fits 1 and 2. We see

slightly difference of median, but more uncertainty for fit 2 (blue) than fit 1 (red).

Figure 3.7 compares the fit to HDSS and SSH data, respectively, ignoring reporting

errors. When not accounting for errors, the SSH-based fit is different but differences

appear modest, i.e., when comparing medians when taking into account uncertainty

in the survival curves.
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Figure 3.5. Model comparison between fit to HDSS data and fit to SSH data while
accounting for errors.
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Figure 3.6. Model comparison between fit to SSH data and fit to SSH data without
accounting for errors.

83



1981 1986 1991

1966 1971 1976

1951 1956 1961

0 5 10 15 0 5 10 15 0 5 10 15

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

time

es
tim

at
ed

 s
ur

v 
pr

ob

fit

HDSS

SSH

Estimated Birth Year based Survival

Figure 3.7. Model comparison between fit to HDSS data and fit to SSH data without
accounting for errors.

3.4.3 B-surv model validation

Table 3.4 summarizes the residuals defined in Section 3.3.6.1 in terms of mean error

and mean square error for model 2 for predicting birth years and time since death.

We find that estimated survival time has average positive bias of 0.321, which results

in an overestimated sibling survival time compared to the truth. Additionally, the

estimated birth year shows a negative bias of −0.125, which yields an underestimation

of sibling age.
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mean mse PIT(5%, 95%) cov95%

ˆerr
(birth)
i -0.125 19.1 (7.2%,94.0%) 91.8%

ˆerr
(death)
i 0.321 4.79 (6.0%, 94.0%) 93.0%

Table 3.4. The summary of residual for estimate birth year and survival time.
PIT(5%, 95%) represents the PIT with the expected values 5% and 95%. cov95%
represents the 95% coverage rate.

Figure 3.8 illustrate the residual plot of estimated true birth year and estimated

true survival time since t0. The figure shows the birth year residuals distributed

around zero approximately with mean error at -0.125 (see Table 3.4). But we do see

the residuals deviate from zero at the extreme ends of the true birth year.

Figure 3.8. Residual check for estimated birth year Bi and estimated survival time
Ti since t0 for deceased sibling.

The predictive distribution of birth year and time of death is also assessed based

on coverage and PIT summaries. Coverage of 95% prediction intervals, as summarized

in Table 3.4, suggests that intervals, for both birth year and time to death errors,

were slightly narrower than expected for nominal coverage. The histogram with PIT

values for birth years and time at death in Figure 3.9 do not show obvious trend.
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Figure 3.9. An in-sample probability integral transform (PIT) of birth year and
survival time in model fit to SSH data while accounting for errors.

The histogram with PIT values for time of death among deceased siblings in

Figure 3.10 shows mass being distributed around the center. This suggests that

the survival function/parameter is conservative which is consistent with the survival

curves.

Figure 3.10. Probability integral transform check of survival probability for deceased
siblings given HDSS reported birth year bi and HDSS reported survival time ti.
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3.5 Discussion

We developed a Bayesian model to estimate cohort-age specific survival probabil-

ities using SSH data, while accounting for errors in such data. We used a 2-stage

approach to produce estimates. In stage 1, we developed a bivariate hierarchical re-

gression model to predict errors in SSH reporting of the birth year of siblings, and

time since death for deceased siblings. In the second stage, we developed a Bayesian

B-spline survival model to estimate cohort-age specific survival probabilities in terms

of cumulative hazard function.

Current model validation exercises suggest that the model fit to SSH data while

accounting for error is reasonable well calibrated. The estimates survival probability

capture the true HDSS data. The conservative uncertainty is as our expected given

we have extra uncertainty by introducing both bias and variance of the reporting

errors.

While our approach to estimating adult mortality from SSH data is the first to

explicitly account for reporting errors, there are limitations to the model due to

data availability limitations. Limited data availability restricted the analyses and

resulted in simplifying model assumptions. The main limitation is that we were not

able to account for errors introduced by unmatched siblings, referring to siblings

that were reported on by the respondent but not found in the HDSS data, as well

as omitted siblings. Prior studies suggest that deceased siblings are more likely to

be omitted by the respondents Masquelier et al. [2021]. Thus, omitted siblings will

introduce additional errors and bias estimates. Another limitation relates to the

model assumptions, i.e., the CAR setup is symmetric, which means it put the same

weight on both cohort direction and time (aging) effect. We would consider to add

extra parameter to allow asymmetric CAR setup in the future.
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APPENDIX A

