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ABSTRACT

INCREMENTAL NON-GREEDY CLUSTERING AT SCALE

FEBRUARY 2022

NICHOLAS MONATH

B.Sc., BRANDEIS UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Clustering is the task of organizing data into meaningful groups. Modern clustering

applications such as entity resolution put several demands on clustering algorithms: (1)

scalability to massive numbers of points as well as clusters, (2) incremental additions of

data, (3) support for any user-specified similarity functions.

Hierarchical clusterings are often desired as they represent multiple alternative flat

clusterings (e.g., at different granularity levels). These tree-structured clusterings provide

for both fine-grained clusters as well as uncertainty in the presence of newly arriving

data. Previous work on hierarchical clustering does not fully address all three of the

aforementioned desiderata. Work on incremental hierarchical clustering often makes greedy,

irrevocable clustering decisions that are regretted in the presence of future data. Work on

scalable hierarchical clustering does not support incremental additions or deletions. These

methods often make requirements on the similarity functions used and/or empirically tend

to over merge clusters, which can lead to inaccurate clusterings.
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In this thesis, we present incremental and scalable methods for hierarchical clustering

to empirically satisfy the above desiderata. Our work aims to represent uncertainty and

meaningful alternative clusterings, to efficiently reconsider past decisions in the incremental

case, and to use parallelism to scale to massive datasets. Our method, GRINCH, handles

incrementally arriving data in a non-greedy fashion, by reconsidering past decisions using

tree structure re-arrangements (e.g., rotations and grafts) invoked in accordance with the

user’s specified similarity function. To achieve scalability to massive datasets, our method,

SCC, builds a hierarchical clusterings in a level-wise bottom-up manner. Certain clustering

decisions are made independently in parallel within each level, and a global similarity

threshold schedule prevents greedy over-merging. We show how SCC can be combined with

the tree-structure re-arrangements in GRINCH to form a mini-batch algorithm achieving

both scalable and incremental performance. Lastly, we generalize our hierarchical clustering

approaches to DAG-structured ones, which can better represent uncertainty in clustering

by representing overlapping clusters. We introduce an efficient bottom-up method for

DAG-structured clustering, LLAMA. For each of the proposed methods, we provide both a

theoretical and empirical analysis. Empirically, our methods achieve state-of-the-art results

on clustering benchmarks in both the batch and the incremental settings, including multiple

point improvements in dendrogram purity and scalability to billions of points.
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CHAPTER 1

INTRODUCTION

Clustering, the partitioning of points into disjoint sets, is an extensively used tool in data

science and is central to unsupervised machine learning. Clustering is used by practitioners

for analyzing and visualizing large datasets [58, 85, 164, 178, 239, 257, 267, 276, 304, 306,

inter alia]. For instance, it is used to facilitate the exploration of cellular diversity in single-

cell transcriptomics data [245] and to understand the behavioral patterns of users of social

networks [32]. Clustering is also used to solve tasks such as entity resolution, in which

ambiguous mentions of entities are clustered together such that each cluster represents a

real world entity [42, 89, 104, 180, 183, 184, 192, 237, 258, 259, inter alia]. This task

(which is closely related to record linkage, de-duplication, and coreference) is used to build

knowledge-bases of scientists from citation records [89, 283, 303], product catalogues [269],

and databases regarding human rights data from the conflict in Syria [73]. Furthermore, clus-

tering is widely used in feature extraction [54] and as a building block of larger models, e.g.,

to identify semantically related sentences for computational-based debating system [107]

and to discover latent entity types in knowledge base link prediction [92]. Clustering is also

used in recommendation [302] as well as in tasks such as image segmentation [189]. While

it is the case that many clustering tasks are NP-hard [93, 94, 196] and impossible to satisfy

three simple properties (scale-invariance, a richness, consistency) [167], clustering is widely

used and beneficial to the aforementioned applications in practice.

Clustering is commonly categorized into two families: the aforementioned flat and the

tree-structured, nested partitions of data, hierarchical. In a hierarchical clustering, the leaves

correspond to data points and the internal nodes correspond to clusters of their descendant
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leaves. The nested clustering structure of the hierarchies can be useful to represent clusters

of multiple granularity [302] or to automatically discover structures including as word or

concept ontologies [44, 206, 207, 231, 280, 293]. Hierarchical clustering methods are used

to discover phylogenetic trees [122, 212, 233, 279] as well as to discover the structure of

particles in jet physics [87, 134].

With each internal node of a hierarchical clustering representing a cluster, collections of

internal nodes can represent a flat clustering, known as a tree consistent partitions [146]. This

illustrates how hierarchical clusterings can be used to represent uncertainty about a candidate

flat clustering. Indeed, flat partitions are often selected after first constructing a hierarchical

clustering. Empirically, this has been show to be effective in entity resolution [131, 183, 303].

Theoretically, this has been useful for K-Means clustering [136]. Interactive methods can

also be used to incorporate user feedback when selecting a flat clustering [171, 275].

Hierarchical agglomerative clustering (HAC) [18, 95, 96, 129, 217, 218, 241, 253, 281,

inter alia], the best-first, bottom-up algorithm, is one of the most widely-used clustering

algorithms [44, 89, 108, 131, 172, 180, 245]. It is used as the basis for inference in many

statistical models [44, 45, 145, 146], as an approximation algorithm for hierarchical [94, 214]

and flat [136] clustering costs as well as for supervised clustering [163, 288]. One capability

that contributes to HAC’s prevalence is that it can be used to construct a clustering according

to any, including a learned, cluster-level scoring function, also known as a linkage function

[81, 89, 163, 182, 288].

There are two key limitations of HAC: (1) it does not support incremental additions

and deletions of data and (2) it has limited scalability in terms of dataset size. In many

applications, data is continuously arriving over time. Newly arrived data points need to

be incorporated into the predicted flat/hierarchical clusterings. These data points might

correspond to new clusters / branches of the hierarchical clustering tree or may be added

to existing clusters. The addition of new points to the clustering must be done efficiently,

without recomputing a clustering over the entire dataset.
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Much of the previous work on incremental / online clustering focuses heavily on effi-

ciency while making irrevocable, greedy decisions that can lead to inaccurate clusterings

[57, 66, 114, 300]. In our work, we use hierarchical clustering to represent uncertainty in

this online setting [170, 210]. Our methods add newly arriving data points to a region of

the tree containing the points’ nearest neighbor (according to the given similarity measure).

Then in a non-greedy fashion, tree structure re-arrangements are made to efficiently and

effectively reconsider past decisions. Specifically, a rotation operation re-arranges local

structure and a grafting operation considers global re-arrangements. These operations allow

our methods to be robust even when data arrives in adversarial orderings.

While online/incremental methods have efficient per-point addition times, the sequential

nature of these methods can only mildly use parallelism. Affinity clustering [31], overcomes

the main computational expense of HAC by using a bottom-up algorithm merging connected

components of the 1-nearest neighbor graph. Affinity clustering can use efficient parallel and

distributed connected component algorithms [165, 301] as well as graph contraction [31].

While efficient, Affinity clustering can empirically suffer from over-merging clusters [209].

We propose a closely related hierarchical clustering algorithm, the Sub-Cluster Component

Algorithm (SCC), which can effectively interpolate between the speed of affinity and the

accuracy of HAC. Like Affinity clustering, SCC builds tree structures one level at a time

with clustering decisions independently in parallel merging sub-clusters. Unlike Affinity

clustering, we use a sequence of level-wise thresholds to determine in which level certain

mergers of sub-clusters should take place, thereby preventing over-merging and improving

the accuracy of the predicted clustering.

SCC and Affinity do not support incremental additions of points. We extend SCC to a

mini-batch incremental algorithm, MBSCC, which combines the tree re-arrangements of

GRINCH and the level-wise structure of SCC. Rotation operations select which level of

the tree structure the new points should be added while grafts allow previously constructed

clusters in a level to be split or merged in the presence of new data. The re-arrangements
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provide for an efficient algorithm that only needs to reconsider a small portion of the tree

structure in the presence of new data.

One limitation of hierarchical clustering is the kind of overlapping clusters that it can

represent [59, 88, 120, 188]. In particular, all overlapping clusters must exhibit a nested

relationship. This disallows leaf data points to simultaneously sit in multiple overlapping,

but non-nested, clusters and requires that leaves and internal nodes have a single parent in

the structure. Removing the tree-based constraints, we can instead aim to discover DAG-

structured clusterings. Jeantet et al [156] provide a bottom-up approach for building DAGs,

but this is limited to datasets of a thousands of points. In our work, we present a scalable

algorithm, LLAMA, for discovering meaningful DAG-structured clusterings on large datasets

using a level-wise bottom-up approach.

For each of the proposed methods, we provide both a theoretical and empirical analysis.

Our theoretical analysis describes each method in terms of a model-based separation condi-

tion, which generalizes popular data assumptions including strict separation [26] and delta

separation [177]. Our empirical analysis considers performance of our methods in batch

settings, online/incremental settings, adversarial data orderings, standard/learned similarities

on both clustering and entity resolution benchmarks. Our methods achieve multiple point

improvements in dendrogram purity and scalability to billions of points.

1.1 Summary of Desiderata

Our work aims to develop clustering algorithms that have the following properties:

Scale to many clusters, not just many points Clustering methods should accurately dis-

cover a large number of clusters from a large number of points. These methods

are needed for tasks like entity resolution and to discover meaningful fine-grained

clusters.
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Clusters of multiple granularity Algorithms should discover overlapping, nested clusters

that capture uncertainty in the clustering as well as inherent ambiguity in the data.

Incremental addition of data We need clustering algorithms that can effectively incorpo-

rate and adapt to a continuous stream of arriving data. The algorithms should support

the creation of new structure and effectively and efficiently reconsider past decisions.

Non-greedy decisions A core difficultly in handling incremental data is the ability to

efficiently reconsider past clustering decisions. This allows these algorithms to be

non-greedy in the presence of newly arriving data.

Support arbitrary similarity measures We would like our proposed approaches to handle

any user specified similarity measure.

Guarantees and Analysis We would like to provide theoretical statements to ensure our

proposed methodology is effective when data meets certain straightforward clustering

properties.

1.2 Summary of Work

The core methodologies proposed in this thesis were first described in:

• Ari Kobren*, Nicholas Monath*, Akshay Krishnamurthy, and Andrew McCallum. A

Hierarchical Algorithm for Extreme Clustering. KDD. 2017.

• Nicholas Monath*, Ari Kobren*, Akshay Krishnamurthy, Michael Glass, Andrew McCal-

lum. Scalable Hierarchical Clustering via Tree Grafting. KDD. 2019

• Ari Kobren, Nicholas Monath, Andrew McCallum. Integrating User Feedback under

Identity Uncertainty in Knowledge Base Construction. AKBC, 2019.
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• Nicholas Monath, Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, An-

drew McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, Yuan

Wang, Yuchen Wu. Scalable Hierarchical Agglomerative Clustering . KDD, 2021.

• Nicholas Monath, Manzil Zaheer, Avinava Dubey, Amr Ahmed, Andrew McCallum.

DAG-structured Clustering by Nearest-Neighbors. AISTATS 2021.

This work includes:

Incremental Non-Greedy Hierarchical Clustering Our method GRINCH (Chapter 3) sup-

ports the incremental additions and deletions of data points. It uses a hierarchy to

represent multiple alternative clusterings of a dataset and tree re-arrangements to

effectively and efficiently reconsider past decisions. GRINCH supports any similarity

measure / linkage function and generalizes the PERCH algorithm which is specialized

for Euclidean space [170].

Level-wise Hierarchical Clustering Our method SCC (Chapter 4) builds tree structures

one level at a time with clustering decisions made independently in parallel within

each level. This provides for greater scalability than the sequential clustering of

GRINCH. To support incremental addition of points, we present Mini-batch SCC

(MBSCC), which efficiently uses the level-wise structure of SCC to parallelize across

points in a mini-batch. Like GRINCH, MBSCC uses tree re-arrangements to support

non-greedy decisions in the presence of incrementally arriving data.

DAG-Structured Clustering Rather than constructing a tree structure, our method LLAMA

(Chapter 5) builds a DAG-structure of nested clusters in a bottom-up, level-wise man-

ner. The DAG-structure allows us to discover overlapping, but not nested clusterings

that can represent both uncertainty and ambiguity in the data.
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1.3 Document Organization

This document is organized as follows: Chapter 2 provides definitions of the clustering

structures and assumptions as well as background algorithms and related work; Chapter 3

describes our algorithm GRINCH for incremental hierarchical clustering; Chapter 4 describes

the level-wise, parallelizable algorithms and their incremental extensions; and Chapter 5

describes our work on DAG-structured clustering. Experimental and theoretical results for

each method are given within each of the corresponding chapters.
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CHAPTER 2

BACKGROUND

In this section, we formally define the clustering problems studied in this thesis, intro-

ducing the notation that is used throughout. We define the clustering evaluation measures

that are used. We also provide a description of the data separability assumptions used in

the theoretical analysis with examples of generative models of data that satisfy them. We

provide an overview of related work.

2.1 Problem Definition

We are given a dataset X = {x1, x2, . . . , xN} and a set-wise similarity function (Sec-

tion 2.3), f : P(X)×P(X)→ R. Our goal is to discover meaningful flat (Definition 2),

hierarchical (Definition 3), and DAG-structured (Definition 5) clusterings. We aim to

discover clusterings which are well aligned with a ground truth clustering (Section 2.4).

Rather than optimizing a cost function, we aim to design algorithms that recover data that is

model-based separated (Section 2.5.1).

2.2 Definitions

We useX to refer to a dataset of pointsX = {x1, x2, . . . , xN}. We use P(X) to refer

to the power set of X , the set of all subsets of X . We are interested in several clustering

structures corresponding to groupings of elements ofX . Each of these clustering structures

can be described as a set of sets of elements ofX as well as in terms of data structure-like

definitions. First, consider a set cover, a set of sets such that each element appears in at least

one set:
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Definition 1. (Set Cover). A set cover of X , denoted S ⊂ P(X) = {C1, . . . , CK}, is

a set of non-empty subsets, Ci 6= ∅, such that each point in X appears in some subset,⋃K
i=0Ci =X .

By restricting to disjoint sets, we have the standard definition of a clustering or partition:

Definition 2. (Flat Clustering). A flat clustering, or partition, ofX , denoted C ⊂ P(X) is

a set cover such that the member subsets are disjoint, ∀Ci, Cj ∈ C, Ci ∩Cj = ∅, ∀Ci 6= Cj .

A hierarchical clustering is a recursive partitioning of dataset into a tree-structured set of

nested partitions. Formally:

Definition 3. (Hierarchical Clustering [175]). A hierarchical clustering, T , of a dataset

X = {x1, x2, . . . , xN}, is a set of clusters C0 = {xi}Ni=1 and for each Cj, Ck ∈ T either

Cj ⊂ Ck, Ck ⊂ Cj or Cj ∩Ck = ∅. For any cluster C ∈ T , if ∃C ′ with C ′ ⊂ C, then there

exists a set {Cj}`j=1 of disjoint clusters such that
⋃`
j=1Cj = C.

The definition of hierarchical clustering is in terms of subsets of X rather than as a

discrete data structure with nodes and edges. There is, however, a direct mapping between

the discrete data structure and the set-based definition. In the data structure, the nodes

correspond to sets in T . A parent-to-child edge exists between Cp and Cc if Cc ( Cp and

@C ′ such that Cc ⊂ C ′ ⊂ Cp.

A hierarchical clustering encodes a number of different valid flat clusterings. These flat

clusterings are referred to as tree consistent partitions [146]. A tree consistent partition is a

set of sub-tree roots in T that form a flat clustering.

Definition 4. (Tree Consistent Partition [146]) A tree consistent partition C(T ) for the

hierarchical clustering T of datasetX is a partition ofX (Def. 2) and C(T ) ⊂ T .

By relaxing the restriction that overlapping clusters in a hierarchical have a nested

(sub/super-set relationship), we can consider DAG-structured clusterings:
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Figure 2.1: Tree & DAG Consistent Partitions. The figure shows an example of a hierar-
chical and DAG-structured clustering of seven points. Three partitions are shown. All three
partitions are DAG consistent with the structure on the right. Observe how no tree structure
can encode both the green colored partition as well as the blue colored partition since the
clusters in the two partitions are overlapping, but not sub/super sets of one another.

Definition 5. (DAG-Structured Clustering) A DAG-Structured clustering, D, of a dataset

X = {x1, x2, . . . , xN}, is a subset of the powerset ofX , D ⊂ P(X) containing at least a

root node of the entire datasetX ∈ D and the shattered partition {{x} | x ∈X} ⊂ D.

As in the case of tree structures, we can provide a mapping between a DAG data structure

and the nested collection of sets. Like the tree structure case, a parent-to-child edge exists

between Cp and Cc if Cc ( Cp and @C ′ such that Cc ⊂ C ′ ⊂ Cp. In this case, however,

a node may have multiple parent nodes, hence calling this a DAG-structured clustering.

The set of clusters in a DAG-structured clustering form a partially ordered set, where

the containment relationship defines the ordering. The connections to partially ordered

sets/Hasse Diagrams have been studied theoretically [59, 88, 120, 188, inter alia]. Like a

tree consistent partition, we consider those flat clusterings represented in the DAG structure

Definition 6. (DAG Consistent Partition) A DAG consistent partition C(D) for the hierar-

chical clustering D of datasetX is a partition ofX (Def. 2) and C(D) ⊂ D.
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We note that the largest possible DAG-structured clustering contains all elements of the

power set of P(X) except the empty set. Of course, such a massive structure is unlikely

to be a meaningful clustering and we will design methods that explicitly try to minimize

the size of the DAG structure. Figure 2.1 shows examples of tree and DAG consistent

clusterings, illustrating a case where DAGs are can represent a richer class of alternative flat

clusterings than tree structures.

2.3 Linkage Functions for Clustering

We hope to discover meaningful clusterings of data. The definition of meaningful will

be defined in terms of pairwise similarities between data points and set-wise similarities

between clusters. We assume that we are have a similarity function between points, sim :

X ×X → R. Further, we assume that we have a similarity defined between two sets of

points. Following terminology from HAC, We refer to a similarity function between two

sets as a linkage function: f : P(X) × P(X) → R. There are several linkage functions

commonly used in HAC such as:

Example 1. (Single Linkage) Given two sets Ci and Cj , the single linkage is the maximum

similarity between an element in Ci and Cj , f(Ci, Cj) = maxxi,xj∈Ci×Ck
sim(xi, xj).

Example 2. (Average Linkage) Given two sets Ci and Cj , the single linkage is the average

similarity between pairs of elements inCi andCj , f(Ci, Cj) = 1
|Ci||Cj |

∑
xi,xj∈Ci×Ck

sim(xi, xj).

Example 3. (Complete Linkage) Given two sets Ci and Cj , the single linkage is the mini-

mum similarity between an element in Ci and Cj , f(Ci, Cj) = minxi,xj∈Ci×Ck
sim(xi, xj).

Unless otherwise noted, we assume that f is a symmetric function, f(Ci, Cj) =

f(Cj, Ci) and for notational convenience that the self-similarity of sets is the lowest pos-

sible similarity, e.g., f(C,C) = −∞. Linkage functions provide a flexible way to build
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and analyze clustering algorithms. Linkage functions may be also learned from data

[81, 139, 172, 286, 288, 299].

2.4 Evaluation Measures for Labeled Data

Let’s now define how we will measure the quality of flat, hierachical, and DAG-structured

clusterings given labeled data. Our evaluation is based on the existence of a ground truth

flat clustering, C?.

2.4.1 Flat Clustering Evaluation Metrics

There are many evaluation metrics used for flat clustering including Adjusted Rand

Index [236], normalized mutual information, purity, homogeneity score, and others. We

follow work on entity resolution and use the pairwise F1 metric [89, 283]. Given a dataset

X with ground truth clustering C?, we measure the pairwise F1 of a predicted clustering Ĉ.

We compute the pairs of points that are in the same cluster in the ground truth:

P? = {(xi, xj) | xi, xj ∈X, ∃ C∗ ∈ C? s.t. {xi, xj} ⊆ C?}, (2.1)

and the pairs of points that are in the same cluster in the predicted clustering:

P̂ = {(xi, xj) | xi, xj ∈X, ∃ C ∈ Ĉ s.t. {xi, xj} ⊆ C}. (2.2)

We then measure precision, recall, and F1:

Prec =
|P? ∩ P̂|
|P̂|

Rec =
|P? ∩ P̂|
|P?| F1 = 2 · Prec · Rec

Prec + Rec
(2.3)

2.4.2 Hierarchical Clustering Evaluation Metrics

Hierarchical clusterings are often evaluated on datasets for which there exists a ground

truth flat clustering. One frequently used metric is dendrogram purity [146, 151, 170,

12



263]. Dendrogram purity measures the quality of the flat partitions that are stored in

the tree structure without requiring a single partition be selected from the tree structure.

Dendrogram purity takes on values between 0 and 1 and achieves a value of 1 if and only

if the tree contains the ground truth partition as a tree consistent partition [170]. Given

a ground truth flat clustering C? of a dataset X , dendrogram purity of a tree structure T ,

DendrogramPurity(T ,C?), as:

DendrogramPurity(T ,C?) = 1

|P?|
∑
C?∈C?

∑
(xi,xj)∈C?×C?

purity(lca(xi, xj, T ), C?) (2.4)

where lca(·, ·, ·) gives the least common ancestor of the nodes in the tree, and purity(Ĉ, C?) =

|Ĉ∩C?|
|Ĉ| is the (flat cluster) purity of the cluster represented by Ĉ with respect to the cluster

C?. In words, dendrogram purity is the average over all pairs of points from the same ground

truth cluster of the purity of the pair’s least common ancestor.

2.4.3 Metrics for Any Kind of Clustering

To our knowledge, there are not well established metrics to measure the quality of

DAG-structured clusterings studied in this thesis. We describe and motivate metrics here that

work for flat, hierarchical, and DAG-structured clustering. Further, we note that our metrics

can be used in the case that there exists a ground truth partition of the data as well as in the

case where there is a ground truth cover (including tree and DAG structures themselves) of

the data (i.e., points are assigned to more than one cluster).