SUPPLEMENTARY TABLES AND FIGURES FOR
CHAPTER 1

A.1 Tables and figures

88



Figure A.1. Histogram of estimates of θi. There are 73 observations.
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Figure A.2. Estimates of β and 95% CI for reference BHTSRM and BHTRM.
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BHTSRM BHTRM
covariates estimate sd estimate sd
log(nmr) 0.414 0.040 0.430 0.042
log(gni) -0.102 0.056 -0.165 0.061
log(lbw) 0.078 0.033 0.093 0.030
edu -0.037 0.031 -0.045 0.030
csec -0.027 0.025 -0.026 0.025
anc4 -0.025 0.029 -0.043 0.035
pab -0.018 0.015 -0.022 0.016
abr -0.017 0.035 -0.031 0.031
urban -0.012 0.029 -0.019 0.037
gini 0.010 0.020 -0.012 0.025
sab -0.010 0.027 0.041 0.052
anc1 -0.009 0.022 -0.031 0.031
mmr 0.003 0.038 0.028 0.077
pfpr -0.002 0.017 -0.037 0.028
gdp 0.001 0.025 0.031 0.034
gfr 0.000 0.025 0.026 0.054

Table A.1. Overview of estimates for regression coefficients under reference BHT-
SRM and BHTRM. ”estimate” and ”sd” represent the median and standard deviation
of posterior samples.
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A.2 List of covariates

Table A.3: Candidate covariates with its sources and

methodology

Var Source Definition Methodology Notes

abr United Nations

Department of Eco-

nomic and Social

Affairs (DESA),

Population Divi-

sion United Nations

Population Fund

(UNFPA). Data are

based on DHS, MICS

and other national

household surveys

Adolescent Birth Rate

(number of live births

to adolescent women per

1,000 adolescent women)

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

anc1 UNICEF/WHO.

Data are based

on DHS, MICS

and other national

household surveys

Antenatal care 1+ visit -

Percentage of women (age

15–49) attended at least

once during pregnancy by

skilled health personnel.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

Continued on next page
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Table A.3 – continued from previous page

Var Source Definition Methodology Notes

anc4 UNICEF/WHO.

Data are based

on DHS, MICS

and other national

household surveys

Antenatal care 4+ visits -

Percentage of women (age

15–49) attended at least

four times during preg-

nancy by any provider.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

csec UNICEF. Data are

based on DHS, MICS

and other national

household surveys

C-section rate - Percent-

age of deliveries by Cae-

sarian section.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

Continued on next page
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Table A.3 – continued from previous page

Var Source Definition Methodology Notes

gfr United Nations

Department of Eco-

nomic and Social

Affairs (DESA),

Population Division,

World Population

Prospects 2019

Edition

General fertility rate.

Number of live births

divided by the female

population age 15-49

years.

No additional processing ap-

plied.

gdp World Bank World Bank Gross do-

mestic product per capita

No additional processing ap-

plied.

gini World Bank, De-

velopment Research

Group. Data are

based on primary

household survey

data obtained from

government statis-

tical agencies and

World Bank country

departments.

Gini index measures the

extent to which the dis-

tribution of income (or,

in some cases, consump-

tion expenditure) among

individuals or households

within an economy de-

viates from a perfectly

equal distribution.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

Continued on next page
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Table A.3 – continued from previous page

Var Source Definition Methodology Notes

gni World Bank, Inter-

national Comparison

Program

Gross national income

per capita

Extrapolated to 2019 assum-

ing a flat trend, linear interpo-

lation applied when data be-

tween 2000-2019 unavailable,

and imputation using regional

year data for countries with-

out any available data.

lbw UNICEF/WHO esti-

mates, 2019 Edition.

Data based on vi-

tal registration data

and national house-

hold surveys

Percentage of live births

that weighted less than

2500 grams.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

edu United Nations

Development Pro-

gramme. Data are

based Barro and Lee

(2013), UNESCO In-

stitute for Statistics

(2013).

Average number of years

of education received by

people ages 25 and older,

converted from educa-

tional attainment levels

using official duration of

each level.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

Continued on next page
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Table A.3 – continued from previous page

Var Source Definition Methodology Notes

mmr UN MMEIG esti-

mates, 2019 edition.

Data are based

on DHS, MICS

and other national

household surveys

The number of mater-

nal deaths during a given

time period per 100,000

live births during the

same time period.

Extrapolated to 2019 assum-

ing a flat trend, and im-

putation using regional year

data for countries without any

available data.

nmr UN IGME, 2019 Edi-

tion. Data are based

on from vital reg-

istration, household

survey and popula-

tion census.

Probability of dying in

the first 28 days of life,

expressed per 1,000 live

births.

No additional processing ap-

plied.

pab UNICEF/WHO.

Data based on

administrative re-

porting and TT

coverage surveys.

Percentage of pregnant

women protected by

tetanus toxoid containing

vaccines (TTCV) who

would give birth to a

child protected against

tetanus as a result of

maternal transfer of

antibodies through the

placenta.

Extrapolated to 2019 assum-

ing a flat trend, linear inter-

polation applied when data

between 2000-2019 unavail-

able, imputation using re-

gional year data for countries

without any available data,

and smoothing applied.

Continued on next page
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Table A.3 – continued from previous page

Var Source Definition Methodology Notes

pfpr Malaria Atlas

Project, estimates,

2019 edition. Data

based on national

household surveys,

routine surveillance

systems, and geo-

graphic and climate

data

Plasmodium falciparum

parasite rate.

Extrapolated to 2019 assum-

ing a flat trend, linear interpo-

lation applied when data be-

tween 2000-2019 unavailable,

and smoothing applied.

sab UNICEF/WHO esti-

mates, 2019 edition.

Data based on ad-

min records, DHS,

MICS and other na-

tional household sur-

veys

The proportion of births

attended by skilled health

personnel.

Extrapolated to 2019 assum-

ing a flat trend, linear interpo-

lation applied when data be-

tween 2000-2019 unavailable,

and imputation using regional

year data for countries with-

out any available data.

urban United Nations

Department of Eco-

nomic and Social

Affairs, Population

Division, World Ur-

banization Prospects

2018

Percentage of population

living in urban areas.

No additional processing ap-

plied.
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APPENDIX B

SUPPLEMENTARY INFORMATION FOR CHAPTER 2

Numerous methods for Bayesian model selection and assessment have been pro-

posed. Various approaches and their theoretical properties have been reviewed in

prior work, for example by Bernardo and Smith [1994], Vehtari and Ojanen [2012],

and Piironen and Vehtari [2017a]. Drawing from these prior studies, we will summa-

rize some widely used Bayesian variable selection methods in section B.1. In section

B.2, We will discuss the feasibility of using these methods for variable selection in a

BHTRM model as given in Eq. (2.2), where the outcome of interest is the sum of a

linear regression model, group-specific intercepts αc, and temporal smoother terms

δc,t.

B.1 Literature review of Bayesian variable selection

Piironen and Vehtari [2017a] has categorized the model selection methods into M-

close, M-completed, and M-open views. There are 2K candidate models if outcome y

has K candidate covariates. M-close view assumes one of the 2K candidate models is

true data generating model. Based on the assumption, one can set prior probabilities

for each candidate model and build the Bayesian model average (BMA) solution

(Barbieri and Berger [2004]). However, the M-completed view yields the idea of true

data generating model. But it assumes that there is still a reference model, MR,

which is the best available model to predict the unobserved observations based on

some criteria. One can identify the relevant covariates according to the posterior

distribution of the reference model based on some approaches. The approaches are
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known as M-completed approaches. The M-open views does not depends on the

assumption of true data generating model or reference model. The candidate models

are compared based on criteria like WAIC, DIC, ect.

B.1.1 M-open methods

Information criteria offers a computationally appealing way of estimating the per-

formance of the model. Candidate models can be compared using its expected pre-

dictive accuracy on new data. There are several widely-used methods to estimate

expected log posterior predictive density (ELPD). The within-sample log-posterior

density is subject to biased, some information criteria like Akaike information cri-

terion (AIC), and deviance information criterion (DIC), are proposed to correct the

bias with a penalty by introducing the number of parameters.

B.1.1.1 deviance information criterion (DIC)

DIC estimates the generalization performance of the model with parameters set

as β̂ which maximizes the observed data likelihood p(y|x, β).