Note that dendrogram purity does not translate well to DAG-structured clusterings. In

particular, there exist trivial DAGs that produce perfect dendrogram purity scores (consider

the DAG structure containing a set for each pair of points).

2.4.3.1 Recall-Focused Metrics

First, we consider metrics that mimic recall metrics in information retrieval. We measure

whether each ground truth cluster is faithfully represented in a tree or DAG-structured
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clustering using Jaccard similarity. The Jaccard similarity is defined between a ground truth

cluster C? and predicted cluster Ĉ: Jacc(C?, Ĉ) = |C?∩Ĉ|
|C?∪Ĉ| .

Mean Jaccard Per Label We measure the mean over ground truth cluster (or cover)

labels of the maximum Jaccard similarity of the ground truth clusters with the predicted

structure. This metric was also proposed by [188].

Jacc/lbl(D,C?) = 1

|C?|
∑
C?∈C?

max
Ĉ∈D

Jacc(C?, Ĉ) (2.5)

Mean Jaccard Per Point We also compute the mean of the Jaccard similarity over the

ground truth points for the highest scoring predicted clustering in the DAG:

Jacc/pt(X,D,C?) = 1

Z

∑
x∈X

∑
C?∈C?

x

max
Ĉ∈D

Jacc(C?, Ĉ) (2.6)

where Z =
∑

x∈X |C?x| and where C?x are the ground truth cluster assignments of x. Observe

that each metric obtains a value of 1 if and only if each of the ground truth clusters are

represented predicted structure.

2.4.3.2 Precision-Focused Metrics

The recall-focused metrics are not enough to measure the quality of a DAG or tree

structure. A DAG structure that contains the full powerset P(X) of a dataset would be

unmanagably large and contain a multitude of potentially irrelevant substructure. Yet this

would achieve a perfect score in terms of the recall-focused metrics. And so, we consider a

metric that is focused on the quality of each node in the predicted structures. We encourage

structures to be as precise as possible.

Mean Jaccard Per Node We measure mean of the Jaccard similarity of each node with

its best aligned ground truth cluster.

Jacc/node(D,C?) = 1

|D|
∑
Ĉ∈D

max
Ĉ?∈C?

Jacc(C?, Ĉ) (2.7)
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2.5 Separability Assumptions

Assumptions are often made about the datasets input to clustering algorithms [21, 26,

28, 170, 177]. Separability assumptions in clustering provide a mechanism to understand

whether or not an algorithm effectively and efficiently recovers cluster structure under

“reasonable” conditions. While these assumptions might not hold in practice, they represent

classes of idealized data that we would like our method to be able to handle. Since the cluster

structure is often considered to be ‘simpler’ when separated than in real datasets of interest

to practioners, our goal is to design algorithms that theoretically guarantee performance on

this separated data.

We describe our most general classes of separable data, which we call model-based

separation. We then provide examples of model-based separated data by mapping other,

more specific and commonly used separability assumptions to the model-based definition.

2.5.1 Model-based Separation

Model-based separation defines the behavior of a linkage function f with respect to

datasetX and a ground truth partition ofX , denoted C?. Model-based separation defines

f ’s behavior in terms of a latent graph structure. This latent graph is unobserved at the time

of clustering (i.e., the input to the clustering problem isX , not this graph structure). This

graph G = (X, E) has one vertex per datapoint inX and edges are defined such that the

connected components of G are exactly the clusters of C?.

Intuitively, model-based separation says that the linkage function similarity between two

sets of points C0 and C1 that are directly connected by an edge in G is higher than C0’s

or C1’s similarity with any other set C2 to which it is not directly connected by an edge.

Formally, the condition is as follows:

Assumption 1. (Model-based Separation [210]) Let G = (X, E) be a graph. Let the

function f : P(X)×P(X)→ R be a linkage function that computes the similarity of two

groups of vertices and let φ : P(X)× P(X)→ {0, 1} be a function that returns 1 if the
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union of its arguments is a connected subgraph of G. DatasetX is model-based separated

with respect to f if:

∀C0, C1, C2 ⊆X, φ(C0, C1) > φ(C0, C2) =⇒ f(C0, C1) > f(C0, C2). (2.8)

The target partition, C?, which is model-based separated, corresponds to connected compo-

nents in G.

We provide two examples to build intuition about model-based separation.

Example 4. Clique (Strict Separation). Consider a graph G = (X, E) in which each

connected component is a clique. Then if f separates G, every vertex in a connected compo-

nent, Ci, is more similar to all other vertices in Ci than any vertex in connected component

Cj , where similarity is defined by f . Thus, clique-structured connected components exactly

capture strict separation (with a linkage of single/complete/average linkage) [26].

Example 5. Chain. Consider a graph G = (X, E) in which each connected component is

chain-structured. According to Definition 1, two vertices that are part of the same chain but

do not share an edge may be dissimilar under f even if f separates G. However, any two

segments of the chain connected by an edge are similar under f .

A visual illustration of both clique and chain style clusters is depicted in Figure 2.2. As

we will see, chain structured connected components pose a challenge to existing incremental

algorithms, something we resolve with GRINCH (Chapter 3).

A well studied separability assumption is δ-Separability [177]. Unlike the aforemen-

tioned definitions, δ-separability will be presented in terms of distances. We then will

describe how to convert to similarities in the mapping to model-based separation. This

assumption requires us to have vector data for which we can compute cluster centers.

Assumption 2. (δ-Separability [177]) A datasetX satisfies δ-separation, with respect to

some target clustering C? = {C1, C2, . . . , Ck} if there exists centers c?1, . . . c
?
k such that for

all i 6= j ||c?i − c?j || ≥ δ ·R where R := maxl∈[k] maxx∈Cl
||x− c?l || .
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(b) Chain-shaped clusters.

Figure 2.2: Model-based separation. Figure 2.2a shows two clique-shaped clusters
with data points as vertices in a graph. If f separates the graph then f(s0, s1) >
max[f(s0, s2), f(s1, s2)] because s0 and s1 form a connected subgraph. In Figure 2.2b,
even if f separates the graph, it is possible for f(s0, s1) < f(s1, s2). However, f(s1, s2) <
f(s2, s3).

Example 6. (Average Linkage & δ-separability) LetX satisfies δ-separation with δ ≥ 4

for all metrics and δ ≥ γ = 18 for the `22 distance. The linkage function, f(·), of average

linkage (Example 2) with a pairwise similarity, sim(·, ·), of negative distance satisfies

model-based separation for datasetX .

Proof. See Section 2.8.

2.5.2 Noisy Model-based Separation

While model-based separation allows some additional flexibility compared to strict

separation, it is overly rigid in its assumption that every point in a cluster has some point in

their cluster that is closer than every point outside of their cluster. We propose a loosening of

this restriction to allow some points to have nearest neighbors outside their clusters, which

we refer to as noisy model-based separation.

Intuitively, noisy model-based separation says that a point x in a ground truth cluster C?

may have a nearest neighbor x′ such that x′ is not in C?, provided that there exists another

17



point x′′ ∈ C? whose nearest neighbor is x. Formally, we need to make an additional

restriction on the linkages that separate this data:

Assumption 3. (Noisy Model-based Separation) Let G = (X, E) be a graph with con-

nected components C?. Let f : P(X) × P(X) → R+ be a symmetric linkage function

that computes the similarity of two groups of vertices. Let φ : P(X)× P(X)→ {0, 1} be

a function that returns 1 if the union of its arguments is a connected subgraph of G. The

function f separatesX if ∀C0, C1, C2 ⊆X either:

• φ(C0, C1) > φ(C0, C2)=⇒f(C0, C1) > f(C0, C2); or

• |C0| = |C1| = |C2| = 1, φ(C0, C1) > φ(C0, C2), f(C0, C2) > f(C0, C1), ∃x ∈ X

s.t. φ(C0, {x}) = 1 and C0 = argmaxx′∈X f({x}, {x′})

In Figure 2.3, we give an example of two closely datasets one that satisfies model-based

separation and the other that satisfies noisy model-based separation. The figure shows the

linkage functions between pairs of points. In the noisy model-based separated data, we

observe that the node b has d as its nearest neighbor despite being in different clusters, but

that there exists another point c which has b as its nearest neighbor.

2.6 Algorithms

In this section, we review several clustering algorithms that are the basis of this work.

2.6.1 Hierarchical Agglomerative Clustering

Given a datasetX , agglomerative methods work in a sequential round-based fashion,

merging together clusters from the previous round. HAC is perhaps the best known agglom-

erative method. Each round of HAC (or, equivalently, level of the tree) is a flat clustering of

X; we denote the clustering from the ith round as C(i). The initial round of the algorithm

begins with each point in a separate cluster C(0) = {{x} | x ∈X}. In each round, the two
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Figure 2.3: Model-based Separation. The node colors indicate the ground truth clusters.
Edge directions indicate nearest neighbor relationships. Edge weights are symmetric similar-
ities. (Left) An example of a graph that satisfies model-based separation. (Right) A slightly
modified graph that only satisfies noisy-model-based separation. Observe how the nearest
neighbor of b is the node d which is in another cluster.

clusters among those in the previous round that are most similar according to the linkage

function are merged together. We use C(i) = {C1, · · · , CK} to refer to round i.

C,C ′ = argmax
B,B′∈C(i−1)×C(i−1)

f(B,B′) (2.9)

C(i) =
(
C(i−1) ∪ {C ∪ C ′}

)
\ {C,C ′}. (2.10)

This process continues until a complete tree or until a desired number of clusters is

discovered, a threshold on similarity is met, or a full tree is built. Pseudocode for HAC is in

Algorithm 1. Let L be the number of rounds of the algorithm, a hierarchical clustering is

formed by ∪Li=1C
(i).

2.6.2 Reciprocal Nearest Neighbor

For certain linkage functions, we can design more efficient algorithms that will produce

the same tree structure as Algorithm 1.
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Algorithm 1 Hierarchical Agglomerative Clustering (HAC)
1: Input: X : Dataset , f : Linkage
2: Output: C(0), · · · ,C(i) : A sequence of flat clusterings that corresponds to a hierarchical

clustering ofX
3: C(0) ← {{x1}, . . . , {xN}}
4: i← 0
5: while |C(i)| > 1 do
6: i← i+ 1
7: C,C ′ = argmaxB,B′∈C(i−1)×C(i−1) f(B,B′)

8: C(i) =
(
C(i−1) ∪ {C ∪ C ′}

)
\ {C,C ′}.

9: return C(0), · · · ,C(i)

Definition 7. (Reducibility [55]) A linkage function f is said to be reducible if for any

clusters in round i of HAC, C,C ′, C ′′ ∈ C(i), s.t., C ∪ C ′ are reciprocal nearest neighbors,

f(C,C ′) > max(f(C,C ′′), f(C ′, C ′′)), and C ∪ C ′ ∈ C(i+1), then f(C ∪ C ′, C ′′) ≤

max(f(C,C ′′), f(C ′, C ′′)).

More efficient algorithms for linkage functions that satisfy reducibility are well estab-

lished [55, 181, 216, 217].

Reciprocal nearest neighbors are defined as two clusters C,C ′ in a clustering C which are

most similar to one another than any other cluster. The reciprocal nearest neighbor algorithm

(RecipNN) [217] builds the clustering of round C(i) by merging all pairs of reciprocal nearest

neighbors in C(i):

R(i) = {(C,C ′) | C ′ = argmax
C′′∈C(i−1)\{C}

f(C,C ′′) ∧ C = argmax
C′′∈C(i−1)\{C′}

f(C ′, C ′′)} (2.11)

C(i) =
(
C(i−1) ∪ {C ∪ C ′|(C,C ′) ∈ R(i)}

)
\ {C ′′|C ′′ ∈ {C,C ′}, (C,C ′) ∈ R(i)}.

(2.12)

For linkage functions that are reducible, this algorithm will produce the same hierarchical

clustering as hierarchical agglomerative clustering [217].

Interestingly, both HAC and RecipNN will be able to correctly cluster model-based

separated data. However, neither one can correctly cluster noisy model-based separated

data.
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Algorithm 2 Reciprocal Nearest Neighbor Algorithm (RecipNN)
1: Input: X : Dataset , f : Linkage
2: Output: C(0), · · · ,C(i) : A sequence of flat clusterings that corresponds to a hierarchical

clustering ofX
3: C(0) ← {{x1}, . . . , {xN}}
4: i← 0
5: while |C(i)| > 1 do
6: i← i+ 1
7: R(i) = {(C,C ′) | C ′ = argmaxC′′∈C(i−1)\{C} f(C,C

′′) ∧ C =
argmaxC′′∈C(i−1)\{C′} f(C

′, C ′′)}
8: C(i) = (C(i−1) ∪ {C ∪ C ′|(C,C ′) ∈ R(i)}) \ {C ′′|C ′′ ∈ {C,C ′}, (C,C ′) ∈ R(i)}
9: return C(0), · · · ,C(i)

2.6.3 Affinity Clustering

Affinity clustering [31] is another round-based algorithm, which is inspired by the classic

minimum spanning tree algorithm, Borůvka’s algorithm[49]. As in HAC and RecipNN,

Affinity builds a flat partition in each round round. In round i of Affinity, each cluster C

from round i− 1 finds its nearest neighbor. Clusters for the round i are formed by merging

together all clusters that are connected to one another by the nearest neighbor relation. Let’s

now more rigorously define what we mean by connected. We call the set of connected

clusters an affinity component:

Definition 8. (Affinity Component) Clusters Cj, Ck ∈ C are defined to be part of the

same affinity component according if there exists a path P ⊆ C defined as {Cj =

Cs0 , Cs1 , Cs2 , . . . CsR−1
, CsR = Ck}, where: Csr−1 = argmaxC∈C\{Csr} f(Csr , C) and/or

Csr = argmaxC∈C\{Csr−1}
f(Csr−1 , C). We use AC(Cj, Ck,C) = 1 to denote that Cj and

Ck are in the same affinity component.

Inference at round i works by merging all clusters in the same affinity component

together. Computationally, this is building a graph with nodes as the affinity components

from the previous round and edges between pairs of nodes that are nearest neighbors. We

define, AC(Cj,C), as a union of all sub-clusters in C that are within the affinity component

of Cj , i.e.,
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AC(Cj,C) :=
⋃
C∈C,

AC(Cj ,C,C)=1

C. (2.13)

Thus, AC(Cj,C
(i−1)) is a new cluster, created by taking a union of all clusters from round

i− 1 that are in the sub-cluster component of Cj . We create the flat partition at round i, C(i),

as the set of all of these newly found clusters:

C(i) := {AC(C,C(i−1)) |C ∈ C(i−1)}. (2.14)

Algorithm 3 Affinity Clustering
1: Input: X: dataset , f : Linkage
2: Output: (C(0),C(1), . . .): One flat partition per round
3: C(0) ← {{x} | x ∈X}
4: i← 0
5: while |C(i)| > 1 do
6: i← i+ 1
7: C(i) := {AC(C,C(i−1)) |C ∈ C(i−1)} where AC(C,C) :=

⋃
C′∈C,

AC(C,C′,C)=1

C ′

8: return (C(0), . . . ,C(i))

2.7 Overview of Related Work

Clustering is a fundamental task in machine learning and a widely studied unsuper-

vised learning problem. We attempt to provide a high level overview of key topics and

approaches in clustering with high level overviews of data assumptions, clustering models,

and algorithms for discovering flat, hierarchical, and DAG-structured clusterings in the

offline (batch), incremental/online, and dynamic (addition/deletion) setting. We also refer

readers to several excellent texts for more background on clustering [9, 153].

2.7.1 Flat Clustering

Flat clustering methods can be categorized as approaches optimizing a particular objec-

tive (e.g., K-Means or correlation clustering) or algorithmic approaches (e.g., DBSCAN)
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as well as whether the clustering produced assigns each point to a single cluster (hard

assignment) or not (soft assignment).

Frequently used objectives for flat clustering include K-Means, K-Center, and K-Median

[21, 27, 28, 41, 52, 115, 128, 140, 143, 144, 153, 191, 195, 244, 264, 270, 270, 271, inter

alia], correlation clustering [7, 10, 12, 14, 16, 30, 67, 78, 98, 162, inter alia], spectral

clustering[25, 80, 100, 116, 186, 222, 250, 289, inter alia], affinity propagation [118, 249,

252, 278], mean-shift [76, 77, 86, 119, 254] and others [53, 157, 176, 230].

Algorithms for optimizing these objectives include approaches for initialization [8,

22, 24, 270], scaling to large numbers of clusters [90, 103, 109, 295], using coresets

[8, 74, 142, 244], stochastic gradient based methods [50, 246] and others [28, 264]. Most

closely related to this thesis, there is a multitude of work on optimizing these objectives in

the online setting [12, 15, 39, 40, 66, 71, 79, 82, 185, 194, 215, 307, inter alia].

Density-based methods such as DBSCAN [112] are also widely studied. There are

a number of online/incremental/streaming and hierarchical variants of these methods

[20, 56, 57, 154]. There is also a close relationship between these methods and single

linkage hierarchical clustering as well as hierarchical clustering with linkage functions more

generally [72].

Closely related to the aforementioned clustering objectives are probabilistic models for

clustering such as mixture models. Inference techniques for these models include scalable,

distributed approaches of particular interest to this thesis [11, 105, 127, 149, 220, 285, 295,

296, inter alia]. It is important to note work on microclustering and its importance to entity

resolution [35, 36, 37, 258]. These works introduce prior distributions such that the number

of clusters grows sublinearly in the size of the dataset.

There is also a significant amount of work combining clustering and representation

learning [47, 61, 62, 65, 158, 179, 247, 265, 287, 290, 297, inter alia]. These works learn

representations of data (e.g., text or images) in such a way that the embedding space has

meaningful cluster structure.
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2.7.2 Hierarchical and DAG-Structured Clustering

Hierarchical clustering can be broadly categorized into algorithmic approaches and

their approximations [1, 56, 97, 114, 121, 160, 174, 217, 218, 281, 284, 300, inter alia],

approaches aimed at recovering data following a particular separation assumption [26, 29,

170, inter alia], and approaches optimizing a particular cost or objective [68, 69, 70, 83, 94,

106, 151, 214, 277, inter alia].

Most closely related to this thesis is work on building hierarchical clusterings in an online,

incremental, or streaming manner [97, 170, 174, 203, 210, 211, 223, 224, 235, 284, 300].

BIRCH, one of the most widely used algorithms, builds a tree in a top down fashion splitting

nodes under a condition on the mean/variance of the points assigned to a node [121, 300].

The BICO algorithm of Fichtenberger et al. [114] run BIRCH on coresets extracted from

a large data stream. Widyantoro et al. [284] use a bottom-up approach in the incremental

setting. Kranen et al [174] build an adaptive index structure for streaming data that allows for

weighting points based on their recently of arrival. Menon et al [203] present an approach

that also uses tree re-arrangements. Those re-arrangements remove the ancestors of the

nearest neighbor of the newly added point and rebuild the remaining subtrees with HAC.

Concurrent with this thesis work, Rajagopalan et al [235] present hyperplane-based methods

that are invariant to the data ordering.

Our work is also closely related to the tree-based clustering methods proposed by

[26] and [29]. These methods also build a tree structure in a bottom up manner using

round-specific thresholds to determine the mergers. This work, in fact, uses less restrictive

separation models than those considered in this thesis. Note that this work [29] uses a

particular linkage function to discover tree structures that contain the target partition, given

the more flexible separation model. Our model-based separation analysis, on the other hand,

presumes a linkage function with the particular properties is given. We note that the more

robust linkage functions from this related work do come with additional an computational

expensive.

24



A variety of objective functions have been proposed for hierarchical clustering. Some

work has use integer linear programming to perform hierarchical agglomerative clustering

[126]. Notably, Dasgupta’s cost function [94] has widely studied [68, 69, 70, 83, 214, 277].

The cost, which is defined as the sum over all pairs of datapoints of the similarity of the

pair multiplied by the number of leaves of the least common ancestor of the pair, prefers

trees which place similar points together near the leaves of the structure. Hierarchical

agglomerative clustering has also been shown to be effective for k-means [136].

Modeling distributions over tree structures has been the subject of a large body of work,

including various types of Bayesian non-parametric models [43, 124, 151, 169, 227, inter

alia]. Bayesian non-parametric models typically define a posterior distribution over tree

structures given data such as diffusion trees [169, 221], coalescent models [51, 151, 262],

and in the case of grouped data, the nested Chinese restaurant processes [43] and nested

hierarchical Dirichlet processes [227]. Other models, such as tree structured nested sticking

breaking, provide a distribution over a different class of tree structures, one for which data

can sit at internal nodes [124]. Factor graph-based distributions over tree structures such as

[283] on the other hand support a flexible class of distributions over tree structures as in our

approach. Inference in factor graph models as well as many of the Bayesian non-parameteric

models is typically approximate or performed by sampling methods. Bayesian hierarchical

clustering is a recursive, probabilistic, hierarchical model for data [146], which is related to

agglomerative methods [181].

Scalability is widely considered in hierarchical clustering [31, 105, 106, 121, 152, 159,

160, 213, 219, 225, 243, 291, inter alia]. Dhulipala et al [101] propose efficient, near linear

time algorithms for graph-based data. Abboud et al [1] propose LSH-based approaches for

Ward and average linkage HAC. Yaroslavtsev and Vadapalli [291] use a graph sparsification

approach along with parallel minimum spanning tree approach to achieve provably good

approximate minimum spanning trees. Other work has use techniques to reduce the number

of distance computations required to perform hierarchical clustering [111, 175, 248]. There
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is also a multitude of work on distributed methods [31, 121, 159, 160, 213, 225, 243, 291,

inter alia].

The discovery of DAG-structured clusterings has been considered by previous work as

PoClustering [187, 188] (poset clustering), overlapping hierarchical clustering (OHC) [156],

and others [33, 34, 59, 88, 102, 120, 155, 173, 201, inter alia]. In our empirical comparison,

we compare to OHC which shares a similar structure to methods such as PoCluster [187,

188] and CLIXO [173], in their sequential consideration of ordered pairwise similarities.

Pyramidal clustering [34, 102] represent a special case of DAG-structured clustering where

nodes have at at most two parents. In the same way the relationship between ultrametrics

and tree structures has been explored [13, 60, 84], theoretical work has considered the

relationship between different kinds of metrics and DAG-structured clusterings as well as

more general representational capacity considerations [34, 59, 88, 120, 201].

Mixed membership models such as sparse dictionary learning [197, inter alia] and latent

feature models [135, inter alia] produce an assignment of points to overlapping clusters.

These approaches typically attempt to reconstruct a data matrix and use the overlapping

clusters to capture different components of each data point. Our work, on the other hand,

represents alternative clusters, where each point is an equal member of its clusters. Our work

differs from topic models and related models that build tree and DAG structures [227, 298,

inter alia] in that we do not operate on grouped data.

Other methods that allows data to exist simultaneously in multiple clusters include

ego-splitting based approaches [110]. Ego-splitting methods operate on graph-based data

and create duplicate copies of certain nodes in the graph to allow the same node to exist in

multiple clusters. We note that these approaches are limited to flat, not nested structures.

Geometric embeddings such as order [272] and box [274] embeddings can be used

to represent partially ordered sets and DAGs. Directly representing every member of the

powerset of a dataset using these methods is computationally infeasible and so would not be

a reasonable alternative. However, these methods can also be used to define distributions
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over the powerset. Crucially, these representations are closed under intersection and given

a collection of elements, all subsets of the elements can be represented by combining the

geometric embeddings of the base elements.

There is also work that tries to simultaneous learn representations of data and form a

hierarchical clustering of the data [64, 130, 273, 305].

Finally, it is important to note related work in efficient data structures for operating on

dynamic graphs [2, 3, 4, 5, 6, 17, 117, 125, 147, 147, 148, 150, 238, 240, 256, 260, 261, 266,

inter alia]. This work allows for graph connectivity, minimum spanning trees, and other

properties be maintained efficiently in the presence of node and edge additions and deletions.

2.8 Proofs and Additional Details

Example 6 (Average Linkage & δ-separability) Let X satisfies δ-separation with

δ ≥ 4 for all metrics and δ ≥ γ = 18 for the `22 distance. The linkage function, f(·),

of average linkage (Example 2) with a pairwise similarity, sim(·, ·), of negative distance

satisfies model-based separation for datasetX .

Proof. To see why, lets begin with the metric case. We use c to refer to the center of cluster

C. Using the triangle inequality we have that:

||c∗i − c∗j || ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

||c∗i − x||+ ||x− y||+ ||y − c∗j || (2.15)

Re-arranging terms we have:

||c∗i − c∗j || ≤
1

|X|
∑
x∈X

||c∗i − x||+
1

|X||Y |
∑
x∈X

∑
y∈Y

||x− y||+ 1

|Y |
∑
y∈Y

||y − c∗j || (2.16)

With further re-arrangements,

||c∗i − c∗j || −
1

|X|
∑
x∈X

||c∗i − x|| −
1

|Y |
∑
y∈Y

||y − c∗j || ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

||x− y|| (2.17)
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Since ||c∗i − c∗j || ≥ δ ·R, where (see Assumption 2), R := maxi∈[k] maxx∈C∗i ||x− c∗i ||:

(δ − 2) ·R ≤ ||c∗i − c∗j || −
1

|X|
∑
x∈X

||c∗i − x|| −
1

|Y |
∑
y∈Y

||y − c∗j || ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

||x− y||

(2.18)

X and Y may be clusters from any ground truth cluster. Now, let’s consider the average

linkage for two subsets from the same ground truth cluster. For X ⊂ C∗i and X ′ ⊂ C∗i :

1

|X||X ′|
∑
x∈X

∑
x∈X′
||x− x′|| ≤ 1

|X||X ′|
∑
x∈X

∑
x′∈X′

||c∗i − x||+ ||c∗i − x′|| ≤ 2R. (2.19)

We need 2R < (δ − 2)R to differentiate two sets from the same cluster from sets from

different clusters. We can do this if δ > 4.
We can repeat the same analysis if `22 distance is used. Using the relaxed triangle

inequality [136] for `22, we have:

‖c∗i − c∗j‖22 ≤ 3

 1

|X||Y |
∑
x∈X

∑
y∈Y
‖c∗i − x‖22 + ‖x− y‖22 + ‖y − c∗j‖22

 (2.20)

‖c∗i − c∗j‖22 ≤ 3

 1

|X|
∑
x∈X
‖c∗i − x‖22 +

1

|X||Y |
∑
x∈X

∑
y∈Y
‖x− y‖22 +

1

|Y |
∑
y∈Y
‖y − c∗j‖22

 (2.21)

Re-arranging the above:

1

3
‖c∗i − c∗j‖22 −

1

|X|
∑
x∈X

‖c∗i − x‖22 −
1

|Y |
∑
y∈Y

‖y − c∗j‖22 ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

‖x− y‖22

(2.22)

Since ‖c∗i − c∗j‖22 ≥ δ ·R and by the definition of R,

(
1

3
δ − 2) ·R ≤ 1

3
‖c∗i − c∗j‖22 −

1

|X|
∑
x∈X
‖c∗i − x‖22 −

1

|Y |
∑
y∈Y
‖y − c∗j‖22 ≤

1

|X||Y |
∑
x∈X

∑
y∈Y
‖x− y‖22

(2.23)
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However, for any two subclusters X,X ′ ⊂ C∗i then we know that:

1

|X||X ′|
∑
x∈X

∑
x∈X′
‖x− x′‖22 ≤ 2

(
1

|X|
∑
x∈X

‖c∗i − x‖22+ ≤
1

|X ′|
∑
x∈X′
‖c∗i − x′‖22

)
≤ 4R.

(2.24)

And so if (1
3
δ− 2)R > 4R (i.e., δ > 18) we can differentiate sets that are from the same

ground truth cluster from those that are of different clusters.

Using the above analysis, if we have a linkage function f which is the negative average

distance between points, then with model-based separation condition will hold with the

settings of δ given above, since any two subsets of data from the same cluster will have

higher similarity than any two subsets of data from different clusters. �
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CHAPTER 3

TREE RE-ARRANGEMENTS FOR INCREMENTAL
HIERARCHICAL CLUSTERING

In this chapter, we present efficient algorithms for incremental hierarchical clustering.

We consider a setting in which we observe a dataset one point at a time and are asked to

produce a tree structure that incorporates the newly arrived data at each time step. The core

of our algorithmic approaches is the use of data-driven tree re-arrangements to non-greedily

handle the stream of data. These tree re-arrangements allow us to efficiently reconsider

a small handful of past decisions. We begin by presenting algorithms that use local re-

arrangements in the form of rotations. We then present algorithms that use global tree

re-arrangements.

3.1 Warm-Up: Greedy Algorithms

Let’s begin by considering a simple (though not particularly effective) greedy algorithm

for incremental hierarchical clustering. We observe the dataset X one point at a time,

x1, . . . , xN . We are asked to produce at time step i, a hierarchical clustering Ti for points

x1, . . . , xi after the point xi is observed.

To produce the tree Ti, the greedy algorithm begins with Ti−1. For the incoming point, xi,

we find the the nearest neighbor point, which we refer to as v, among the first x1, . . . , xi−1

points, according to the linkage function:

v = argmax
x∈x1,...,xi−1

f({x}, {xi}). (3.1)
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Algorithm 4 GREEDY

1: Input: xi: the point to add, Ti−1: the hierarchical clustering built on the previous i− 1
points, f : a linkage function

2: Output: Ti: a hierarchical clustering of points 1 to i.
3: v = argmaxx∈x1,...,xi−1

f({x}, {xi})
4: Let anc(v, Ti−1) := {C | C ∈ Ti−1, {v} ⊂ C}
5: Ti ← Ti−1 \ anc(v, Ti−1)
6: Ti ← Ti ∪ {C ∪ {xi}|C ∈ anc(v, Ti−1)}
7: Ti ← Ti ∪ {v, xi}
8: return Ti

The greedy algorithm creates a new node, which will have xi and v as its children. This

new node, which corresponds to the cluster {xi, v}, becomes v’s direct parent and makes

v’s former parent (in Ti−1) becomes v’s grandparent in Ti. All of v’s ancestors in Ti−1
will change to now include xi in Ti. In the hierarchical clustering set-based notation, the

algorithm can be summarized as:

Ti =(Ti−1 \ anc(v, Ti−1)) ∪ {C ∪ {xi} | C ∈ anc(v, Ti−1} ∪ {{xi, v}}, (3.2)

where anc(v, Ti−1) the ancestors of v in Ti−1, i.e., {C | C ∈ Ti−1, {v} ⊂ C}. We also

provide pseudo-code for the greedy algorithm in Algorithm 4.

It is easy to see how this greedy algorithm will make mistakes, even when the data

follows the most restrictive assumptions (and therefore is easiest to cluster). Suppose the

first two data points, x1 and x2, are of the same ground-truth cluster and the third data point,

x3 is of a different cluster. Even if x1 and x2 are more similar to each other, x3 necessary

will select one of these two as its nearest neighbors (say GREEDY adds x3 as a sibling of

x1). The ground-truth clustering, in which x1 and x2 are in a cluster without x3, is not a tree

consistent partition of the resulting tree (and any subsequent trees on the remaining portion

of the dataset). We will see in the following two sections how we can recover from such

mistakes with non-greedy tree re-arrangements.
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3.2 Local Re-arrangements with Tree Rotations

To recover from the kinds of greedy mistakes of the aforementioned algorithm, we

can apply local tree rearrangements. Inspired by classic self-balancing binary search tree

algorithms, we implore a rotation operation which swaps a node and its aunt in the tree

structure. We initially designed rotation operations for points in Euclidean space [170] and

then generalized the operation to any linkage function [210].

As in the greedy algorithm, the rotation-based algorithm will create a binary tree, Ti,

from a binary tree, Ti−1, and the newly observed point xi. The rotation-based algorithm will

insert xi as a sibling of its nearest neighbor. Then, xi will be rotated up the tree according to

condition that encourages the linkage function similarity between a node and its sibling to

be higher than between a node and its aunt.

Let v be the nearest neighbor leaf of xi as defined in Equation 3.1. We apply the insertion

step, as in the greedy algorithm to acquire Ti, to place xi as a sibling of v. We will then

apply rotations to Ti. A rotation is applied if:

f(v,sib(v)) < f(v,aunt(v)), (3.3)

where the functions sib(·) and aunt(·) return the sibling and aunt of their input, respec-

tively. In words, if the node achieves a higher score under f with its aunt than with its

sibling, then the aunt and sibling should be swapped.

Let’s now define this rotation operation in terms of the set-based notation. Observe that

the only node that changes in the rotation is parent of v. The parent containing v and sib(v)

is removed and a node containing v amd aunt(v) is created. A rotation operation applied

to node v in Ti is defined as:

(Ti \ {parent(v)}) ∪ ({v} ∪ aunt(v)) (3.4)
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Algorithm 5 ROTATE

1: Input: xi: the point to add, Ti−1: the hierarchical clustering built on the previous i− 1
points, f : a linkage function

2: Output:Ti: a hierarchical clustering of points 1 to i.
3: � Find nearest neighbor among the leaf data points
4: Let lvs(Ti−1) := {C | C ∈ Ti−1, |C| = 1}
5: V ← argmaxC∈lvs(Ti−1)

f({xi}, C)
6: � Find proper sibling via rotations
7: while f(V, {xi}) < f(V,sib(V )) and V is not the root of Ti−1 do
8: V ← parent(V )
9: � Update the ancestors of V to include the newly arrived point xi

10: Let anc(V, Ti−1) := {C | C ∈ Ti−1, V ⊂ C}
11: Ti ← Ti−1 \ anc(V, Ti−1)
12: Ti ← Ti ∪ {C ∪ {xi}|C ∈ anc(V, Ti−1)}
13: Ti ← Ti ∪ {V ∪ {xi}}
14: return Ti

where parent(·) gives the parent of a node in the tree structure and aunt(·) gives the

aunt (parent’s sibling).

In our proposed method, we apply recursive rotations, checking the rotation condition

(and applying rotations as needed) at the ancestors of the newly added point. Note that in

applying rotations in practice, the tree structure need not be continuously altered / updated

for each rotation. Instead, we can instead simply can test v and each of v’s ancestors to find

the place in which xi would stop rotating and simply insert the point as a sibling of that

node. Algorithm 5 describes this rotation-based algorithm.

This simple operation helps us recover from the aforementioned failure of the greedy

algorithm in the simple example. Assume our dataset follows clique model-based separation

(Example 4) and suppose x1 and x2 are in the same cluster and x3 in a different ground truth

cluster then f({x1}, {x2}) > f({x1}, {x3}). Algorithm 5 would proceed in the following

way: x1 is observed, x2 is added as a sibling of x1, x3 has (wlog) x1 as its nearest neighbor,

a rotation is applied keeping x1 and x2 as siblings with x3 as their aunt. The tree contains

the ground-truth clustering at this point.
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The rotation-based algorithm carries with it theoretical guarantees with respect to clique

model-based separation separation (Example 4). This assumption states (1) the pairwise

linkage function similarities between pairs of points from the same ground truth cluster

are greater than similarity between any two points across clusters (2) the linkage function

similarity between two sets of points from the same ground truth cluster is greater than

between two sets that contain points from different ground truth clusters. Intuitively, (1)

indicates that the nearest neighbor of each point will be a point from the same ground truth

cluster. And when xi arrives, if it is not the first point in its cluster, its nearest neighbor v

will be from the same ground truth cluster. Condition (2) indicates that when rotations are

applied they will either rotate the first point of a cluster out of subtree corresponding to a

pure ground truth cluster or swap points that all belong to the same ground truth cluster.

Condition (2) indicates that we will never perform rotation that swaps the sibling of a node

and its aunt if the sibling and node are of one ground truth cluster and the aunt of different

ground truth cluster. More formally, we make the following statement:

Theorem 1. Let X = {x1, . . . , xN} be a dataset and let f is a linkage function such that

X is model-based separated by f with respect to a clique structured underlying graph

(Assumption 1, Example 4). The hierarchical clustering Ti constructed via Algorithm 5 has

dendrogram purity 1.0.

Proof. See Section 3.6.

Theorem 1 indicates that after observing the entire dataset the ground truth partition will

be a tree consistent partition:

Corollary 2. LetX = {x1, . . . , xN} be a dataset and let f is a linkage function such that

X is model-based separated by f with respect to a clique structured underlying graph

(Assumption 1, Example 4). The hierarchical clustering TN constructed via Algorithm 5

contains the ground truth clustering C?.
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Figure 3.1: The graft subroutine. Dotted lines denote new nodes and mergers. Before x
is added, l and v′ are in disjoint subtrees despite belonging to the same ground-truth cluster.
The addition of x creates the subtree with root v and initiates the graft.

3.3 Global Re-Arrangements with Grafting and Restructuring

Even the ROTATE algorithm (Algorithm 5) cannot accurately recover any model-based

separated (Assumption 1) data in the incremental setting. For instance, ROTATE cannot

reliably recover chain structured clusters (Example 5).

3.3.1 Subtree Grafting

We introduce a non-local tree rearrangment called a graft, which facilitates the discovery

of such chain-structured connected components. To insert the point xi, we first we use the

ROTATE algorithm to produce Ti. Our proposed method will invoke a graft subroutine. At

a high level, the graft procedure with respect to an ancestor node of xi, V ∈ Ti, searches

Ti for a node V ′ that is both similar to V and dissimilar from its current sibling, sib(V ′).

If such a subtree is found, V ′ is disconnected from its parent and made a sibling of V . A

visual illustration of a successful graft is depicted in Figure 3.1.

In detail, a graft searches the leaves of Ti that are not descendants of the node V for

the nearest neighbor of V called L. Then it checks if the following holds:

f(V, L) > max[f(V,sib(V )), f(L,sib(L))], (3.5)
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i.e., V and L prefer each other to their current siblings according to f . If the condition

succeeds, we will re-arrange the tree structure detaching V and L from their old siblings and

making V and L siblings under a common parent P such that P is the child of V ’s former

parent. That is, a graft operation between V and L in tree Ti produces the following tree

structure:

(Ti \ (ancs(L, Ti) ∪ ancs(V, Ti))) ∪ {V ∪ L}

∪ {C \ L | C ∈ ancs(L, Ti)} ∪ {C ∪ L | C ∈ ancs(V, Ti)}. (3.6)

If the condition fails because L prefers its sibling to V , retest the condition at V and L’s

parent, parent(L); if the condition fails because V prefers its sibling to L, then retest the

condition at parent(V ) and L. Continue to check recursively until the condition succeeds

or until the first time two nodes, V and L, are reached such that one is the ancestor of the

other. The grafting subroutine is just part of our overall proposed algorithm. Pseudocode for

the graft subroutine can be found in Algorithm 6.

Algorithm 6 graft (V, Ti, f)
1: Input: V : a node, Ti: the tree containing the first i datapoints, f : linkage function
2: Output: the ancestor of V where the grafting sub-routine ceased operation.
3: L = {argmaxx∈Xi, x 6∈V f(x, V )}.
4: V ′ ← lca(V, L, Ti) � The least common ancestor of V and L
5: S ← V
6: while V 6= V ′ and L 6= V ′ and sib(V ) 6= L do
7: if f(V, L) > max[f(V,sib(V ), f(L,sib(L))] then
8: Z ← sib(V )
9: A← {C ∪ L | C ∈ ancs(V, Ti)}

10: B ← {C \ L | C ∈ ancs(L, Ti)}
11: Ti ← (Ti \ (ancs(L, Ti) ∪ ancs(V, Ti))) ∪ {V ∪ L} ∪ A ∪B
12: restruct(Z, lca(Z, V, Ti), f)
13: break
14: if f(V, L) < f(L,sib(L)) then L ← parent(L)
15: if f(V, L) < f(V,sib(V )) then V ← parent(V )
16: if V = S then return V ′ else return V
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Figure 3.2: Poorly structured tree. Even though v’s leaves form a connected subgraph in the
graph on the left of the Figure (i.e., they all belong to cluster Ci), v.l’s descendant leaves,
x1 and x2, are disconnected. An attempt to graft either x1 or x2 from a node whose
descendants are not in Ci may succeed.

3.3.2 Tree Restructuring

While the graft subroutine facilitates discovery of chain-structured clusters, poorly

structured trees are susceptible to having the graft subroutine disconnect previously

discovered ground-truth clusters. As an example, consider Figure 3.2, in which lvs(v)

form the connected subgraph Ci (i.e., they all belong to the same ground-truth cluster).

Consider v’s left child, v.l, and its descendants, which form a disconnected subgraph. An

attempt to graft either descendant, x1 or x2, may succeed, even when initiated from a

node (not depicted) whose descendants are not connected to Ci. After such a graft, T

cannot contain a tree-consistent partition that matches the ground-truth clustering.

Notice that a subtree can defend against spurious grafts by ensuring that each of its

descendant subtrees is connected. For example, in Figure 3.2, if x2 and x3 were swapped,

then each descendant subtree of v would be connected. Moreover, after such a swap, grafts

from nodes whose descendants were not part of Ci would necessarily fail (assuming that f

separates the graph).

During tree construction, the only step that can result in a connected subtree with

disconnected descendants is the graft subroutine (see Section 3.4). We introduce the

restructure (restruct) subroutine, which is performed after a successful graft, and
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reorganizes a subtree with the intent of making each of its descendants connected. Let V be

a node that was just grafted, Z be the previous sibling of V (i.e., before the graft) and let

R = lca(Z, V ) be the current least common ancestor of Z and V . restruct is initiated

from V . First, the siblings of the ancestors of V (until R) are collected. Then, we find the

node in the collection most similar to Z. If that node is more similar to Z than Z’s current

sibling (according to f ), the two are swapped. The intuition here is that if a graft left

Z and its new sibling disconnected, then the swap serves as a mechanism to restore the

connectedness of Z’s parent. Such swaps are attempted from the ancestors of Z until R.

Pseudocode appears in Algorithm 7.

3.3.3 Grinch

Our proposed algorithm, GRINCH, which stands for: Grafting and Rotation-based

INCremental Hierarchical clustering combines the rotation, graft, and restructure tree

rearrangement operations. The algorithm operates by first applying the ROTATE algorithm.

Then we attempt a graft recursively from each ancestor of xi. Each time a graft is

successful, restructure the tree to group similar items together. Algorithm 8 presents the

GRINCH algorithm.

Algorithm 7 restruct(Z,R, Ti, f)
1: Input: Z: The former sibling of the node (V ) which initiated the graft, R: The LCA of
Z and V , Ti: the hierarchical clustering built on the first i points, f : a linkage function

2: while Z 6= R do
3: A← {sib(C) | a ∈ ancs(Z, Ti)\ancs(R, Ti)}
4: M ← argmaxC∈A f(Z,C)
5: if f(Z,sib(Z)) < f(Z,M) then
6: � Re-arrange tree structure such that sib(Z) and M switch places.
7: Ti ← swap(sib(Z),M)
8: Z ← parent(Z)
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Algorithm 8 GRINCH (xi, Ti−1, f)
1: Input: xi: the point to add, Ti−1: the hierarchical clustering built on the previous i− 1

points, f : a linkage function
2: Output: Ti: a hierarchical clustering of points 1 to i.
3: Ti ← ROTATE(xi, Ti−1, f)
4: V ← parent(xi)
5: while V 6= root(Ti) do
6: V ← graft(V, Ti, f)
7: return Ti

3.4 Theoretical Analysis

We would like to understand what kinds of data GRINCH will be effective at clustering.

We do so by making assumptions about the data and showing that GRINCH can recover this

separated data. While data in practice may not satisfy these assumptions, this analysis shows

that GRINCH will operate as expected when clusterings are clearly defined and provides

insights into the representational power of GRINCH.

We will show that if data follows model-based separation (Assumption 1) GRINCH will

recover a tree structure with the target partition as a tree consistent partition regardless of

the data order.