DIC =
1

N

∑
logp(yi | xi, β̂)−

Peff

N
(B.1)

where Peff is the effective number of parameters which can be estimated as

Peff = 2
N∑
i=1

(logp(yi | xi, β̂)− E[logp(yi | xi, β)]) (B.2)

The expectation is calculated based on the posterior. Thus, DIC is not theoretically

justified because it measures the fit when the parameters are fixed to a point estimate,

which is questionable because of Bayesian perspective.
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B.1.1.2 widely applicable information criterion (WAIC) and Pareto Smoothed

Importance Sampling LOO (PSIS-LOO)

Another fully Bayesian criterion is WAIC (Watanabe [2010]). WAIC can be cal-

culated as

WAIC =
1

N

N∑
i=1

logp(yi | xi, β)−
V

n
(B.3)

where V is the functional variance given by

V =
N∑
i=1

{E[(logp(yi | xi, β))2]− E[logp(yi | xi, β)]2} (B.4)

Both of the expectation account for the uncertainty in the parameters. Watanabe

[2010] proved that WAIC is asymptotically equal to the Bayesian LOO-CV. Vehtari

et al. [2017] proposed the Pareto Smoothed Importance Sampling LOO implemented

in the loo package. It is computationally efficient as it does not require completely

re-fitting the model, unlike cross-validation. It is more robust than WAIC in the finite

case with weak priors or influential observations.

B.1.2 M-complete methods

M-complete view is based on the reference model which is considered as the best

model to predict the unobserved data. Many Bayesian variable selection approaches

are designed based on the posterior distribution of the reference model. To identify

the relevant covariates based on the credible interval is one of the most convenient

approach. Another widely applied approach is the Spike and slab prior (Mitchell

and Beauchamp [1988]) which is always considered as the gold standard for Bayesian

variable selection. Piironen et al. [2020] proposed a projection method based on the

reference model with horseshoe prior (Carvalho et al. [2009a]).
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B.1.2.1 Credible interval approach

The simplest M-complete methods is to select variable based on the credible

intervals given by the reference model. van der Pas et al. [2017] show that the marginal

credible intervals given by horseshoe prior are narrow enough to be informative for

variable selection in the normal means problem:

yi = βi + ϵi, i = 1, ..., n, (B.5)

with ϵ i.i.d. N(0, σ2), and βi is the normal mean. Bhattacharya et al. [2016] compare

various aspects of the horseshoe prior to frequentist procedures in the linear regression

problem, and obtain highly promising results for large signals.

B.1.2.2 Spike and slab prior

The spike and slab (Mitchell and Beauchamp [1988],George and McCulloch [1993])

is a popular shrinkage prior for sparse Bayesian estimation. The prior is often written

as a two-component mixture of normal distributions

βk | λk, c, σ ∼ λkN(0, c
2) + (1− λk)N(0, σ

2), (B.6)

λk ∼ Bern(π) (B.7)

where σ is much smaller than c and often set as 0 so that N(0, σ2) is the ’spike’ and

N(0, c2) is the ’slab’. And λk ∈ {0, 1} is the indicator variable denotes whether the

coefficient βk is zero when λk = 1 or nonzero when λk = 0. The final decision of

covariate xk can be informed by the posterior distribution P (λk | y, x). If P (λk = 1 |

y, x) > 0.5, we drop kth covariate.

Ročková and George [2018] introduced the spike and slab LASSO (SSL). It is

an approach based on a prior which provides a continuum between the penalized
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likelihood LASSO and the Bayesian spike and slab prior. The spike and slab LASSO

prior is usually specified as

βk | λk, τ0, τ1 ∼ λkϕ(βk | τ0) + (1− λk)ϕ(βk | τ1), (B.8)

λk ∼ Bern(π) (B.9)

where ϕ(β | τ) = (τ/2)e−τ |β| denotes the Laplace density with scale parameter τ . It

is mixture of two Laplace priors ϕ(β | τ) with different scale parameter τ0 and τ1.

When τ1 >> τ0, the SSL has the similar structure as spike and slab prior, because

the density is very peaked around zero when τ is large. Since it is a mixture of

two Laplace distributions, the SSL prior is a two-group refinement of LASSO with

different penalties on the coefficients. Thus, the posterior distribution p(βk | x, y) can

be used to perform variable selection, which is the same as basic spike and slab prior.