Theorem 3. Given a dataset X and a linkage function f such that X is model-based

separated with respect to f and latent graph G = (X, E), let C? be the target partition

corresponding to the separated data. GRINCH builds a hierarchical clustering T such that

C? is a tree consistent partition of T regardless of the ordering of points inX .

To prove this, we will show that the hierarchical clustering Ti produced by GRINCH after

observing each point xi, will satisfy two properties of completeness and strong connectivity.

In particular, we will look at how each subroutine (rotation, graft, restructure) preserves

these properties upon the arrival and processing of each point xi. We first define these two

properties:

Definition 9 (Connectivity). Given a dataset X and a linkage function f such that X is

model-based separated with respect to f and latent graph G = (X, E), a node V ∈ T V
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is connected if V is a connected subgraph of G, strongly connected if every descendant of

V in T is connected, and maximal strongly connected node if V is strongly connected and

parent(V ) is not strongly connected. We say that the tree T satisfies strong connectivity

if all connected nodes in T are strongly connected.

Definition 10 (Completeness). Given a datasetX and a linkage function f such thatX is

model-based separated with respect to f and latent graph G = (X, E), a node V ∈ T V is

complete if V is a connected component in G. The tree T satisfies completeness if the set

of connected components of G are a tree consistent partition of T .

x1 x2 x5 x7

x4x3 x6 x8

(a) A graph G = (X , E).

c1

v1 v2

x1 x3 x2 x4

v3

c2 c3

x5 x6 x7 x8

(b) Strongly connected &
complete.

c1

x1 x2 x3 x4

v3

c2 c3

x5 x6 x7 x8

v1’ v2’

(c) Complete only.

Figure 3.3: Connectivity & Completeness. A graph G with 3 connected components
(Figure 3.3a). In Figure 3.3b and Figure 3.3c, black-bordered nodes are strongly connected,
thick-black-border nodes are maximal, gray bordered nodes are connected (but not strongly)
and nodes with dashed borders are disconnected. The tree in Figure 3.3b satisfies strong
connectivity and completeness. The tree in Figure 3.3c does not satisfy strong connectivity
because v1 is disconnected.

First, we analyze the rotation operation. Rotations will preserve strong connectivity, but

will not guarantee completeness.

Lemma 1 (Rotation Lemma). Given a dataset X and a linkage function f such that X

is model-based separated with respect to f and latent graph G = (X, E), let Ti−1 be a

hierarchical clustering produced by GRINCH using linkage function f over the first i− 1

points, and Ti = ROTATE(xi, Ti−1, f) with lvs(T ) = X , all nodes that were strongly

connected in Ti−1 are strongly connected in Ti, i.e., rotations preserve strong connectivity.
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Now, we see how grafting preserves strong connectivity and completeness and how

grafting from a node can help recover a target cluster.

Lemma 2 (Grafting Lemma 1). Given a datasetX and a linkage function f such thatX

is model-based separated with respect to f and latent graph G = (X, E), let Ti, which

is built with linkage function f on the first i points of X , satisfy strong connectivity and

completeness, and let V be a node in Ti such that V is either a maximal strongly connected

node or not strongly connected. The tree, T ′i , resulting from the graft operation initiated

from V , graft(V, Ti, f), satisfies strong connectivity and completeness.

Lemma 3 (Grafting Lemma 2). Given a datasetX and a linkage function f such thatX

is model-based separated with respect to f and latent graph G = (X, E), let Ti, which is

built with linkage function f on the points x1, . . . , xi corresponding to graph Gi, satisfy

strong connectivity. Let V be strongly connected, but not complete with respect to the

first i points, V ( (C ∩ {x1, . . . , xi}) for some C that is a connected component in Gi.

Then a graft initiated from V returns a node V ′ such that V ′ is strongly connected and

V ( V ′ ⊆ C.

Lemma 4 (Restructuring Lemma). Let V ∈ Ti be strongly connected. Let A ∈ ancs(V )

be the deepest connected ancestor of V such that: A is not strongly connected, and all

siblings of the nodes on the path from V to A are strongly connected. Then restruct on

inputs V and A restructures the tree rooted at A so that A satisfies strong connectivity.

Using these lemmas we can prove Theorem 3. Grafting Lemma 2 shows that each

connected component (in the latent graph, corresponding to a cluster in target partition) is

represented by a node in the hierarchical clustering after each point is added. The other

lemmas ensure that the strong connectivity and completeness properties are preserved so

that Lemma 2 applies. See Section 3.6.6 for complete proof of Theorem 3 and proofs of

each lemma.

41



3.4.1 Worst-case running time analysis

We measure the worst-case running time of the algorithm in terms of the number of link-

age function calls. The GRINCH algorithm has four components: nearest neighbor search,

rotations, grafting, and restructuring. Under particular assumptions (N -point metric space

with expansion constant c > 2), exact nearest neighbor search is possible in O(c12 log(N))

time per query where N is the number of data points [38]. Otherwise, exhaustive O(N)

time is required unless approximate nearest neighbor search methods are used. We will

use O(T ) to refer to the time spent on nearest neighbor search. Let H be the height of the

GRINCH tree, i.e., the length of the longest root to leaf path. There can be at most O(H)

rotations applied in a call to insert. In the extreme, grafts could be recursively applied

moving all of the N − 1 leaves (those other than the new point’s sibling) one at a time in

separate grafts. Since each graft involves a nearest neighbor search, there would be in the

worst case O(NT ) computations from grafts. There can be at most O(H) swaps made

in a given restruct call, and each of these swaps involves considering O(H) ancestors,

resulting in O(H2) time overall. This results in O(NT +H2) time per data point. While

there is no guarantee on the height of trees built with GRINCH, we find in practice that they

are close to log2N as shown in Figure 3.4. If the trees had such a height, the running time

would further be reduced to: O(TN + log4(N)) per point.

3.5 Experiments

We experiment with GRINCH to assess its scalability and accuracy. We begin by

demonstrating that GRINCH outperforms other incremental clustering algorithms on a

synthetic dataset. Observing that some of the steps of GRINCH are underutilized, we present

four approximations of GRINCH’s algorithmic components. We apply each approximation

in turn and show that together they dramatically improve GRINCH’s scalability without

compromising its clustering quality. Then, we compare the approximate variant of GRINCH

to state-of-the-art large scale hierarchical clustering methods. To showcase the flexibility
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of GRINCH, we also provide experimental results in entity resolution, where the linkage

function is learned. We provide analysis of the graft subroutine–GRINCH’s distinguishing

feature–and perform experiments to demonstrate the algorithm’s robustness on adversarial

data orderings. Finally, we show two use cases of GRINCH in cross-document coreference

and in automatic knowledge-base construction.

3.5.1 Synthetic Data Experiment

In our first experiment, we compare GRINCH to other incremental hierarchical clustering

algorithms on a synthetic dataset in order to begin to understand GRINCH’s empirical

performance characteristics in a controlled manner. The data is generated so that it satisfies

model-based separation with respect to cosine similarity. In particular, the dataset contains

2,500 10,000-dimensional binary vectors that belong to 100 clusters, with 25 points per

cluster. Points in cluster k have bits 100(k−1) to 100k−1 set randomly to 1 with probability

0.1. All other bits are set to 0. This way, across cluster points have cosine similarity 0

and within cluster points can have either 0 or non-zero cosine similarity. In other words,

two points, x1 and x2, in the same cluster can appear to be dissimilar and end up in distant

regions of the tree. The representation of each internal node in the GRINCH tree is the sum

of the vectors of its descendant leaves. We compute the cosine similarity between two nodes

v and v′ as the cosine similarity between their aggregated vectors (we refer to this as cosine

linkage in the following sections). We compare GRINCH, ROTATE and GREEDY.

The experimental results reveal that GRINCH achieves perfect dendrogram purity (1.0),

which is expected given GRINCH’s correctness guarantee. ROTATE achieves a dendrogram

purity of 0.872 while GREEDY achieves 0.854. ROTATE and GREEDY do not construct trees

of perfect purity because of their inability to globally rearrange a cluster hierarchy.

3.5.2 Scalability and Approximations

Some of the algorithmic steps of GRINCH, which are required to prove its correctness,

are seldom invoked in practice. For example, and perhaps expectedly, a graft is unlikely
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Figure 3.4: The height of trees built with exact and approximate (capping, single elimination,
and single NN search) GRINCH are shown for a subset of ALOI and the Synthetic data
described in Section 3.5.1. We notice that trees are fairly balanced and not chain structured.
The height is close to (if not less than) to log2N .

to succeed between two nodes close to the root of the tree. Therefore, we introduce a handful

of approximations designed to have little effect on the quality of the clusterings constructed

by GRINCH, but also designed to make the algorithm significantly faster in practice.

1. Capping. The recursive subroutines ROTATE, graft, and restruct, improve perfor-

mance, but are also computationally expensive to check, and often are not applied.

Moreover, we notice that tree rearrangements that occur close to the root do not have

a significant, instantaneous effect on dendrogram purity. Therefore, we introduce rota-

tion, graft and restructure caps, which prohibit rotations, grafts and restructures from

occurring above a height, h.

2. Single Elimination Mode. The graft subroutine generally improves GRINCH’s clus-

tering performance, and is essential in attaining perfect purity on the synthetic dataset,

but we find that graft attempts are rejected many more times than they are accepted.

However, at times, we observe that a sequence of recursive grafts are accepted when

initiated close to the leaves. Therefore, to limit the number of attempted grafts while

retaining these graft sequences, we introduce single elimination mode. In this mode,
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ALOI
Approx. DP Time (s) # Rotate # Graft # Restr.

GRINCH (No Approx). 0.533 85.371 7107 2435 1088
w/ Cap (100) 0.533 48.452 6495 2157 686
w/ Single Elimn 0.534 39.019 6574 1586 533
w/ Single NN 0.540 22.226 6441 1516 570
w/ no Restruct 0.538 14.292 6477 1634 0
w/ no Graft 0.506 12.748 6747 0 0
w/ no Rotate 0.442 14.793 0 0 0

Table 3.1: Ablation. Each row in the table represents GRINCH with the corresponding
approximation applied in addition to all approximations contained in previous rows. The
first 4 approximations significantly decreases the computational cost of GRINCH, but do
not compromise DP. The ablation is performed for the first 5000 points of ALOI and the
Synthetic datasets.

the recursive grafting procedure terminates after a graft between v and v′ fails because

both prefer their current siblings to a merge.

3. Single Nearest Neighbor Searching. GRINCH makes heavy use of nearest neighbor

search under the linkage function f . Rather than perform nearest neighbor search

anew for each graft, when a data point arrives, we perform a single k-NN search

(k ∈ [25, 50]) and only consider these nodes during subsequent grafts (until the next

data point arrives).

4. Navigable Small World Graphs. Instead of performing nearest neighbor computations

exactly, we can perform them approximately. We employ a navigable small world nearest

neighbor graph (NSW)–a data structure inspired by search in small world networks [166,

168, 282]. To find the nearest neighbor of a data point, xi, in an NSW, begin at a

random node, v. If the similarity between xi and v is maximal among all neighbors of

v, terminate; otherwise, move to the neighbor of v most similar to xi. To insert a new

data point, xj , find its k nearest neighbors and add edges between those neighbors and a

new data point [198]. Thus, NSWs are constructed online. We simultaneous construct a

hierarchical clustering and an NSW over the data points stored in the tree’s leaves.
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To measure the effects of our approximations on the speed and quality of the resulting al-

gorithm, we conduct the following ablation. We run GRINCH on our synthetically generated

dataset as well as a random 5k subset of the ALOI [123] dataset and measure dendrogram

purity, time, and the number of calls made to ROTATE, graft and restruct. We repeat

the procedure multiple times, each time adding one of the following approximations, in

order: capping, single elimination, single nearest neighbor search and approximate nearest

neighbor search. Capping is performed at height 100. We also experiment with removal of

the graft and ROTATE subroutines.

The result of the ablation is contained in Table 3.1. We observe that, for both datasets,

each of the approximations reduces the computational cost of algorithm without effecting

the resulting DP. However, once grafts are removed, the DP drops by 3% on ALOI and

12% on the synthetic datasets. When ROTATE is also removed, DP drops by an additional

6% and 2%, respectively.

Having verified that on a subset of ALOI our approximations improve scalability at little

expense in terms of dendrogram purity, in the following experiments we report results for

GRINCH in single elimination mode and with the rotation cap set to h = 100. We did not

tune the cap parameter and used that same setting for all datasets. We mildly tune the number

of nearest neighbors connected in NSW construction setting based on the dimensionality of

the data, using values of 5 for CovType, 50 for ALOI, and 100 for the other datasets. This

can be tuned based on the nearest neighbor performance of the structure (independent of the

clustering algorithm).

3.5.3 Clustering Benchmarks

We compare GRINCH with the following 4 algorithms: GREEDY - an online hierarchical

clustering algorithm that consumes one data point at a time and places it as a sibling of

its nearest neighbor; ROTATE - an incremental algorithm that places a data point next to

its nearest neighbor and then performs rotations until Equation 3.3 holds; MB-HAC - the
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Synthetic
Approx. DP Time (s) # Rotate # Graft # Restr.

GRINCH (No Approx). 1.0 160.307 2558 578 203
w/ Cap (100) 0.993 164.328 2558 578 194
w/ Single Elimn 0.997 157.622 2523 526 184
w/ Single NN 0.993 83.014 2517 415 148
w/ no Restruct 0.993 82.262 2476 426 0
w/ no Graft 0.872 82.055 2259 0 0
w/ no Rotate 0.854 80.526 0 0 0

Table 3.2: Ablation. The same abalation as Table 3.1 on the Synthetic dataset.

mini-batch version of HAC, which keeps a buffer of size b, runs a single step of HAC using

the data points in the buffer and then adds the next record to the buffer; HAC - best-first,

bottom-up hierarchical agglomerative clustering and PERCH - a state-of-the-art large scale

hierarchical clustering method.

We run each algorithm on 5 large scale clustering datasets: CovType, a datset of forest

covertype, ALOI [123], a 50K subset of the Imagenet ILSVRC12 dataset [242] and the

Speaker dataset [132], and a 100K subset of ImageNet containing all 17K classes not just

the subset in ILSVRC12. Datasets have 500K, 50K, 100K, 36K, and 100K instances,

respectively. We run each algorithm under two different linkage functions: average linkage

and centroid cosine linkage. To compute the centroid cosine similarity between two nodes,

v and v′, first, for each node, compute the sum of the vectors contained at their descendant

leaves. Then, compute the cosine similarity between the aggregated vectors.

Results are displayed in Table 3.3, where we record the dendrogram purity averaged

over 5 replicates of each algorithm, where for each replicate we randomize the arrival order

of the data. The table reveals that GRINCH–under both linkage functions–outperforms

the corresponding versions of ROTATE and GREEDY on all datasets except for on the

CovType dataset where the methods all seem to perform equally well. This underscores the

power of the graft subroutine. GRINCH with approximate nearest neighbor search even

outperforms PERCH, which uses exact nearest neighbor search, on ALOI. Recall that, unlike
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the HAC variants, PERCH employs a specific linkage function. Seeing as the HAC variants

outperform PERCH on Speaker suggests that the ability to equip various linkage functions

can be advantageous. HAC is best on Speaker, but cannot scale to ALOI.

Algorithm Linkage CovType ILSVRC12 (50k) ALOI

GRINCH Avg 0.43 ± 0.00 0.557 ± 0.003 0.504 ± 0.002
GRINCH CS 0.43 ± 0.00 0.544 ± 0.005 0.499 ± 0.003
ROTATE Avg 0.43 ± 0.01 0.545 ± 0.004 0.476 ± 0.004
ROTATE CS 0.44 ± 0.01 0.513 ± 0.007 0.472 ± 0.003
GREEDY — 0.44 ± 0.01 0.527 ± 0.004 0.435 ± 0.004
PERCH [170] — 0.45 ± 0.004 0.53 ± 0.003 0.44 ± 0.004
PERCH-BC [170] — 0.45 ± 0.004 0.36 ± 0.005 0.37 ± 0.008
MB-HAC [170] Best 0.44 ± 0.005 0.43 ± 0.005 0.30 ± 0.002
BIRCH (incremental) [300] - 0.44 ± 0.002 0.09 ± 0.006 0.21 ± 0.004

HAC [170] Avg. – 0.54 –
BIRCH (rebuild) [300] - 0.44 ± 0.002 0.26 ± 0.003 0.32 ± 0.002
HDBSCAN [56] - 0.473 0.414 0.599

Algorithm Linkage Speaker ImageNet (100k)

GRINCH Avg 0.480 ± 0.003 0.065 ± 0.000
GRINCH CS 0.478 ± 0.003 0.062 ± 0.000
ROTATE Avg 0.407 ± 0.003 0.063 ± 0.001
ROTATE CS 0.406±0.003 0.062 ± 0.000
GREEDY – 0.317 ±0.002 0.0589
PERCH [170] – 0.37 ± 0.002 0.065±0.000
PERCH-BC [170] – 0.09 ± 0.001 0.03 ± 0.00
MB-HAC [170] Best 0.01 ± 0.002 –
BIRCH (incremental) [300] - 0.02 ± 0.002 0.02 ± 0.00

HAC [170] Avg. 0.55 –
BIRCH (rebuild) [300] - 0.22 ± 0.006 0.03 ± 0.00
HDBSCAN[56] - 0.396 -

Table 3.3: Dendrogram Purity results for GRINCH and baseline methods. We compare two
linkage functions: approximate average linkage (Avg) and cosine similarity linkage (CS).
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3.5.4 Author Coreference

Bibliographic databases, like PubMed, DBLP, and Google Scholar, contain citation

records that must be attributed to the corresponding authors. For some records, the attribution

process is easy, but for many others, the identities of a publication’s authors are ambiguous.

For example, DBLP contains hundreds of citations written by different authors named “Wei

Wang” that currently cannot be disambiguated 1. Intuitively, author coreference datasets

often exhibit chain like structures because a single citation written by a prolific author

(perhaps in a short-lived collaboration) may only be similar to a small number of that

author’s other citations and dissimilar from the rest.

Following previous work, we train a linkage function to predict the likelihood that a

group of citation records were all written by the same author [89, 255, 283]. We train our

model, that utilizes features such as coauthor names, title, venue, year, etc., by running HAC

and, at each step, use the model to predict the precision of merging two groups of records as

in [180].

We compare the 5 HAC variants in author coreference on two datasets with labeled

author identities: Rexa [89] and PSU-DBLP [141]. Evaluation is done using the pairwise

F1-score of a predicted flat clustering against the ground-truth clustering. To compute

pairwise F1-score, each pair of citations that appears in both the same ground-truth and

predicted clusters is considered a true positive; each pair of citations that belongs to different

ground-truth clusters but the same predicted cluster is considered a false positive. None of

the authors represented in the test set, have any publications in the training set.

Figure 3.4 shows the precision, recall, and pairwise F1-score achieved by each method.

The results show that GRINCH outperforms the other scalable methods on both datasets and

even outperforms HAC on DBLP. This behavior may stem from overfitting of the learned

linkage function, which is exploited by HAC; since GRINCH only approximates HAC,

1https://dblp.uni-trier.de/pers/hd/w/Wang:Wei
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Rexa DBLP
Algorithm Pre Rec F Pre Rec F
GRINCH 0.808 0.883 0.844 0.809 0.620 0.701
ROTATE 0.864 0.641 0.734 0.876 0.554 0.678
GREEDY 0.850 0.209 0.331 0.827 0.151 0.255

MB-HAC-Med. 0.807 0.881 0.843 0.375 0.631 0.461
MB-HAC-Sm. 0.922 0.333 0.483 0.697 0.151 0.247

HAC 0.805 0.887 0.844 0.741 0.600 0.664

Table 3.4: Precision, recall and F-Score of various methods on the Rexa and DBLP datasets.

it can be thought of as a form of regularization. Again, GRINCH outperforms GREEDY

and ROTATE on both datasets underscoring the importance of the ROTATE and graft

procedures.

3.5.5 Significance of Grafting

The results above indicate that GRINCH, even when employing a number of approxi-

mations, constructs trees with higher dendrogram purity than other scalable methods in a

comparable amount of time. Interestingly, GRINCH only differs from the algorithm ROTATE

in its use of the graft (and subsequent restruct) subroutine. To better understand the

significance of grafting, we compare GRINCH and the algorithm ROTATE on the first

5000 points of ALOI.

Figure 3.5a shows that dendrogram purity as a function of the number of data points

inserted for both GRINCH and ROTATE and the first 5000 points of ALOI. Echoing the

results above, by ∼ 1000 points, GRINCH dominates ROTATE.

Figure 3.5b shows the instantaneous and cumulative change in dendrogram purity due

to grafts made by GRINCH. That is, for the ith data point, xi, we record the dendrogram

purity after xi is inserted and rotations are performed (i.e., what would be executed by

ROTATE). Then, we perform grafting (if appropriate) and record the dendrogram purity

after all recursive grafts have been completed. The difference between the dendrogram

purity after grafting and before grafting (but after rotations) is the instantaneous change
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(a) Dendrogram purity per point.
(b) Instantaneous/cumulative change in DP due to

grafts.

Figure 3.5: Figure 3.5a shows the dendrogram purity of two trees, one built by GRINCH and
the other built by ROTATE, on the first 5000 points of ALOI. The dendrogram purity of the
tree built GRINCH is greater than that of the tree built by ROTATE. Figure 3.5b plots the
instantaneous and cumulative change in dendrogram purity due to grafts. While GRINCH

achieves 3% larger dendrogram purity than ROTATE

in dendrogram purity due to grafts; the sum of instantaneous changes is the cumulative

change.

Note the y-axis of Figure 3.5b, which reveals that even the most instantaneously signifi-

cant grafts only lead to minute changes in dendrogram purity (of about 0.001). Moreover,

after 5000 points, the cumulative change in dendrogram purity due to grafts is less than

0.005–hardly accounting for the difference in dendrogram purity between the tree built by

GRINCH and the tree built by ROTATE (of 0.03). We conclude from these measurements

that the increase in performance due to the graft subroutine is related to the rearrangement

of small numbers of points. These rearrangements do not immediately have significant

impact on dendrogram purity, but they do have significant long-term affects. To make this

hypothesis more concrete, consider the case in which two dissimilar data points from the

same cluster are split between two distant regions of the tree early on in clustering. The

points are never merged (via a graft) and so each point draws a significant portion of the

cluster’s other data points to its location in the tree. This has dire consequences with respect
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to dendrogram purity. If a graft is performed early on to correct the split, an adverse

scenario like this can be averted.

3.5.6 Robustness

For completeness, we perform an experiment used in previous work to test an incremental

clustering algorithm’s robustness to data point arrival order [170]. In the experiment, a

dataset is ordered in two specific ways. Round-Robin – Randomly determine an ordering

of ground-truth clusters. Then, construct a data point arrival order such that the ith data point

is a member of cluster i mod K, where K is the number of clusters and mod returns the

remainder when its first argument is divided by its second. Sorted – Randomly determine an

ordering of ground-truth clusters. All points of cluster Ci arrive before any point of cluster

Ci+1 arrives. As in previous work, we perform a robustness experiments with the ALOI

dataset.

Table 3.5 shows that GRINCH achieves higher dendrogram purity than both PERCH

and mini-batch HAC (with 2 different batch sizes) on data ordered using the Round Robin

ordering scheme. Under this arrival order, MB-HAC performs poorly showing its lack

of robustness. When the data is in Sorted order–which makes for easier clustering for

MB-HAC–GRINCH outperforms PERCH and is competitive with MB-HAC.

Method Round. Sort.
GRINCH 0.503 0.457
PERCH 0.446 0.351

MB-HAC (5K) 0.299 0.464
MB-HAC (2K) 0.171 0.451

Table 3.5: Dendrogram Purities for adversarial arrival orders (ALOI).

3.5.7 Cross-Document Coreference

To further illustrate the use of GRINCH in entity resolution, we perform experiments in

cross document coreference entity and event coreference. In this task, ambiguous mentions
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of entities and events that appear throughout a corpus of documents are to be clustered into

groups such that each group refers to the same real world entity or event. Cattan et al [63]

present a state-of-the-approach approach, which (1) learns a pairwise similarity function

between ambiguous mentions and (2) uses average-linkage agglomerative clustering with a

similarity threshold to produce the predicted clustering. Of course, agglomerative clustering

does not supports incremental addition of data. And so in our experiments, we attempt to

answer the question of whether GRINCH can be used to achieve comparable performance to

HAC. We select flat clusters from the tree built using GRINCH by cutting the tree at a given

threshold.

The pairwise similarity function is a MLP which takes as input the concatenation of

RoBERTa [190], embeddings of two mentions and their elementwise product. This induces

an asymmetric similarity in fact.

We consider the ‘end-to-end’ setting of this task, in which we need to select the tokens

in each document that correspond to a mention of the entities as well as performing the clus-

tering of those entity mentions. Formally, given a corpus of documents D, each document

consists word tokens w1, . . . , wT . Performing cross-document coreference requires predict-

ing a set of mentionsM where each m ∈ M is a sequence of tokens wi, wi+1, . . . , wi+k.

There is a ground truth set of mentionsM?. We evaluate the performance of the predicted

M compared toM? according to the MUC, B3, CEAF metrics and their average (also

known as CoNLL) [232]. For the ECB+ data, the documents are organized into a set of

topics. The dataset assumes that each entity appears in only one topic. We evaluate in a

setting where the topic of each document are assumed to be known.

Table 3.6 reports the results for this task. We find that GRINCH achieves results that are

with 1 point of the F1 of HAC and yet is fully incremental.
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MUC B3 CEAF-E CoNLL

HAC 50.25 33.47 32.16 38.62
GRINCH 49.65 32.69 31.75 38.03

Table 3.6: Cross Document Coreference on ECB+: We report F1 for each metric.

3.5.8 Downstream Use Case: Automatic Knowledge-base Completion

We highlight a use of GRINCH in the larger system for automatic knowledge-base

completion, which we presented in [92]. We use GRINCH to discover entity types (e.g.,

categories of entities such as sports-people, religious entities, etc).

Das et al [92] presents a case-based reasoning (CBR) system, which solves a new

problem by retrieving ‘cases’ that are similar to the given problem, for automatic knowledge-

base completion. Our approach predicts attributes for an entity by gathering reasoning paths

from similar entities in the KB. Our probabilistic model estimates the likelihood that a path

is effective at answering a query about the given entity. The parameters of our model can be

efficiently computed using simple path statistics and require no iterative optimization. The

reasoning path in the knowledge-base are represented by the entities and relations present

on the path. However, parameterizing at the entity level leads to a large amount of sparsity

in data. Instead, we form clusters of entities, representing entity types to deal with the data

sparsity. Our simple model is non-parametric, growing dynamically as new entities and

relations are added to the KB. And as such, we demonstrate the effectiveness of our model

in an “open-world” setting where new entities arrive in an online fashion. In this setting, we

rely on GRINCH to incrementally update the discovered entity types. Refer to Figure 3.6 for

an illustration of the task and highlight description of the model.

We consider two particular experiments from [92]. The first we directly measure the

impact of clustering on the model’s performance. These results are summarized in Table 3.7.

Across all metrics, we find that clustering dramatically increases performance of the model.

Second, we show the performance of the model in the open world setting. We observe that
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Figure 3.6: Given the query, (JON VON NEUMANN, PLACE_OF_DEATH, ?), our model gath-
ers reasoning paths from similar entities such as other scientists. However, not all gathered
paths work for a query e.g. the path (‘BORN(x, y)’) would not work for VON NEUMANN.
This highlights the importance of learning path weights for clusters of similar entities. Even
though ‘BORN_IN’ could be a reasonable path for predicting PLACE_OF_DEATH, this does
not apply for VON NEUMANN and other scientists in his cluster. The precision parameter of
the path given the cluster helps in penalizing the ‘BORN_IN’ path. Note that the node USA
is repeated twice in the figure to reduce clutter. Figure from [92].

when using GRINCH for clustering we are able to match the performance of re-building the

model at each time step using hierarchical agglomerative clustering in Figure 3.7. We show

example entity types discovered in Figure 3.8.

Das et al [92] Das et al [92]
w/ clustering w/o clustering

HITS@1 0.42 0.29
HITS@3 0.46 0.36
HITS@10 0.51 0.45
MRR 0.45 0.34

Table 3.7: Impact of clustering on WN18RR. We observe that across all metrics clustering
entities into entity types provides a dramatic increase in performance.
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Figure 3.7: Results for open-world setting in CBR when trained with 10% (top row) and
30% (bottom row) of already seen edges. Our online method matches the offline version of
our approach and outperforms the online variants of RotatE. After all data is observed our
online method achieves results closest to the best offline method’s results.

Sports Org. Religious Entities

St. Louis Blues Isalm
At time Orlando Pirates Russian Orthodox church
t− 1 Sheffield Wednesday FC Buddhism

Malaya national football team United Church of Christ

At time Excelsior Rotterdam The Mormons
t Seattle Super Sonic Eastern Rite Catholic

People Professions

Marvin Gay Statistician
At time Shaquille O’Neal Assoc. football manager
t− 1 Avril Lavinge Structural Engineer

Woody Harrleson Financial backer

At time Elliot Smith Harpsichordist
t Barbara Stanwick Child Actor

Table 3.8: Example Clusters discovered in online setting. We show the assignment of new
entities to the clusters in the particular time step (below line). Note time is a randomized
order of nodes/edges in the knowledge graph and not chronological.
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3.6 Proofs and Additional Details

3.6.1 ROTATE Correctly Clusters Strictly Separated Data

Theorem 1 Let X = {x1, . . . , xN} be a dataset and let f is a linkage function such

thatX is model-based separated by f with respect to a clique structured underlying graph

(Assumption 1, Example 4). The hierarchical clustering Ti constructed via Algorithm 5 has

dendrogram purity 1.0.

Proof. Inductively, assume our current cluster tree Ti−1 has dendrogram purity 1.0, and we

process a new point xi belonging to ground truth cluster C? ∈ C?. In the first case, assume

that Ti−1 already contains some members of C? that are located in a (pure) subtree. We

denote the root of this subtree as Ti−1[C?]. By the separability assumption, xi’s nearest

neighbor must be in Ti−1[C?] and if rotations ensue, no node n ∈ Ti−1[C?] can be rotated

outside of Ti−1[C?]. To see why, observe that:

f(Ti−1[C?], xi) > f(Ti−1[C?],aunt(Ti−1[C?])). (3.7)

The aunt of the subtree root is by definition from a different ground truth cluster than

xi, aunt(Ti−1[C?]) 6⊆ C?. After inserting xi, the subtree root will become Ti−1[C?] ∪ {xi}

and is pure: Ti−1[C?] ∪ {xi} ⊆ C?.

In the second case, assume that T contains no points from cluster C?. Let v be the

nearest neighbor of xi. By separability, recursive rotations must lift xi out of the pure subtree

T [C?(v)] containing v. This is because the separability assumption tells us that for any

n ∈ T [C?(v)]:

f(n, xi) < f(n,aunt(n)). (3.8)

This allows Ti to maintain perfect purity. �
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3.6.2 Rotation Lemma Proof

Lemma 1 (Rotation Lemma) Given a dataset X and a linkage function f such that

X is model-based separated with respect to f and latent graph G = (X, E), let Ti−1 be a

hierarchical clustering produced by GRINCH using linkage function f over the first i− 1

points, and Ti = ROTATE(xi, Ti−1, f) with lvs(T ) = X , all nodes that were strongly

connected in Ti−1 are strongly connected in Ti, i.e., rotations preserve strong connectivity.

Proof. Let V be a maximal strongly connected node in Ti−1 and assume that x is added as a

leaf of V (rotations have not yet been applied). Consider two cases:

(1) there exists an edge between x and some point in V , and

(2) there does not exist an edge between x and any leaf in V .

Case 1: Let L ⊆ V be the points in V to which x is connected. Then x is initially added

as a sibling of its nearest neighbor leaf, x′, and x′ ∈ L because f separates G according to

model-based separation. parent(x) is strongly connected because there exists an edge

between x and x′.

The addition of x does not disconnect V or any strongly connected descendant of V .

To see why, consider the siblings of the ancestors of x′ before the addition of x. Any such

sibling that was connected to x′, is, after the addition of x, also connected to parent(x) and

thus remains strongly connected. Nodes that are not ancestors of x cannot be disconnected

and thus, before rotations, strong connectivity is preserved.

Now consider subsequent rotations. By the logic above, x and its sibling, x′ = sib(x),

are connected. If a rotation succeeds then x and aunt(x) are swapped. So long as aunt(x)

and sib(x) form a connected subgraph in G, i.e., φ(sib(x),aunt(x)) = φ(x,sib(x)) =

1, then the rotation preserves strong connectivity.

The only way for a rotation to disrupt strong connectivity is if x and aunt(x) are

swapped, and sib(x) and aunt(x) do not form a connected subgraph inG, i.e., φ(x,sib(x)) >

φ(sib(x),aunt(x)). But, because f separatesG, φ(x,sib(x)) > φ(sib(x),aunt(x)) =⇒
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f(x,sib(x)) > f(sib(x),aunt(x)) and so, in this case, a rotation will not be performed

and the procedure terminates.

Case 2: If there does not exist an edge between x and point in V , then after x is made a

sibling of some leaf x′′ ∈ V , V is no longer strongly connected and so strong connectivity

has not been preserved. Since V was strongly connected before the addition of x, there exists

an edge between the points in sib(x) and the points in aunt(x). Since f separates G,

f(x,sib(x)) < f(sib(x),aunt(x)), which triggers the ROTATE subroutine. Rotations

proceed with respect to x at least until x is no longer a descendant of V , and thus, V remains

strongly connected. Strongly connected nodes that are not descendants of V are unaffected

by the rotations and so strong connectivity is preserved. �

3.6.3 Grafting Lemma 1 Proof

Lemma 2 (Grafting Lemma 1) Given a datasetX and a linkage function f such that

X is model-based separated with respect to f and latent graph G = (X, E), let Ti, which

is built with linkage function f on the first i points of X , satisfy strong connectivity and

completeness, and let V be a node in Ti such that V is either a maximal strongly connected

node or not strongly connected. The tree, T ′i , resulting from the graft operation initiated

from V , graft(V, Ti, f), satisfies strong connectivity and completeness.

Proof. Let T be strongly connected and complete. Since V is not a strict subset of any

connected component in G, there does not exist a non-empty subset S ⊆Xi\V such that

S ∪ V is a connected subgraph in G. For any node V ′ that is strongly connected but not

maximal, there must be an edge connecting V ′ and sib(V ′) and sib(V ′) must be strongly

connected, so f(V ′,sib(V ′)) > f(V, V ′). Therefore, an attempt to make any such V ′ the

sibling of V fails.

If V ′′ is a maximal strongly connected node, an attempt to make V ′′ the sibling of V

may succeed but this does not disconnect any strongly connected subtrees in T . The same

is true if V ′′ is not strongly connected. �
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3.6.4 Grafting Lemma 2 Proof

Lemma 3 (Grafting Lemma 2) Given a dataset X and a linkage function f such

that X is model-based separated with respect to f and latent graph G = (X, E), let Ti,

which is built with linkage function f on the points x1, . . . , xi corresponding to graph Gi,

satisfy strong connectivity. Let V be strongly connected, but not complete with respect to

the first i points, V ( (C ∩ {x1, . . . , xi}) for some C that is a connected component in Gi.

Then a graft initiated from V returns a node V ′ such that V ′ is strongly connected and

V ( V ′ ⊆ C.

Proof. Since V are a strict subset of the vertices in the connected component, C, there exists

a non-empty subset S inXi\V such that S ∪ V constitute the vertices in C. Now define L

to be the leaf closest to V according to f(·, ·) (line 3 of graft (Algorithm 6)):

L =

{
argmax
x∈Xi, x 6∈V

f({x}, V )

}
. (3.9)

By the fact that V is a strict subset of a connected component C, there must exist an edge

between V and L.

If f(V, L) < f(L,sib(L)), then there must exist an edge between L and a node in

sib(L) and so parent(L) is strongly connected. If f(V, L) < f(V,sib(V )), then there

must exist an edge between a node in V and a node in sib(V ) and so parent(V ) is

strongly connected. In both of these cases, we do not merge V with L, but instead attempt

another merge between two strongly connected nodes, either: parent(V ) with L, V with

parent(L), or parent(V ) with parent(L). As before, the two nodes we are attempting

to merge also have an edge between them.

Let V1 and V2 be two nodes involved in a merge and let V1 ∈ ancs(V ) and V2 ∈

ancs(L). If at some point

f(V1, V2) > max[f(V1,sib(V1)), f(V2,sib(V2))] (3.10)
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then V2 is made a sibling of V1 and the new parent of V1 is returned. Since V1 and V2

are strongly connected and there exists an edge between the points in V1 and points in V2,

parent(V1), which is created by the merge, is strongly connected, and the lemma holds.

If a merge is never performed, the recursion stops when V1 = V2 = lca(V, L). In this

case, the lca, which we return, is already strongly connected and, by definition, its leaves

are a superset of V . �

3.6.5 Restructure Lemma Proof

Lemma 4 (Restructuring Lemma) Let V ∈ Ti be strongly connected. Let A ∈

ancs(V ) be the deepest connected ancestor of V such that: A is not strongly connected,

and all siblings of the nodes on the path from V to A are strongly connected. Then

restruct on inputs V and A restructures the tree rooted at A so that A satisfies strong

connectivity.

Proof. LetZ be the deepest ancestor of V that is strongly connected with parent parent(Z)

that is disconnected. Since parent(Z) is disconnected (but by assumption both Z and

sib(Z) are connected), there are no edges between Z and sib(z).

Let A′ be a child of A and without loss of generality, A′ 6∈ ancs(Z). Since A is the

deepest connected ancestor of Z, there must exist an edge between Z and A′.

When computing the argmax of f(Z, ·) in the restruct method, a node, Z ′, that is

connected to Z will be returned and then swapped with sib(Z). The new parent of Z

is strongly connected because Z and Z ′ are both strongly connected and there exists an

edge between Z and Z ′. Any subsequent swap attempted from a disconnected node with a

connected ancestor succeeds and produces a new parent that is strongly connected.

Since A is connected and a swap among the descendants of A does not change A,

swapping preserves the connectedness of A. Therefore, swaps proceed until the node A is

reached at which point A must be strongly connected.
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Note that a swap attempt between a strongly connected node and a node to which it

is not connected fails, because f separates G. A swap attempt between a connected node

and a node to which it is connected succeeds and produces a new parent that is strongly

connected. �

3.6.6 Theorem - GRINCH Correctly Clusters Model-based Separated Data Proof

Theorem 3 Given a dataset X and a linkage function f such that X is model-based

separated with respect to f and latent graph G = (X, E), let C? be the target partition

corresponding to the separated data. GRINCH builds a hierarchical clustering T|X| such

that C? is a tree consistent partition of T regardless of the ordering of points inX .

Proof. We show by induction that if GRINCH is used to build a tree, Ti, over vertices,Xi,

then the connected components of G are a tree consistent partition in Ti. Furthermore, Ti
satisfies strong connectivity.

Clearly, the theorem holds for the base case: a tree with a single node.

Let Ti−1 be the tree built on the first i−1 points,Xi−1. Assume the inductive hypothesis:

that Ti−1 satisfies completeness and strong connectivity. Now vertex xi arrives.

If there does not exist an edge, in the latent graph G, between xi and any other vertex

in Xi, then after rotations, T ′i satisfies completeness. Since ∀A ∈ ancs(xi), A is a not a

strict subset of any connected component in G, by Grafting Lemma 1, subsequent graft

attempts from the ancestors of xi preserve strong connectivity and completeness and so the

theorem holds.

Assume that xi is connected to some set of leaves S ⊆Xi−1. Since Ti−1 satisfies strong

connectivity, by the Rotation Lemma, after xi is added and rotations terminate, Ti satisfies

strong connectivity. Note that Ti may not satisfy completeness if, before the arrival of xi,

the leaves in S formed at least 2 distinct connected subgraphs in G.

After rotations, a series of graft attempts are performed. Consider the first graft

initiated at parent(xi). By Grafting Lemma 2, the attempt returns a strongly connected
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ancestor of xi whose leaves are a strict superset of parent(xi). If a merge is performed

that moves a node V and makes it a sibling of V ′, then strong connectivity may be violated.

However, notice that the only nodes that can be disconnected by such a merge are the node

that, prior to the merge, were ancestors of v and also descendants of A = lca(V, V ′).

After the merge, A is restructured, and by the Restructuring Lemma, the resulting tree

satisfies strong connectivity. Subsequent calls to graft proceed from A. Notice that each

invocation of graft returns a new strongly connected node with a strictly larger number

of descendant leaves, until the resulting tree satisfies completeness. Therefore, successive

grafting followed by restructuring eventually returns a node whose leaves are a connected

component of G. Ultimately, after rotations and grafting, T ′ must satisfy completeness and

strong connectivity.

�
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CHAPTER 4

LEVEL-WISE HIERARCHICAL AGGLOMERATIVE
CLUSTERING

A limitation of GRINCH and the incremental algorithms in Chapter 3 is that they can only

mildly exploit parallel computation. While this is acceptable in the truly incremental setting

where one point arrives at a time, it limits the applicability of these algorithms to massive

datasets in the batch setting where all (or a large portion) of the data is provided initially

(with additional data potentially arriving incrementally). In this chapter, we describe a class

of bottom-up clustering algorithms that interpolates between hierarchical agglomerative

clustering (or the reciprocal nearest neighbor algorithm [217]), and Affinity clustering [31].

We show how the algorithm can naturally be extended to a mini-batch incremental algorithm

using tree-structure re-arrangements.

4.1 Sub-Cluster Component Algorithm

The pairwise-sequential merging of HAC limits its scalability to large datasets. This

method requires a large number of rounds to achieve meaningful and complete hierarchical

clusterings. Affinity clustering on the other hand attempts to resolve this using multifurcating

tree structures, merging multiple nodes together in a single round. While efficient, this often

leads to significant over-merging of nodes, resulting in a loss of quality in the clustering

structure.

Like these methods, our proposed algorithm works in a best-first manner: determining

which points should belong together in clusters in a sequence of rounds with each round

corresponding to a level of a tree structure. The sequence of rounds begins with the decisions
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that are “easy to make” (e.g., points that are clearly in the same cluster) and prolongs the

later, more difficult decisions until these confident decisions have been well established.

Let C(i) be the partition produced after round i and the partition at the starting round be

C(0) = {{x} | x ∈ X}. Let a sub-cluster refer to a member a partition, i.e. C ∈ C(i). Let

τ1, . . . τL be a series of L predefined increasing thresholds, given as hyperparameters to the

algorithm. To specify the “condition" under which we merge sub-clusters in each round, we

define sub-cluster component as:

Definition 11. (Sub-cluster Component) Two sub-clusters Cj, Ck ∈ C are defined to

be part of the same sub-cluster component according to a threshold τ and linkage f :

P(X)×P(X)→ R, denoted CHf (Cj, Ck, τ,C) = 1, if there exists a path P ⊆ C defined

as {Cj = Cs0 , Cs1 , Cs2 , . . . CsR−1
, CsR = Ck}, where the following two conditions are met:

1. f(Csr , Csr−1) ≥ τ for 0 ≤ r ≤ R, and

2. either Csr−1 = argmaxC∈C f(Csr , C) and/or

Csr = argmaxC∈C f(Csr−1 , C).

Inference at round i works by merging the sub-clusters in round i − 1 that are in the

same sub-cluster component. Computationally, the construction of sub-cluster components

can be thought of as the connected components of a graph with nodes as the sub-clusters

from the previous round and edges between pairs of nodes that are nearest neighbors and

have similarity at least τ .