B.1.2.3 Projection approach

Another M-complete method is projection method which is proposed by Goutis

and Robert [1998], and further discussed by Dupuis and Robert [2003b]. The key

characteristic of this approach is to find an excellent trade-off between sparsity and

predictive accuracy. It is to simplify the full model M∗ by projecting the information

in the posterior onto the candidate submodel so that the predictive distribution is as

close to the reference model as possible. Given the parameters of the full model β∗,

the projected parameters βp in the parameter space of submodel Mp are defined as

βp = argmin
β

1

N

N∑
i=1

KL(p(ỹ | xi, β∗,M∗) || p(ỹ | xi, β,Mp)) (B.10)

where KL refers to the Kullback-Leibler Divergence, and ỹ refers to the unobserved

outcome.The model choice can be based on the strict minimization of the discrepancy

measure.
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B.1.3 M-close methods

Bayesian Model Average (BMA) (Martini and Spezzaferri [1984]) is one of the M-

close view variable selection methods. Suppose there is an exhaustive list of candidate

models, {Mk}Kk=1 the distribution over the model space is,

p(M |D) ∝ p(D|M)p(M) (B.11)

The predictions from Bayesian Model Averaging(BMA) are

p(ỹ|D) =
K∑
k=1

p(ỹ|D,Mk)p(Mk|D) (B.12)

In BMA each model is weighted by its marginal likelihood,

p(Mk|y) =
p(y|Mk)p(Mk)∑K
k=1 p(y|Mk)p(Mk)

(B.13)

where

p(y|M) =

∫
p(y|Γk,Mk)p(Γk|Mk)dΓk, (B.14)

and Γk = {βk} in linear regression setting. In the M-close view, BMA will asymptot-

ically select the correct model. Since the BMA weights by marginal likelihood, these

weights extremely sensitive to the choices of the priors p(Γk) for each model. The

sensitivity to prior distributions make the BMA weights suspect. The difficulty of

computing marginal likelihood generally make the BMA hard to generalize (Piironen

and Vehtari [2017a]).

B.2 Application of variable selection approach in BHTRM

BHTRM used for SBR data combines a linear regression and temporal smooth

term, which can be considered as a semi-parametric model. Due to the particularity
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of BHTRM, most of variable selection methods are not available to impose variable

selection for BHTRM. In this section, we will discuss the availability of above ap-

proaches.

B.2.1 M-open methods

The M-open view abandons the idea of reference model and true data generating

model. The variable selection is usually conducted by model comparison between a

few number of candidate models based on information criteria. Thus, this type of

approach can be used for any model including BHTRM. However, if we do not have

any preference or knowledge for the covariates based on prior information, we have

to combine the approach with stepwise model searching strategies. It is a robust and

convenient approach for small models, but it may not be a good choice for BHTRM,

which is computational expensive.

We use an iterative forward method to test the performance of PSIS-LOO in the

BHTRM setting:

1. Start from the empty model and compute ELPD loo.

2. Add the covariate which best improves ELPD loo.

3. Repeat step 2 until no improvement of ELPD is observed.

B.2.2 M-complete methods

M-complete methods assume that there is a reference model which can predict

the unobserved data well. Variable selection can be informed by the reference model.

But how to construct the reliable reference model is an open question. Because

the prior of SSL is a mixture of two Laplace distribution, the posterior distribution

p(β | x, y) is exactly sparse and can be used to perform parameter estimation. Bai

et al. [2020] shows that the model with SSL has good predictive performance. As a

continuous version of spike and slab prior, Piironen et al. [2020] suggest that model
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with horseshoe prior also has good performance in prediction. Thus, the models with

SSL prior and horseshoe prior can be considered as the reliable reference model to

impose variable selection.

B.2.2.1 Credible interval

Bhattacharya et al. [2016] compare the variable selection accuracy between the use

of credible interval based on horseshoe prior with frequentist procedures in the linear

regression problem, and obtain highly promising results for large signals. However,

almost none of the small and medium signals are detected. Given that all signals are

relatively small compare to the outcome variance in SBR data. It could be the first

challenge to use credible interval to selection variable in SBR data. Using credible

interval requires a threshold value α. The choice of α are always arbitrary. It could

be another issue of credible interval approach. But it is still an available and most

straightforward approach for BHTRM.

B.2.2.2 Spike and slab and SSL

Although spike and slab type approach is one of the most popular approach and

it performs well in generalized linear regression setting, it cannot make use of the

advantage of STAN (Stan Development Team [2018],Carpenter et al. [2017]) which

does not allow the discrete parameter: the local binary indicator λk in Eq. (B.6). But

we will use the continuous version spike and slab - the horseshoe prior - instead.