We define, SCf (Cj,C, τ), as the union of all sub-clusters in C that are within the sub-

cluster component of Cj , i.e.,

SCf (Cj,C, τ) :=
⋃
C∈C,

CHf (Cj ,C,τ,C)=1

C (4.1)
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Algorithm 9 Sub-Cluster Component Alg. (SCC)

1: Input: X: dataset , f : linkage function, {τ1, . . . , τL}: a set of thresholds in decreasing
order

2: Output: (C(0),C(1), . . .): One flat partition per round
3: C(0) ← {{x} | x ∈X}
4: idx← 1, `← 1
5: while idx < L do
6: Set SCf (C`,C

(`−1), τ (`)), ∀Ci ∈ C(`−1), (Eq. 4.1)
7: Set C(i) (Eq. 4.2)
8: idx← idx + I[C(`) = C(`−1)]
9: i← `+ I[C(`) 6= C(`−1)]

10: τ (`) ← τidx

11: return (C(0), . . . ,C(`−1))

Thus, SCf (Cj,C
(i−1), τ (i)) is a new cluster, created by taking a union of all clusters from

round i − 1 that are in the sub-cluster component of Cj . We create the flat partition at

round i, C(i), as the set of all of these newly found clusters:

C(i) := {SCf (C,C
(i−1), τ (i)) |C ∈ C(i−1)} (4.2)

We refer to our algorithm as the Sub-Cluster Component algorithm (SCC). Algo-

rithm 9 gives pseudocode for SCC. We only increment the threshold if no clusters are

merged in the previous round i.e. C(i−1) = C(i). The sub-cluster component in a particu-

lar round can be found efficiently using a connected components algorithm [49]. Any of

the rounds can be used as a predicted flat clustering. A hierarchical clustering is given by⋃
SCC(X, f, {τ1, . . . , τL}), the union of the sub-clusters produced by all rounds. Figure 4.1

provides an illustration of the SCC algorithm and the sub-cluster formation.

4.1.1 Practical Considerations: Operating on Sparse Similarity Graph

To speed up computation when using linkages such as average/single/complete, we

pre-compute a nearest-neighbor graph over the dataset and only use the similarities defined

as edges in this graph when computing the linkage following. We refer to the k-nearest

neighbors of a point x as knn(x) and the `th nearest neighbor of x as xknn`
. We say that
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Figure 4.1: The Sub-Clustering Component Algorithm. We illustrate SCC on a small
dataset. The formation of sub-clusters is shown with black arrows for pairs of points
satisfying Def. 11. The direction indicates indicates the nearest neighbor relationship
(Def. 11, condition 2). Red edges indicate the nearest neighbor relationships that are above
the distance thresholds. The grey circles indicate the sub-cluster components created in that
round. Best viewed in color.

two clusters Cj and Ck are connected if ∃x ∈ Cj, such that Ck
⋂

knn(x) 6= ∅ or ∃x ∈ Ck,

such that Cj
⋂

knn(x) 6= ∅. Average linkage can be computed by assuming 0 similarity

between points not connected in the nearest neighbor graph:

A(Cj, Ck) = {(xj, xk)|xj ∈ Cj ∧ xk ∈ knn(xj) ∩ Ck} (4.3)

∪ {(xj, xk)|xk ∈ Ck ∧ xj ∈ knn(xk) ∩ Cj} (4.4)

f(Cj, Ck) =


1

|Cj ||Ck|
∑

xj ,xk∈A(Cj ,Ck)
f(xj, xk) connected

0 otherwise.
(4.5)

When two clusters are merged, their nearest-neighbor edges can be contracted using the

same approach as in [31].

4.1.2 Practical Considerations: Computation of Sub-cluster components

To find the subcluster components, we use efficient, distributed connected components

algorithms such as the SV Algorithm [251] or FastSV [301]. We note that in practice only a
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small number of rounds of the SV Algorithm are needed especially given the sparse number

of edges in the components.

4.1.3 Practical Considerations: Sharding Datasets

We find that simply sharding datasets into coarse grained clusters using algorithms like

k-means or DP-means is very effective. We use the shards (which can be overlapping)

to restrict the construction of the nearest neighbor graph of SCC. For datasets where the

resulting nearest neighbor graph fits on a single machine, we can run the parallel, but not

distributed version of SCC. If we need to distribute the nearest neighbor graph, we can use

the same DHT-based approach as in Affinity Clustering [31]. This is used in the experiments

performed on datasets with ∼ 48M points for discovering word senses.

4.2 Mini-Batch SCC

The SCC algorithm described in Section 4.1 operates in the batch setting where all

data is given at once. While SCC offers significant speed advantages over GRINCH, the

algorithm in Section 4.1 does not support the addition of continuously arriving data. In this

section, we describe a level-wise hierarchical clustering method for the online setting. We

show that the approach can be usedfor point-at-a-time clustering, as well as in a mini-batch

setting.

We propose, Mini-Batch SCC (MBSCC), which combines the level-wise structure of

SCC for forming non-binary trees with rotation and graft-like tree re-arrangements as in

GRINCH. Like SCC, each level of the structure is formed by finding connected components

in a thresholded-based, 1-nearest neighbor graph of the nodes in the previous level. Rotations

in MBSCC are achieved by using the level-wise thresholds. Grafts are achieved by changing

the 1-nearest neighbor relationships in structure of the level. The level-wise structure allows

us to naturally support the addition of mini-batches of data added simultaneously, unlike

previous work in incremental and online hierarchical clustering.
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Algorithm 10 Mini-Batch SCC (MBSCC)

1: Input: Xt−b:t: mini-batch of dataset, f : linkage function, (C(0)
t−b, . . . ,C

(L)
t−b): clustering

from previous time step
2: Output: (C(0)

t , . . . ,C
(L)
t ): clustering after observing the mini-batch

3: Initialize U (0)
t ← {{x}|x ∈Xt:t+b}

4: Add the k-nearest neighbors of eachXt:t+b to U (0)
t .

5: for i from 0 to L do
6: Update 1-nearest neighbor for each C(i)

j ∈ U (i)
t (Eq. 4.7)

7: Update sub-cluster components for each C(i)
j ∈ U (i)

t (Eq. 4.8)
8: Build next round’s nodes to update U (i+1)

t (Eq. 4.11).
9: Build next round’s clusters, C(i+1)

t (Eq. 4.12)
10: return (C

(0)
t , . . . ,C

(L)
t )

Recall that each node C(i)
j in level i, needs to know its 1-nearest neighbor in order to effi-

ciently find the sub-cluster component to which it belongs in that level SCf (C
(i)
j ,C

(i), τ (i+1)).

We denote the 1-nearest neighbor of C(i)
j ∈ Ci as:

C
(i)
j

�
:= argmax

C∈Ci

f(C
(i)
j , C) (4.6)

While child/parent relationships can be defined by sub/super-set relations, we also use

parentt(C
(i)
j ) to denote the parent of C(i)

j in level i+ 1 at time step t.

Suppose we have built a level-wise SCC tree structure on the first t−b points of a dataset

X . We would now like to add the next b points xt−b, . . . , xt where b is the mini-batch size.

Recall that in previous work like GRINCH, if b > 1 the algorithm would simply insert the b

points sequentially. At a high level, MBSCC will first determine, from the mini-batch, which

leaf nodes need to reconsider their placement in the tree structure. For those leaf nodes and

the newly arrived points, the algorithm will reconsider 1-nearest neighbor decisions and

the resulting sub-cluster component placements. This will form a new parents for a small

subset of the leaves. Then these new parents will then recursively become the new nodes in

the next level, again re-configuring sub-cluster components. To again highlight the analogy

to GRINCH, the decision of a node refraining from joining any sub-cluster component in a
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C
(1)
t�b

Figure 4.2: Mini-Batch SCC. We show the first two levels of the tree structure with the
addition of three new datapoints m,n, o. We highlight which nodes are updated in each
round in the salmon-red color.

level is like a rotation. The decision of an existing node in the tree to change its 1-nearest

neighbor is analogous to a graft.

We will operate level-by-level in a bottom-up fashion. For level i, we will maintain a set

of nodes, U (i)
t , that will be updated as the mini-batch is added at time t. MBSCC will update

the ith level from time step t− b, C(i)
t−b to form C

(i)
t . The update has three steps: (1) updating

the one-nearest neighbor of each node in U (i)
t , (2) re-forming the sub-cluster components

for the nodes in U (i)
t , (3) determining the nodes to update in the next round, U (i+1)

t , based

the current round’s updated nodes, U (i)
t , and the next round’s clusters from the previous

time step, C(i+1)
t−b . We note that in the leaf level round we define U (0)

t to be the points in the

mini-batch and their k nearest neighbors.

Step (1) is simple and easy to parallelize across nodes in the mini-batch.

C
(i)�
j := argmax

C(i)∈C(i)

f(C
(i)
j , C

(i)) ∀Cj(i) ∈ U (i)
t (4.7)
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Step (2) will form sub-cluster chains for the marked nodes in U (i)
t . That is, we will potentially

re-assign the parent nodes for only those nodes in U (i)
t . Recall that we define, SCf (Cj,U , τ),

as the union of all sub-clusters in C that are within the sub-cluster component of C(i)
j , i.e.,

SCf (C
(i)
j ,U (i)

t , τ) :=
⋃

C(i)∈U(i)
t ,

CHf (C
(i)
j ,C(i),τi+1,U

(i)
t )=1

C(i). (4.8)

This process potentially assigns a new parent node for each C
(i)
j ∈ U (i)

t . The parent

corresponds to the union of the clusters in the same sub-cluster component. Of course, in

this incremental setting, we would like to limit the number of nodes that require an update

(i.e., the size of U (i)
t ).

Step (3) sets U (i+1)
t . First, we determine the nodes in level i+ 1 that have been deleted,

a set which we callR(i+1)
t

R(i+1)
t := {parentt−b(C)|C ∈ U (i)

t } \ {parentt(C)|C ∈ U (i)
t }. (4.9)

We then set U (i+1)
t to be a© the new parents of the nodes in U (i)

t formed by step 2, b© the

best neighbors of the previous parents (at time step t− b) of the nodes U (i)
t at time step t− b

that are not inR(i+1)
t , c© the siblings of the previous parents (at time step t− b) of the nodes

U (i)
t at time step t− b that are not inR(i+1)

t .

U (i+1)
t :={parentt(C)|C ∈ U (i)

t } a© (4.10)

{parentt−b(C)�|C ∈ U (i)
t } \ R(i+1)

t b©

{
⋃

sib(parentt−b(C))|C ∈ U (i)
t } \ R(i+1)

t c©

Note the importance of using the best neighbors, b©, in addition to the siblings of the

previous parents, c©. A parent node might be a singleton in a given level because its nearest

neighbor is not within the given threshold. We would like to make sure that that nearest
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neighbor node is considered when re-forming the subsequent rounds. Thus we use this

edge, which can be thought of storing an “alternative parent” or “DAG parent” for the node

invariant to the round threshold, see Figure 4.3.

To complete round i’s update, we build C
(i+1)
t :

A(i) := {SCf (C,U (i)
t , τ (i+1)) |C ∈ U (i)

t } (4.11)

C
(i+1)
t := A(i) ∪ {C \

⋃
A(i)|C ∈ C(i)}. (4.12)

Notice that there can be nodes whose siblings change that are not in the marked nodes. We

need to be careful in assigning parents accordingly (the set difference in Eq. 4.12).

We present pseudocode for MBSCC in Algorithm 10. We visually present key ideas

from the Algorithm in Figure 4.2.

4.2.1 Practical Consideration: Early-Stopping Updates

We observe that many mini-batches leave the upper levels of tree structures unchanged.

It is often the case that re-building the contracted graph similarities in those levels (Sec-

tion 4.1.1). Of course, when the next minibatch arrives it might change the lower levels of

the tree structure before the upper levels are ever observed. In this way, we can employ lazy

updates that only update a level of the tree when it is necessary. We use a early stopping

condition that says: when all the parent nodes of a level are the same as the previous

mini-batch’s decision, break the level-wise update loop. We further note, that based on

empirical observations for SCC that indicate that using one level-per-threshold is enough,

we simplify the algorithm to do just that.

4.3 Theoretical Analysis

In this section, we provide results for SCC used for both flat and hierarchical clustering.

We analyze the separability conditions under which SCC recovers the target clustering and
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Figure 4.3: Illustration of using DAG-parents (best neighbors) in MBSCC. When deter-
mining which nodes should be updated in a particular round (Ut) we maintain a structure of
alternate parents in a round.

connect these results to the DP-Means objective as well as hierarchical clustering evaluation

measures. Lastly, we relate our method to agglomerative clustering and show that in the

limit of number of rounds our method will produce the same tree structure as agglomerative

clustering.

4.3.1 Recovering the Target Clustering

Each round of SCC produces a flat clustering of a datasetX . We will show that ifX

satisfies the δ-separability assumption (Assumption 2), one of the rounds of SCC will in fact

be equal to the target clustering for the dataset, C?, corresponding to the separated clusters.

To show this, we re-write SCC in terms of distances rather than similarities. This means

the thresholds would be monotonically increasing and the linkage function would give a

distance rather than a similarity. Formally, we make the statement:

Theorem 4. Suppose the datasetX satisfies the δ-separability assumption (Assumption 2)

with respect to the target clustering C? = {C?
1 , . . . , C

?
k} for δ ≥ γ. SCC(X, d, {τ0, . . . , τL})

is set of partitions produced by SCC (Alg. 9) with d(·, ·) as the average distance between

points and geometrically increasing thresholds i.e. τi = 2i · τ0. The target clustering is equal
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to one of the clustering produced by one round of SCC, C? ∈ SCC(X, d, {τ0, . . . , τL}),

where γ = 6 for all metrics and γ = 30 for the `22 distance and τ0 ≤ minx,x′∈X×X ||x−x′||.

Intuitively, we prove that, for the aforementioned bounds on within/across cluster

distances, a geometric series will necessarily include a threshold that is larger than largest

within cluster distance and smaller than the closest across cluster distance between any

two sub-clusters. Having such a threshold τ ?, we will have a round i with a predicted flat

clustering, C(i), equal to the target clustering C?, C(i) = C?.

4.3.2 Relation to Nonparametric Clustering

Next, we analyze the performance of our algorithm with respect to nonparametric, flat

clustering cost functions. Nonparametric clustering, where the number of clusters is not

known a priori and must be inferred from the data, is useful for many clustering applications

[19, 258]. DP-means [157] is an example of a widely used nonparametric cost function, that

is obtained from the small variance asymptotics of Dirichlet Process mixture models.

Definition 12. (DP-Means [157]) Given a datasetX , a partition C = {C1, . . . , CK}, such

that cluster Cl has center cl and hyperparameter λ, the DP-Means objective is:

DP (X, λ,C) =
∑
Cl∈C

∑
x∈Cl

||x− cl||2 + λ|C|. (4.13)

Given a datasetX and hyperparameter λ, clustering according to DP-Means seeks to find:

argminCDP (X, λ,C).

We show that our proposed algorithm yields a constant factor approximation to DP-

Means solution under the data separation Assumption 2. We do so by first showing that

SCC contains constant factor approximation solution to Facility Location and then use the

relationship between Facility Location and DP-Means [228]. Facility Location problem is

defined as:
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Definition 13. (Facility Location) Given a set of clients H as well as facilities F , and a

set f = {f1, . . . , fK} of facility opening costs, that is let fj be the cost of opening facility j

and let e(i, j) be the cost of connecting client i to the open facility j. Let I ⊆ F be the set

of opened facilities and let φ : H → I be the mapping from clients to facilities. The total

cost of opening a set of facilities is:

cost(H,F, I, φ, f) =
∑
i∈H

e(i, φ(i)) +
∑
i∈I

fi (4.14)

The facility location problem is to solve: argminI,φ cost(H,F, I, φ, f) given e, F and f .

As shown by [228], Facility Location is closely related to DP-Means. In particular, the

solution of Facility Location gives a solution to DP-Means:

Definition 14. (DP-Facility [228]) We define the DP-Facility problem to be the facility

location problem where fj = λ for all facilities j ∈ F , H = F = X and e be squared

euclidean distance. Given a solution I, φ = argminI,φ cost(X,X, I, φ, λ), we define that

c. := I and Ck = {i|φ(i) = xk}, K = |I| and say that C = (C1, . . . , CK) is a solution to

DP-Means given by the solution of DP-Facility.

First, we consider δ-separated data in DP-Facility problem and show that the target

separated partition gives an optimal solution to DP-Facility:

Theorem 5. Suppose the datasetX satisfies the δ-separability assumption with respect to

clustering C?
1 , . . . , C

?
k , then this clustering is an optimal solution to the DP-Facility problem

with λ = (δ − 2) ·R. where R := maxl∈[k] maxx∈C?
l
||x− c∗l ||.

We’ve shown that SCC finds the target clustering for δ-separated data in Theorem 4. We

now consider the DP-Means cost of this partition. The next proposition formally relates the

DP-Facility problem to an approximate solution to the DP-Means objective.
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Proposition 1. [228]. Let µ?, Z?, K? be an optimal solution to the DP-Means problem

and let µ†, Z†, K† be the DP-Means solution given by an optimal solution, I†, φ† to the

DP-facility location problem. Then,

DP (X,λ, Z†,µ†, K†) ≤ 2 ·DP (X,λ, Z∗,µ∗, K∗) (4.15)

Finally, we can analyze the quality of the solutions found by SCC on δ-separated data,

showing that it is a constant factor approximation.

Corollary 6. Suppose the dataset X satisfies the δ-separability assumption (Assumption 2)

with respect to the target clustering C? = {C?
1 , . . . , C

?
k} for δ ≥ γ. SCC(X, d, {τ0, . . . , τL})

is set of partitions produced by SCC with d(·, ·) as the average distance between points

and geometrically increasing thresholds i.e. τi = 2i · τ0. SCC(X, d, {τ0, . . . , τL}) contains

the optimal solution to DP-Facility problem with λ = (δ − 2) · R where R is defined in

Theorem 5 and finds a solution that is a 2-approximation to the DP-Means objective with

the same λ.

Proof. Theorem 4 and 5, when the data satisfies the δ-separation assumption, then SCC

contains the optimal solution to DP-facility problem. Using Proposition 1, we see that this

solution is within 2 factor of the DP-means solution. �

4.3.3 Hierarchical Clustering Analysis

The sequence of partitions produced by SCC forms a hierarchical clustering of the

dataset X . More precisely, the union of the partitions returned by SCC is a hierarchical

clustering,
⋃

SCC(X, {τ1, . . . , τL}, d).

Theorem 4 shows that SCC will recover the target clustering for data satisfying Assump-

tion 2. We relate this to the metric used to evaluate hierarchical clusterings given a labeled

flat partition, dendrogram purity [146, 170]. We show our proposed algorithm will have

perfect (equal to 1) dendrogram purity (Equation 2.4) on well separated data. This follows

naturally from the above theorem.
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Corollary 7. Suppose the dataset X satisfies the δ-separability assumption with respect

to the target clustering C? = {C?
1 , . . . , C

?
k} for δ ≥ γ. SCC(X, d, {τ0, . . . , τL}) is set

of partitions produced by SCC with d(·, ·) as the average distance between points and

geometrically increasing thresholds i.e. τi = 2i ·τ0. Perfect dendrogram purity is achieved by

SCC, DendrogramPurity(
⋃

SCC(X, d, {τ1, . . . , τL})) = 1, where γ = 6 for all metrics

and γ = 30 for the `22 distance and τ0 ≤ minx,x′∈X2 ||x− x′||.

Proof. There exists a round i equal to the target clustering. Each descendant of the target

clusters will therefore have purity 1. Each pair of points will have a least common ancestor

as one of the descendants of the nodes in round i or a node in round i. And so the purity of

the least common ancestor for every pair of same-cluster points will have purity 1, leading

to dendrogram purity to be 1. �

4.3.4 Relationship to Agglomerative Clustering

The bottom-up nature of our algorithm is reminiscent of hierarchical agglomerative

clustering, another round-based algorithm in which each round merges the two subtrees

with minimal distance according to a linkage function, f : P(X)× P(X)→ R. We make

the following statement about SCC, returning to using similarities rather than distances:

Proposition 2. Let f : P(X) × P(X) → R be a linkage function that is symmetric

and injective, C1, C2, C3, C4 ⊂ X, f(C1, C2) = f(C3, C4) ⇐⇒ (C1 = C3 ∧ C2 =

C4)∨(C1 = C4∧C2 = C3) (i.e., the linkage between each pair of nodes is unique). Let T be

the tree formed by HAC (Algorithm 1) and let f also satisfy reducibility [55], ∀C,C ′, C ′′ ∈

T , f(C,C ′) ≥ max{f(C,C ′′), f(C ′, C ′′)} =⇒ max{f(C,C ′′), f(C ′, C ′′)} ≥ f(C ∪

C ′, C ′′) then there exists a sequence of threshold t1, . . . , tr such that the tree formed by⋃
SCC(X, f, {τ1, . . . , τr}) is the same as T .

Algorithm 1 reveals the relationship between HAC and SCC. We set the thresholds used

in SCC to only merge one pair per round, producing the same sequence of mergers present

in HAC to take place in SCC.
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4.3.5 Worst-Case Time Analysis

For a given round, let O(T ) be the time required to build a 1-nearest neighbor graph over

the sub-clusters of a round. Cover Trees [38] allow this to be done in O(c12N logN) for N

elements where c is the expansion constant. In the worst case, SCC requires 2 ∗ (N − 1)

rounds (merging one pair of elements per round, multiplicative factor due to determining

when to advance idx in Algorithm 9). This leads to a running time O(NT ). Further, we

find that using a fixed number of rounds and simply advancing the threshold in each round

experimentally works well.

4.4 Batch Setting Experiments
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Figure 4.4: DP-Means Cost for the solutions found with a variety of methods for a range
of λ values from close to 0 to 2. SCC produces lower cost solutions for different values of
λ as compared to the other methods.

Our analysis showed that SCC can not only recover optimal partitions of the data, but

also higher quality hierarchies. In this section, we want to experimentally validate these

claims on a variety of publicly available clustering benchmarks. Specifically we want to

demonstrate that:

• SCC recovers more accurate hierarchical clustering than state-of-the-art methods

(Section 4.4.1).