B.2.2.3 Projection method

Although projection approach has been demonstrated for generalized linear mul-

tilevel models and generalized additive multilevel models, the proposed approach is

still not working for BHTRM setting. The full model M∗ not only contains linear

regression
∑

k xikβk, but also a country-specific intercept αc, a smoothing term δc,t,

and non-homogeneous variance σd.
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To apply for the projection approach, we develop a projection approach for BHTRM

version. We propose a two-step projection approach. First, we project the full model

M∗ onto a submodel M b by constraining the smoothing term to 0, i.e., δbc,t = 0.

Then the projected parameters βp in the parameter space of sub-submodel Mp can

be defined as

βp = argmin
β

1

n

n∑
i=1

KL(p(ỹb | xi, β∗, α, σ, δb,M b) || p(ỹb | xi, β, α, σ, δb,Mp)) (B.15)

where ỹc refers to the data without smoothing term.

The discrepancy between the first projection submodel, M b, and the submodel of

the projection submodel, Mp, is then defined to be the expectation of this divergence

over the posterior of the first order projection model. Dupuis and Robert [2003b]

introduce the notation of explanatory power to measure the distance between models.

In BHTSRM setting, we use the mean square error to obtain the bast sub-submodel.

We calculate the discrepancy by samples {β∗, α, σ}Ss=1 from the posterior of the

reference model, calculating the projected parameters {βp}Ss=1, and then calculate the

discrepancy as

∆(M b||Mp) =
1

n

n∑
i=1

(ỹbi − ỹpi )
2 (B.16)

where ỹbi =
1
S

∑
ỹ
b(s)
i , and ỹpi = 1

S

∑
ỹ
p(s)
i ,

ỹ
b(s)
i ∼ N(α

(s)
c[i] +

∑
k

xikβ
∗(s)
k , σ

2(s)
d[i] ) (B.17)

ỹ
p(s)
i ∼ N(α

(s)
c[i] +

∑
k

xikβ
p(s)
k , σ

2(s)
d[i] ) (B.18)
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After fitting the model with all the variables using regularized horseshoe prior, we

use the projection predictive variable selection strategy above. As a search heuristic,

we use forward searching, that is, starting from the empty model, we add variables

one at a time, each time choosing the variable that decreasing the mean square error

the most.

B.2.3 M-close approach: BMA

BMA has been successfully implemented in generalized linear regression, but the

BHTSRMmakes the BMA approach more complicated, unstable, and time consuming

because of the difficulty of computation of the likelihood and sampling issues. BMA

is a undesired approach for BHTRM, we do not test the performance in this paper.
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APPENDIX C

SUPPLEMENTARY TABLE AND FIGURES FOR
CHAPTER 3

C.1 Notation and Definitions

Notation Description

t∗ End year of the reference (study) period 2013.
t0 = t∗ − 15 Start year of the reference (study) period 2013.

b
(ssh)
i SSH reported birth year for sibling i.

d
(ssh)
i SSH reported time since death for deceased sibling i.

s
(ssh)
i SSH reported survival status at end of study period for sibling i.
bi HDSS reported birth year for sibling i.
di HDSS reported time since death for deceased sibling i.
si HDSS reported survival status at end of study period for sibling i.

e
(birth)
i Birth year error for sibling i given by b

(ssh)
i − bi.

e
(death)
i Time since death error for sibling i given by d

(ssh)
i − di.

(λg, ηg) Interviewer random effects.
(βk, γk) Covariate effects.
(σ2

b , σ
2
d, δ) (Co-) variances related to errors.

(τ, φ) Global shrinkage parameters in horseshoe priors.
Bi The true (unknown) birth year for sibling i.
Di The true (unknown) time since death for sibling i.
Ti The true (unknown) time to death since t0 for sibling i.
b Continuous cohort(birth year) b.
S(b, t) Survival function for cohort b at time t.
f(b, t) Time to death density function for cohort b at time t.
H(b, t) Cumulative hazard function for cohort b at time t.
αl,p two dimensional spline coefficient.
(χ,ϕ) Parameters of CAR.

Table C.1. Descriptions of mathematical notations
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C.1.1 Graphical analysis of covariates

Figure C.2 illustrates the relationship between observed reporting errors and the

covariates.

birth year error time since death error

−20 −10 0 10 20 −20 −10 0 10 20

0.0

0.1

0.2

error

de
ns

ity

Survival status Alive Dead

Figure C.1. Exploratory data analysis. Distribution of birth year error and time
since death error.
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Figure C.2. Exploratory data analysis. Relationship between errors and covariates.
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Figure C.3. Residual plot from SSH error model.
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