• SCC produces high quality flat partitions of the data (Section 4.4.2).

• SCC produces high quality solution to the DP-means objective (Section 4.4.3).

Datasets: We evaluate SCC on the following publicly available clustering benchmark

datasets as in [170] (Table 4.1): CovType - forest cover types; Speaker - i-vector speaker
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K Means GMM Aff. Prop. Spectral HAC DBSCAN HDBSCAN Birch Affinity SCC

Figure 4.5: Comparison of Clustering Algorithms on Small Datasets. We extend the
comparison of clustering algorithms in low-dimensional data from scikit-learn [229] to
include SCC. We observe that DBSCAN, HAC, and SCC are the top performing methods.

recordings, ground truth clusters refer each unique speaker [132]; ALOI - 3D rendering of

objects, ground truth clusters refer to each object type [123]; ILSVRC (Sm.) (50K subset)

and ILSVRC (Lg.) (1.2M Images) images from the ImageNet ILSVRC 2012 dataset [242]

with vector representations of images from the last layer of the Inception neural network;

ImageNet features of the same kinds of images extended to all 17K classes present in

ImageNet. In all experimental settings, we use the average linkage function with either dot

products as similarity or `22 as distance.

To speed up computation, we pre-compute a nearest-neighbor graph over the dataset and

only use the distances defined as edges in this graph when computing distances between

clusters as in Section 4.1.1.
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CovType ILSVRC (Sm.) ALOI Speaker ImageNet ILSVRC (Lg.)

|C?| 7 1000 1000 4958 17K 1000
|X| 500K 50K 108K 36.5K 100K 1.3M
dim. 54 2048 128 6388 2048 2048

gHHC 0.444 0.381 0.462 - 0.020 0.367
GRINCH 0.430 0.557 0.504 0.48 0.065 -
PERCH 0.448 0.531 0.445 0.372 0.065 0.207
BIRCH 0.44 0.26 0.32 0.22 0.03 0.11
HKMeans 0.44 0.12 0.44 0.12 0.02 0.11
HDBSCAN 0.473 0.414 0.599 0.396 - -
Affinity 0.433 0.587 0.478 0.424 0.055 0.601

SCC 0.433 0.622 0.575 0.510 0.072 0.606

Table 4.1: Dendrogram Purity results on benchmark datasets. gHHC did not produce
meaningful results on Speaker and GRINCH did not scale to ILSVRC (Lg.). We find that
Affinity and SCC outperform the baselines with SCC giving best performance on all datasets
except one.

4.4.1 Hierarchical Clustering

We first analyze the performance of SCC compared to state-of-the-art hierarchical

clustering algorithms: Affinity [31] (Algorithm 3); Grinch [210] (Algorithm 8); Perch

[170] - an online hierarchical clustering algorithm that creates trees one point at a time

by adding points next to their nearest neighbor and perform local tree re-arrangements in

the form of rotations; gHHC [211] - a gradient-based hierarchical clustering method that

uses a continuous tree representation in the unit ball. Here we present SCC results using

dot product similarities and geometrically decreasing thresholds and a comparison to `22 in

Table 4.5.

Each dataset has ground truth flat clusters and we evaluate using dendrogram purity

(Equation 2.4) as in previous work. As seen in Table 4.2, we observe that SCC achieves the

highest dendrogram purity on all datasets except CovType. Notably, both SCC and Affinity

clustering scale much better to the largest 1.2M image dataset, with both methods having no

degradation in performance on this dataset from the 50K subset to the larger 1.2M point

dataset.
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Dataset SCC Affinity K-Means Perch

CovType 0.536 0.536 0.245 0.230
ILSVRC (Sm.) 0.609 0.632 0.605 0.543
ALOI 0.567 0.439 0.408 0.442
Speaker 0.493 0.299 0.322 0.318
Imagenet 0.076 0.055 0.056 0.062
ILSVRC (Lg.) 0.602 0.641 0.562 0.257

Table 4.2: Pairwise F1 when selecting a flat clustering with ground truth # of clusters.

ALOI ILSVRC (Sm.) ILSVRC (Lg.)

HDBSCAN 1635 7902.90 DNF
GRINCH 385.113 836.748 DNF
AFFINITY 29.01 + 0.834 261.831 + 0.298 849.846 + 9.886
SCC 29.01 + 2.79 261.831 + 4.29 849.846 + 65.621

Table 4.3: Running Time (seconds) of Top Performing Methods. Each run on machine
using 24 2.40GHz CPUs. Grinch and HDBSCAN did not finish on largest dataset in 10
hours. Affinity and SCC report Sparse Graph Construction Time + Algorithm Execution
Time for given graph. DNF = Did not finish in 10hours.

We report running times in Table 4.3. The time required by SCC and Affinity is

dominated by the construction of the sparse nearest neighbor graph. We use ScaNN to

build the nearest neighbor graph [137]. We use the publicly available implementations of

HDBSCAN.

We also compare SCC’s performance to HAC and found that SCC matches the per-

formance of HAC while being much more scalable (Section 4.4.5). We analyse different

threshold schedules in Section 4.4.4.

4.4.2 Flat Clustering

We first compare a wide variety of algorithms on synthetic datasets in Figure 4.5. Then,

we empirically evaluate SCC against state-of-the-art approaches in terms of pairwise F1

and the DP-Means objective. We use the same experimental setting as in previous works

[170]. In this experiment, we use the ground truth number of clusters when selecting a flat
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clustering. We select the round of SCC which produced the closest number of clusters to

the ground truth and report the flat clustering performance of that round. We do the same

for baseline methods. We evaluate the quality of the flat clusterings using the pairwise F1

metric [170, 199].
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Figure 4.6: Pairwise F1 Evaluation. As each algorithm depends on λ in a different way,
the settings of λ resulting in the best performance might differ between methods. We plot
the performance of each method for each value of λ. When considering the best F1 achieved
by each method for some value of λ, SCC is the top performing method on 4 of 5 datasets.

Table 4.2 gives the F1 performance for each method. We observe that both SCC

and Affinity outperform the previous state-of-the-art results and that the best performing

approach varies from dataset to dataset. We also report the best F1 achieved in any round

of our algorithm and Affinity, which is the next best performing method (see also Section

4.4.6). We observe in Table 4.6 that the best F1 is better from our approach than from

Affinity, highlighting that our tree structures potentially contain more high quality alternative

clusterings.

4.4.3 Summary of DP-Means Experiments

We measure the quality of the clustering discovered by our algorithm in terms of the

DP-Means objective following our analysis (Corollary 6).

We compare SCC to the following state-of-the-art algorithms for obtaining solutions to

the DP-means objective: SerialDPMeans, the classic iterative optimization algorithm for

DP-Means [53, 157, 176, 228], in which data point is added to a cluster if it is within λ of

that cluster center and otherwise starts a new cluster (for large datasets we use its distributed

variant OCC [228]); DPMeans++ [23] an initialization-only method which performs a

K-Means++ [270] style sampling procedure. For each method, we record the assignment
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of points to clusters given by inference. We use this assignment of points to flat clusters to

produce a DP-Means cost.

Figure 4.4 shows for each dataset the DP-Means objective as a function of the value of

the parameter λ. Figure 4.6 shows the corresponding F1 performance for different values

of λ. Each method uses normalized `22 distance as the dissimilarity measure. We report the

min/max/average performance over multiple runs of the SerialDPMeans and DPMeans++

algorithms with different random seeds. A more detailed explanation is provided in Section

4.4.8.

We observe that for each value of λ, SCC achieves the lowest DP-Means cost. We

hypothesize that our improvement is due foremost to having an algorithm that discovers

optimal clustering independently of λ and our algorithm’s ability to explore multiple alterna-

tive partitions in the tree. For each method, if we consider the best F1 value achieved by the

algorithm, SCC is usually one of the best performing methods. In Section 4.4.8, we analyse

SCC performance with different number of rounds, provide running times comparison and

large scale experiments results.

4.4.4 Hyperparameter Analysis

Affinity clustering does not require any hyper-parameters. For Grinch, the results /

settings from the original paper are used. For gHHC, we performed a grid search over the

number of internal nodes used, learning rate, and child/parent regularization terms.

SCC Thresholds We experiment with two kinds of thresholds, one based on `22 as

shown in our theoretical results and one based on using similarities (dot products/cosine

similarities) between the points. We find that the two perform comparably on 3 out of the 5

datasets and that dot products work better on ALOI and Speaker (Table 4.5). Dot products

give state-of-the-art results on all datasets and `22 gives state-of-the-art results on all except

Speaker. We use the normalized `22 distance which is bounded in the range [0,4] and a range

of [0,1] for dot products. For distances, we use a geometric progression with base (M
m
)

1
L and
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CovType ILSVRC ALOI Speaker ImageNet ILSVRC
(Sm.) (Lg.)

Exponential 0.433 0.622 0.575 0.510 0.0722 0.606
Linear 0.433 0.641 0.572 0.491 0.0798 0.591

Table 4.4: Comparison of Round Threshold Schedules. We run SCC with two settings
of round thresholds, exponentially decaying and linear schedules. We use 30 rounds in each
case. We report the dendrogram purity of each and observe that the performance of the
exponential is typically better.

Metric Fixed # Rounds CovType ILSVRC (Sm.) ALOI Speaker ImageNet

`22 Y 0.437 0.617 0.537 0.446 0.076
`22 N 0.443 0.626 0.554 0.455 0.077
xTi xj Y 0.438 0.631 0.586 0.524 0.074
xTi xj N 0.438 0.632 0.588 0.524 0.075

Table 4.5: Distance/Similarity Metric Comparison & Fixed Number of Rounds. We
observe that `22 and xTi xj give comparable results on 3 out of 5 datasets and xTi xj improves
results on two datasets. We observe that using a fixed number of rounds with one round per
threshold does not impact performance.

τ0 = m, so our thresholds are m · (M
m
)

i
L for i = 1 to L where m is the minimum allowed

pairwise distance and M is the maximum allowable pairwise distance. As M/m > 1,

this meets the criteria of the theorems we proved. For similarities, we use the comparable

geometrically increasing progression. We compare this to use a linear progression of the

thresholds in Table 4.4. We find both schedules work quite well with linear working slightly

better on the two ILSVRC datasets. Further, we compare using a fixed number of rounds,

incrementing the threshold index after each round as an approximation of our method. We

find that the results are nearly identical regardless of whether the threshold is incremented

or not (Table 4.5).

In Table 4.4, we compare the performance of our approach using exponentially decaying

round parameters to using the linear schedule of rounds. We find that on most datasets the

performance is typically quite similar, but find some improvements using the exponential

scheme.
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4.4.5 Comparison to HAC

We sample datasets of varying sizes from a Dirichlet Process Mixture Model. Figure 4.7

reports the running time and dendrogram purity as a function of the dataset size. We report

SCC results with 200 rounds. We observe that while the time complexity of HAC grows

quadratically, SCC remains much more constant. Despite being much more efficient than

HAC we observe that SCC produces trees with comparable dendrogram purity.
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Figure 4.7: Comparison to HAC: We report running time and Dendrogram Purity of SCC
compared to HAC, on a synthetic dataset.

4.4.6 Flat clustering Comparison to Affinity

In the hierarchical clustering and flat clustering experiments, we observe that SCC and

affinity clustering were typically the best performing methods. We observe that the flat

clustering produced when using the ground truth number of clusters is not always the best in

terms of F1. We report in Table 4.6 the results of the best F1 of any flat partition produced

in a round of Affinity and SCC.

4.4.7 Comparison to Robust Hierarchical Clustering (RHC)

RHC [29] has stronger theoretical guarantees than SCC. RHC achieves these stronger

theoretical guarantees by using a complex linkage function, requiring more time per linkage

function execution. In Table 4.7, we compare the best dendrogram purity achieved by
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CovType ILSVRC ALOI Speaker ImageNet ILSVRC
(Sm.) (Lg.)

Affinity 0.536 0.632 0.465 0.3141 0.055 0.641
SCC 0.536 0.654 0.605 0.526 0.081 0.664

Table 4.6: Best F1 The best F1 achieved by the methods for any number of clusters. We
observe that the best F1 achieved by SCC is consistently best.

RHC SCC

Iris 0.955 0.926
Wine 0.944 0.975

Table 4.7: Comparison to RHC We report the best dendrogram purity achieved across
various hyperparameter settings of each method.

SCC and RHC on the Iris and Wine datasets using a grid search over each method’s

hyperparameters (α+ν for RHC, number of nearest neighbors and rounds for SCC). We use

the publicly available MATLAB implementation of RHC. We find on these small datasets

that SCC achieves competitive dendrogram purities despite using a simpler linkage function.

4.4.8 Detailed DP-means Experiments

For each method, we recorded the assignment of points to clusters given by inference.

We then use this assignment of points to flat clusters to produce a DP-Means cost. Note that

this means that while methods like exemplar based clustering method would produce a data

point as the cluster center, we instead replace this representative with the empirical mean of

the cluster points. This strictly improves the DP-Means objective score (see Proposition 1).

Each method uses normalized `22 as the dissimilarity measure.

Figure 4.4 shows for each dataset the DP-Means objective as a function of the value of

the parameter λ. Each method uses normalized `22 distance as the dissimilarity measure. We

use the following range of lambda values 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0,
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1.25, 1.5, 1.75, 2.0. We report the min/max/average performance over multiple runs of the

SerialDPMeans and DPMeans++ algorithms with different random seeds.

Noticeably, each algorithm depends on the value of λ in a different way. SerialDPMeans

relies directly on λ to determine membership of clusters. This means that for values of

λ greater than the maximum distance between points the algorithms will put all points

into the same cluster and return the clustering with the entire dataset with a single cluster.

DPMeans++ has similar behavior, but behaves more globally with respect to the λ as its

stopping condition depends on the sum of the distance of every point to cluster assignment.

Our method, SCC, on the other hand constructs a series of candidate solutions to DP-Means

independent of λ and then selects amongst these clusterings, the one which optimizes the

DP-Means objective for a given value of λ.

4.4.8.0.1 F1 results Each dataset has a ground truth flat partition, defined for purposes

of using the datasets for classification. We evaluate the ability of clustering algorithms to

recover this ground truth flat partition. We measure the quality of a predicted partition by

the pairwise precision/recall/F1 clustering metric [199, 202].

As each algorithm uses the value of λ differently, the value of λ that results in the best

F1 score on the dataset could be quite different for each method and for each dataset. We

run each method with the same values of λ as in the DP-Means objective evaluation and

record the F1 score of the clustering for each. We show this in Figure 4.6. For each method,

if we consider the best F1 value achieved by the algorithm, SCC is usually one of the best

performing methods. We do observe that both DPMeans++ and SCC perform poorly on

the CovType dataset. This is because both predict many more clusters than are needed for

the dataset (See §4.4.8.4).

4.4.8.1 Comparison to LowrankALBCD

In this experiment, we compare the performance of our method and LowrankALBCD

[292]. The parameter settings described by the authors in their paper as well as the code
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provided by the authors use values of lambda at the scale of λ = 0.01 ·N . Our experiments

(following those in [292]) use normalized `22 distance. Any value of λ greater than the

maximum pairwise distance which in the case of `22 is 4, will result in methods such as

SerialDPMeans and OCC-DP-Means necessarily giving solutions of every data point being

placed in the same cluster. We evaluated LowrankALBCD on CovType, ALOI, Speaker,

and ILSVRC (Small). We tried to use the code provided by the authors of LowrankALBCD

to solutions with small values of λ in the range 0 to 4, for large numbers of iterations

we found the code either required more than 100GB of RAM or took longer than 10

hours. And so, we instead compare our method and LowrankALBCD for larger values

of lambda, specifically the authors suggestion of 0.01N . We observe that on SCC and

LowrankALBCD perform similarly on several of the datasets and LowrankALBCD performs

better on CovType. However, we notice that for all datasets except CovType, these values of

λ produce unreasonably few clusters. For instance, ALOI and ILSVRC (Sm.) have 1000

ground truth clusters and these values of λ are producing less than 30 clusters. This leads to

extremely low pairwise F1 scores. Similarly, the Speaker dataset has around 5000 ground

clusters, yet these values of λ produce less than 10 clusters. As reported in the main body

of the paper, SCC is able to achieve high F1 scores for lower values of λ when there are

fine-grained clusters.

4.4.8.2 Large scale experiments

In this experiment, we scale each of the methods for DP-Means to the largest dataset,

a dataset of 1.2 million imagenet images (ILSVRC (Lg.)). We run SerialDPMeans using

its parallel implementation Optimistic Concurrency Control [228]. We run SCC, Seri-

alDPMeans/OCC, DPMeans++ for the same values of λ used in the other experiments.

We additionally run SCC and DPMeans++ for larger values of λ as one might expect is

necessary for a larger dataset.
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Figure 4.8: DP-means and F1 accuracy for ILSVRC (Lg.) dataset
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Figure 4.9: Number of Rounds The impact on number of rounds (L) in SCC algorithm, on
DP-mean cost, running time, F1, and number of clusters on Speaker dataset. For DP-means
and F1, we report for λ = {1.5, 2}.

SerialDPMeans/OCC can only be run with λ < 4.0 since λ > 4.0 will place all

points in the same cluster (the maximum `22 distance between points is 4). We find that

running SerialDPMeans/OCC for 50 iterations as in the other datasets is prohibitively time

consuming. We find that it takes longer than 10 hours to run more than 2 iterations of OCC,

for lambda values less than 0.75. We report the results after the method had finished 2

iterations in the time limit. We observe that the lambda value of 0.75 gives a reasonable F1

score for SerialDPMeans/OCC. We observe that SCC achieves higher F1 scores when the

value of λ is larger, as having too small a λ value creates too many clusters. We observe that

SCC produces lower costs than DPMeans++ and achieves a higher F1 value for particular

values of λ.
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4.4.8.3 Number of Rounds - DP-Means

Rounds (L). After fixing the maximum value of the threshold and the mimimum, the

number of rounds (L), determine how τi changes. To analyse the performance of SCC

algorithm with number of rounds we increased L from 2 to 700. In Figure 4.10, we plot

DP-means cost, the total distance of points from assigned clusters, the number of clusters

discovered, the time taken and the F-1 accuracy vs number of rounds, for two values of

λ = {1.5, 2}.

As seen in Figure 4.10, across datasets, the DP-means cost decreases with number of

rounds but then the decrease tapers off around 100 - 200 rounds. Moreover, the number

of clusters mostly increases with the number of rounds, decreasing the distance of points

to the cluster centers. As expected the number of clusters found using higher value of λ

(2.0), is always lower than the number of clusters found using lower value of λ (1.5). The

time taken has a linear dependence on the number of rounds. The F1-accuracy numbers also

increase with the number of rounds and are somewhat stable beyond 100-200 rounds. All

this suggests that using 100-200 rounds is ideal for real world scenario.

4.4.8.4 CovType Performance

CovType is a dataset with 500K points belonging to just 7 different clusters. Because

of the large number of points, we observe that for small values of λ, SCC produces far

too many clusters. SerialDPMeans does not have the same problem as λ directly acts as a

distance threshold giving cluster membership. We observe that for larger values of λ the F1

performance of SCC can be improved. However, we do not find a comparison of F1 score

particularly meaningful as we observed the highest F1 value (0.536) when all points are

placed in a single cluster.
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Figure 4.10: Ablation Study on Number of Rounds Used. The impact on the number
of rounds (L) in SCC algorithm, on DP-mean cost, distance of points from cluster center
(K-means cost), number of clusters, F1 and running time for the different datasets. We
report numbers for λ = {1.5, 2}. Note that the running time for all λ is the same for SCC,
as shown in the last row.

4.5 Use Cases & Applications

In this section, we review four uses cases of SCC with both qualitative and quantitative

evaluation.

4.5.1 Word Sense Discovery

We would like to automatically discover the senses of words. For instance, we would

hope to find that leg can refer to the limb of a human/animal, the support of a table, a part of

a journey, etc.
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Cluster Summary Example Members

Query Word: Coach
sports footballer, player, captain, leaguer
TV judges, television, competition, participants, elimination
transit wagon, carriage, drawing
rail transit train, railroad, railway
business (n.) manager, boss, managerial, administration
business (v.) managed, guided, controlled
train (v.) practice, trained, hone

Query Word: Wing
aircraft nose, tail, tailplane, fin, flap, fuselage
politics left, right, centrist, faction
hospital ward, unit, beds, icu, theatre
sports halfback, tailback, flanker
fly (v.) fly, flying, gliding
buildings annex, addition, extension
birds bird, owl, turkey

Table 4.8: Example Word Sense Clusters. Discovered from 48M token embeddings from
Wiki103. We show that SCC discovers meaningful senses for words such as coach and
wing.

We build a collection of ∼ 48 million word token representations from WikiText-103

[204]. The work token representations that we use are from BERT [99]. We discover senses

by clustering all of the word tokens together. The idea is that clusters will form to correspond

to a synset of words that have similar contextual meaning. We perform sharding to reduce

the complexity of nearest neighbor search. We use ScaNN [137] to perform nearest neighbor

search. The largest chunk takes about 5 hours to run on a single machine with 24 CPUs. We

find that SCC produces meaningful clusters as shown in Table 4.8

4.5.2 Sentence Clustering

We would like to perform analysis on a dataset where the similarity function is non-

metric. We select a corpus of sentences, IBM Debater Thematic Clustering Dataset [107].

We use a sentence-similarity cross encoder [99] to measure the relatedness between sen-
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All organized forms of American football have abolished pure sudden death for overtime as of the 2011 season 
Sudden-death overtime has traditionally been used in playoff and championship games in hockey. 
In 1974, the NFL adopted a 15-minute sudden-death overtime period for regular-season games.

Sudden-death overtime
Rules of game play

Playoffs / championships

Penalties

art

Laotian art includes ceramics, Lao Buddhist sculpture, and Lao music. 
Lao Buddhist sculptures were created in a large variety of material including gold, silver and most often bronze. 
Many beautiful Lao Buddhist sculptures are carved right into the Pak Ou caves

Laotian Buddhist art
Buddhist Art

Bhutanese Buddhist art

Thai Buddhist art

Nick Raynsford, MP for Fulham 1983-87, Greenwich 1992-97 and Greenwich & Woolwich 1997-2015, who married in 2012 
Alison Seabeck, MP for Plymouth Devonport 

MP Couples
Notable Couples

Figure 4.11: Fine-Grained Sentence Clusters. Discovered sentence clusters and hierarchy
from IBM Debater Dataset.

tences. This does not follow the triangle inequality. We find meaningful flat clusters as well

as hierarchical ones, which we illustrate in Figure 4.11.

4.5.3 Biomedical Entity Discovery

Recent work1 has considered how to automatically discover emerging entities and

concepts from biomedical research papers. The approach forms an embedded representation

of candidate entity mentions using BioSentVec [75]. These representations are then clustered

and the resulting clusters are considered as candidate entities to be added to a knowledge-

base such as UMLS. We display example entities and concept hierarchies in Figure 4.12.

4.5.4 Web-Scale Data

We investigate the use of SCC for clustering web queries. We run our proposed

clustering approach and Affinity clustering on a dataset of a random sample of 30 billion

queries. To the best of our knowledge this is one of the largest evaluations of any clustering

1https://github.com/chanzuckerberg/concept_discovery
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Figure 4.12: Example BioMedical Concepts. We present examples of the concepts discov-
ered by our system from PubMed papers related to COVID19. Note that the flat concepts
are concepts, which at the time of the experiments, were not in UMLS. We show only partial
segments from the discovered hierarchies.
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Figure 4.13: Human evaluation of clusters generated by SCC and Affinity

algorithm. Due to the massive size of the data, we limit our evaluation to the two most

highly performing methods, SCC and Affinity clustering. Distance computation between

queries during algorithm execution are sped-up using hashing techniques to avoid the N2

pairwise dissimilarity bottleneck (for both SCC and Affinity). Queries are represented using

a set of proprietary features comprising lexical and behavioral signals among others. We

extract manually a fine-grained level of flat clusterings and compared the clustering quality

of the flat clusterings discovered by both algorithms.

Human Evaluation: To evaluate the quality of flat clusters discovered by SCC, we

conducted an empirical evaluation with human annotators. We asked them to rate ∼ 1200

randomly sampled clusters from -1 (incoherent) to +1 (coherent). For example, a annotator

might receive a head query of home improvement and a tail query of lowes near

me from the same cluster. The annotator then rates each of these pairs from -1 (incoherent) to

+1 (coherent). We report the aggregated results in Figure 4.13. We found that the annotators

labeled 6.0% of Affinity clustering’s clusters and only 2.7% of SCC clusters as incoherent.

The annotators labeled 55.8% of Affinity’s clusters and 65.7% of SCC clusters as coherent.

We hope this demonstrates the cogency of the clusters found by SCC.

Qualitative Evaluation: In Table 4.9, we show the clusters discovered by both SCC

and Affinity that contain the query Green Velvet (the house/techno music artist). We observe

that SCC’s cluster is considerably more precise and on topic. Table 4.10, shows additional

examples. We find the clusters to be precise and coherent. The algorithm discovers a
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Figure 4.14: Hierarchy inferred on 30 billion user queries using SCC. We represent the
hierarchy using rectangular boxes. The root with header is represented by the outer rectan-
gular box (solid line). The second level of the hierarchy, with header, is shown in dashed
(− −) rectangle withing the outer box. Finally the third level from the root is shown as
the inner most dotted (...) rectangle. Plain text within each of the dotted rectangle are
the top queries that belong to that cluster. For example, ENDANGERED ANIMALS, is the
root of the left most hierarchy, ENDANGERED ANIMALS IN AFRICA is a sub-cluster and
PICKERGILL’S REED FROG is the lowest level cluster containing queries such as WHY IS

THE PICKERGILL’S REED FROG ENDANGERED.

clustering related to tennis strategies, which contains meaningful queries such as baseline

tactics and tennis strategy angles. We investigate the hierarchical structure in Figure 4.14.

We discover meaningful clusters at multiple granularities with the tree structure indicating

meaningful relationships between topics. For instance, we discover subgenres of jazz such

as bebop and modal jazz. We further discover that hard bop is a subgenre of bebop.

Affinity Clustering SCC

green velvet live green velvet mix
green velvet talking dj green velvet
kestra financial businesswire tomorrowland green velvet
tomorrow land green velvet green velvet 2015
dj green hair green velvet music
rinvelt & david kestra businesswire green velvet dj set

Table 4.9: SCC and Affinity Clustering for clusters corresponding to green velvet on the 30
billion query dataset.
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Tea Recipes Tennis Strategy Electric Piano

tea drinks playing strategies in tennis digital piano price
tea recipes understanding tennis tactics electric piano sale

tea drinks to make at home tennis strategy names electric piano prices
fancy tea recipes baseline tactics yamaha electric piano small

black tea flavors and recipes tennis strategy angles best digital piano ebay

Table 4.10: Example Fine-grained Query Clusters Discovered by SCC

ALOI Speaker ILSVRC12 50k

GRINCH 0.531 0.525 0.604
OHAC 0.494 0.453 0.595
FishDBC 0.576 0.306 0.361
MBSCC 0.591 0.487 0.617

Table 4.11: Comparison of Incremental Methods on Clustering Benchmarks - Dendrogram
Purity

4.6 Incremental Setting Experiments

4.6.1 Dendrogram Purity on Clustering Benchmarks

In Table 4.11, we compare MBSCC to other online clustering algorithms including

Grinch, OHAC [203], a recently proposed online approximation to agglomerative clustering

that deletes all ancestors of the nearest neighbor of a newly observed point and re-clusters

those ancestors with HAC, FishDBC [97], an incremental variant of HDBSCAN, and

GRINCH. Observe MBSCC is most effective on two of the three benchmarks.

4.6.2 Incremental Running Time

In Figure 4.15, we report the running time of brute force nearest neighbor search (from

Faiss [161]) to MBSCC using a hierarchical navigable small world index [161] to build

the nearest neighbor graph in an incremental fashion. We observe that can we can observe

significant speedups using the mini-batch setting.
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4.6.3 Analysis of Batch Size

We would like to understand how performance changes with different mini-batch sizes.

We observed speed ups in Figure 4.15. We use exact nearest neighbor search and report

just the MBSCC update on the sparsified graph (to minimize variation across runs). The

complexity of each round of the incremental algorithm depends on the size of U (i)
t , the

number of nodes that will be updated. The overall time complexity will be a function of that

cost along with the number of mini-batches that are used.
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Figure 4.15: Incremental Algorithm Running Times. Comparison of the per-point MB-
SCC to GRINCH and OHAC on the ALOI dataset. MBSCC is both faster and more accurate
than GRINCH.

4.6.4 Discovering Evolving Topics in Patent Data

We collect a corpus of around 6M US patents from PatentsView 2. We train a Sent2Vec

embedding [226] to train title representations for the patents following [75]. We apply

MBSCC on the collection with mini-batch size of 500K. This takes about 90 minutes on a

2patentsview.org
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Figure 4.16: Mini-batch Analysis. We compare a variety of mini-batch sizes of MBSCC
on the ALOI dataset. Left: We show the time to cluster ALOI. Right: We show the amount
of the structure that is updated. We find that the number of updates is roughly constant with
respect to the batch / dataset size ratio. We find that dendrogram purity increases from about
0.58 with batch size of 1 to 0.62 with any larger batch size.
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1980 2000 20101990

1986 Apparatus for 
production of three-
dimensional objects by 
stereolithography      

1992 Apparatus for 
production of three-
dimensional objects by 
photosolidification 

2002 Production 
of three-
dimensional 
objects

2013 method and 
system for layerwise 
production of a 
tangible object

Figure 4.17: Discovering Emerging work on 3D Printing Patents We show how the 3D
printing topic grows over time with minibatch SCC.

machine with 12 CPUs. We show two examples of dynamic topic clusters. In Figure 4.17,

we show how the 3D printing topic continues to grow as more patents are granted. In

Figure 4.18, we show how the initial clusters related to virtual reality change over time.

We see that the initial cluster is split into three more fine-grained clusters all of which

are related to virtual reality. These clusters include: virtual workplace, imaging systems,

VR entertainment. We note that this evolution shows MBSCC’s flexibility to effectively

reconsider past decisions in the presence of new data.
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2000 20101990

1994 Videoconference 
system using a virtual 
camera image 

2007 Virtual reality 
bicycle-training 
simulation platform

1995 Virtual reality 
baseball training and 
amusement system 

1995 Virtual reality 
imaging system

2005 Camera driven 
virtual workspace 
management

2012 Virtual reality 
shopping experience 

1996 Panoramic 
image based virtual 
reality

(a) We present the state of clusters until the year 2000. The grey nodes represent patents observed in
future. The green/red clusters represent two clusters of Virtual Reality based patents.

3

2000 20101990

1994 Videoconference 
system using a virtual 
camera image 

2007 Virtual reality 
bicycle-training 
simulation platform

1995 Virtual reality 
baseball training and 
amusement system 

1995 Virtual reality 
imaging system

2005 Camera driven 
virtual workspace 
management

2012 Virtual reality 
shopping experience 

1996 Panoramic 
image based virtual 
reality

Virtual Workplace

Imaging systems

VR entertainment / training

(b) We present the state of clusters until the year 2012. Notice how the green cluster above has now
been split into three sub-topics related to Virtual Reality.

Figure 4.18: Changing Topics in Virtual Reality Patents. We are interested to see how
Virtual Reality related topics are changing as more patents are observed. We find that
MBSCC performs rearrangements of past clusters in the presence of new data.
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4.7 Proofs and Additional Details

4.7.1 Proof of Proposition 1

Proposition 1 [228] Let µ∗, Z∗, K∗ be an optimal solution to the DP-means problem

and let µ†, Z†, K† be the DP-Means solution given by an optimal solution, I†, φ† to the

DP-facility location problem. Then,

DP (X,λ, Z†,µ†, K†) ≤ 2 ·DP (X,λ, Z∗,µ∗, K∗). (4.16)

Proof. From [228], presented for completeness. It is folklore that this holds for the K-means

objective:

min
Z,µ⊆X

N∑
i=0

K∑
j=0

zi,j||xi − µj||2 ≤ 2 min
Z,µ∈RN×d

N∑
i=0

K∑
j=0

zi,j||xi − µj||2 (4.17)

And so the K-means result for the optimal K∗.

DP (X,λ, Z†,µ†, K†) ≤ min
Z,µ⊆X

{
N∑
i=0

K∗∑
j=0

zi,j||xi − µj||2
}

+K∗λ (4.18)

≤ 2 min
Z,µ∈RN×d

N∑
i=0

K∗∑
j=0

zi,j||xi − µj||2 +K∗λ ≤ 2DP (X,λ, Z∗,µ∗, K∗)

Recall that Z†,µ†, K† is an optimal solution and so is at most as expensive as any other

solution to the DP facility problem (the first line above). �

4.7.2 Proof of Theorem 4

Theorem 4. Suppose the datasetX satisfies the δ-separability assumption with respect

to the clustering C∗1 , . . . , C
∗
k for δ ≥ γ then the set of partitions produced by SCC-algorithm

with geometrically increasing thresholds i.e. τi = 2i · τ0 contains the optimal partition

C∗1 , . . . , C
∗
k where γ = 6 for all metrics and γ = 30 for the `22 distance.
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Proof. Let ci be the center for cluster Ci. Recall the assumption of δ-separability (As-

sumption 2) in which the maximum distance from any point to its true center is defined as

R := maxi∈[k]maxx∈C∗i ||x− c∗i ||. We make the additional assumption that the threshold of

the first round, τ0, is less than R, i.e., τ0 < R.

First, we give a proof for general metrics and then consider `22. The algorithm begins

with C(0) set to be the shattered partition, with each data point in its own cluster, C(0) =

{{x}|x ∈X}.

We want to show that some round, r? with threshold τr produces the ground truth

partition, C(r?) = C∗ = {C∗1 , . . . , C∗k}. We will show by induction that for each round prior

to r′ ≤ r? that the clustering C(r′) is pure, i.e. ∀C ∈ C(r′), ∃C∗ ∈ C∗ C ⊆ C∗ (equality will

be for round r?). We will show that the round r? with C(r?) = C∗ must exist.

Assume that for round r?−1, we have pure sub-clusters in C(r?−1) such thatX,X ′ ⊆ C∗i ,

which are disjoint, X ∩ X ′ = ∅, and Y ⊆ C∗j for i 6= j (C(0) by definition has pure sub-

clusters). We want to show: every such X and X ′ must form a sub-cluster component

without any such Y . In this way, we ensure that C∗i exists as a pure cluster in some round.

Recall that we use c to refer to the center of cluster C. Using the triangle inequality we

have that:

||c∗i − c∗j || ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

||c∗i − x||+ ||x− y||+ ||y − c∗j || (4.19)

Re-arranging terms we have:

||c∗i − c∗j || ≤
1

|X|
∑
x∈X

||c∗i − x||+
1

|X||Y |
∑
x∈X

∑
y∈Y

||x− y||+ 1

|Y |
∑
y∈Y

||y − c∗j || (4.20)

With further re-arrangements,

||c∗i − c∗j || −
1

|X|
∑
x∈X

||c∗i − x|| −
1

|Y |
∑
y∈Y

||y − c∗j || ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

||x− y|| (4.21)
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Since ||c∗i − c∗j || ≥ δ ·R, where (see Assumption 2), R := maxi∈[k] maxx∈C∗i ||x− c∗i ||:

(δ − 2) ·R ≤ ||c∗i − c∗j || −
1

|X|
∑
x∈X

||c∗i − x|| −
1

|Y |
∑
y∈Y

||y − c∗j || ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

||x− y||

(4.22)

However, we have that for X ⊂ C∗i and X ′ ⊂ C∗i :

1

|X||X ′|
∑
x∈X

∑
x∈X′
||x− x′|| ≤ 1

|X||X ′|
∑
x∈X

∑
x′∈X′

||c∗i − x||+ ||c∗i − x′|| ≤ 2R. (4.23)

For δ ≥ 6, this indicates that there exists a τr, such that 2R ≤ τr ≤ 4R for which

X and X ′ would form a sub-cluster component without Y . Since we use a geometric

sequence of τ1, τ2, . . . , we know that τr will exist since it is between 2R and the doubling

of 2R. X and X ′ are any sub-clusters of any ground truth cluster C∗i . The result above

indicates that at any round before the one using τr that takes as input pure sub-clusters will

produce pure sub-clusters as no sub-clusters with points belonging to different ground truth

clusters will be merged. Moreover, the existence of τr indicates that the partition given by

sub-cluster component from a round using τr , will contain every ground truth cluster in C∗.

In particular, the last round that uses τr will be the r? to do this, i.e., C(r?) = C?. Observe

that the separation condition requires that within cluster distances for any two subsets will

be less than τr and so sub-clusters will continue to be merged together until each ground

truth cluster is formed by the last round using τr.

Now let’s consider the case for `22. We update our definition of R for `22, R :=

maxi∈[k] maxx∈C∗i ‖x − C∗i ‖22. Again, the algorithm begins with C(0) set to be the shat-

tered partition, with each data point in its own cluster, C(0) = {{x}|x ∈ X}. Again, we

want to show that for some round, r? with threshold τr produces the ground truth partition,

C(r?) = C∗ = {C∗1 , . . . , C∗k}. As before, we will show by induction that for each round prior

to r′ ≤ r? that the clustering C(r′) is pure, i.e. ∀C ∈ C(r′), ∃C∗ ∈ C∗ C ⊆ C∗ (equality will

be for round r?). We will show that the round r with C(r?) = C∗ must exist.
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As before, we assume that for rounds before and including τr, we have pure sub-clusters

such that X,X ′ ⊆ C∗i , which are disjoint, X ∩ X ′ = ∅, and Y ⊆ C∗j for i 6= j (C(0) by

definition has pure sub-clusters). We want to show: every such X and X ′ must form a

sub-cluster component without any such Y . In this way, we ensure that C∗i exists as a pure

cluster in some round.

Using the relaxed triangle inequality [136] for `22, we have:

‖c∗i − c∗j‖22 ≤ 3

(
1

|X||Y |
∑
x∈X

∑
y∈Y

‖c∗i − x‖22 + ‖x− y‖22 + ‖y − c∗j‖22

)
(4.24)

‖c∗i − c∗j‖22 ≤ 3

(
1

|X|
∑
x∈X

‖c∗i − x‖22 +
1

|X||Y |
∑
x∈X

∑
y∈Y

‖x− y‖22 +
1

|Y |
∑
y∈Y

‖y − c∗j‖22

)
(4.25)

Re-arranging the above:

1

3
‖c∗i − c∗j‖22 −

1

|X|
∑
x∈X

‖c∗i − x‖22 −
1

|Y |
∑
y∈Y

‖y − c∗j‖22 ≤
1

|X||Y |
∑
x∈X

∑
y∈Y

‖x− y‖22

(4.26)

Since ‖c∗i − c∗j‖22 ≥ δ ·R and by the definition of R,

(
1

3
δ − 2) ·R ≤ 1

3
‖c∗i − c∗j‖22 −

1

|X|
∑
x∈X
‖c∗i − x‖22 −

1

|Y |
∑
y∈Y
‖y − c∗j‖22 ≤

1

|X||Y |
∑
x∈X

∑
y∈Y
‖x− y‖22

(4.27)

However, for any two subclusters X,X ′ ⊂ C∗i then we know that:

1

|X||X ′|
∑
x∈X

∑
x∈X′
‖x− x′‖22 ≤ 2

(
1

|X|
∑
x∈X

‖c∗i − x‖22+ ≤
1

|X ′|
∑
x∈X′
‖c∗i − x′‖22

)
≤ 4R.

(4.28)

For δ ≥ 30, we know that there exists a 4R ≤ τr ≤ 8R for which X and X ′ would form

a sub-cluster component without Y . Since we use a geometric sequence of τ1, τ2, . . . , we
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know that τr will exist since it is between 4R and the doubling of 4R. X and X ′ are any

sub-clusters of any ground truth cluster C∗i . For the same reasons as the metric case, the

result above indicates that at the round r? − 1 we will only have pure sub-clusters as no

sub-clusters with points belonging to different ground truth clusters will be merged. This

result indicates that the partition given by sub-cluster component from round r?, C(r?) will

contain every ground truth cluster in C∗.

�

4.7.3 Proof of Theorem 5

Theorem 5 Suppose the datasetX satisfies the δ-separability assumption with respect

to clustering C?
1 , . . . , C

?
k , then this clustering is an optimal solution to the DP-Facility

problem with λ = (δ − 2) ·R. where R := maxl∈[k] maxx∈C?
l
||x− c∗l ||.

Proof. To prove this, we use linear programming duality. To show that this clustering is an

optimal solution to the DP-Facility problem, we will use linear programming duality. In

particular, we will exhibit a feasible dual, α, to the linear programming relaxation of the

DP-Facility Problem, whose cost is the same as the clustering {C∗1 , . . . , C∗k}. From linear

programming duality, we know that the following set of relations are true : COST(α) ≤

OPT(DUAL) = OPT(PRIMAL) ≤ COST(C∗). Combined with the fact that COST(α) =

COST(C∗), this will show that clustering is an optimal solution to the DP-Facility problem.

Consider the linear programming relaxation to DP-Facility problem. This LP is an adap-

tion of the classical LP used for the facility location problem considered in [271][Ch. 17].

min
∑
i∈F

∑
j∈C

e(i, j) · zi,j + λ
∑
i∈F

yi

∑
i∈F

zij ≥ 1 for all j ∈ C

yi − zij ≥ 0 for all j ∈ C

z, y ≥ 0
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The above program contains two variables zij indicating if client j is connected to facility i

and variables yi indicates if facility i is open. In particular, every feasible solution to the

DP-Facility problem is a candidate solution to the above LP. The dual to the above program

is given below:

max
∑
j∈C

αj

∑
j

βij ≤ λ for all i ∈ F

(αj − e(i, j)) ≤ βij for all i ∈ F, j ∈ C

α, β ≥ 0

For each cluster Ci, and each point in the cluster x ∈ Ci, αx = ((δ − 2)R + e(c∗i , x)/r

where r is the size of cluster r := |Cj|. By δ-separability assumption, we can deduce

that βĩx = 0 for all other clusters C∗
ĩ
6= C∗i . However, for all x ∈ Ci, we will have∑

x∈Ci
βix = r · λ

r
= λ. This shows that α is a valid dual to the LP. �

4.7.4 Proof of Proposition 2

Proposition 2 Let f : P(X) × P(X) → R be a linkage function that is symmetric

and injective, C1, C2, C3, C4 ⊂ X, f(C1, C2) = f(C3, C4) ⇐⇒ (C1 = C3 ∧ C2 =

C4) ∨ (C1 = C4 ∧ C2 = C3) (i.e., the linkage between each pair of nodes is unique). Let

T be the tree formed by Algorithm 1 and let f also satisfy reducibility [55], ∀C,C ′, C ′′ ∈

T , f(C,C ′) ≥ max{f(C,C ′′), f(C ′, C ′′)} =⇒ max{f(C,C ′′), f(C ′, C ′′)} ≥ f(C ∪

C ′, C ′′) then there exists a sequence of threshold t1, . . . , tr such that the tree formed by⋃
SCC(X, f, {τ1, . . . , τr}) is the same as T .

Proof. Each node in the tree, T , produced by HAC has an associated linkage function score.

For node C ∈ T , we abuse notation and call this f(C). We define the threshold-based

rounds for SCC such that t1, . . . , tr to be the values, {f(C)+ ε|C ∈ T } sorted in ascending
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order. Because f is reducible and injective, there is a unique pair of nodes that will be

merged in each round. This pair will correspond exactly to the pair that is merged by HAC

in the corresponding round. It follows that the resulting tree structures will be identical.

We can analyze HAC using the same round notation used in SCC. HAC proceeds by

finding the closest two clusters according to g in the previous round’s clustering C(i−1), and

joining them to form a new clustering for the next round C(i+1) := {C(i) \{Ca, Cb}}∪ (Ca∪

Cb) s.t. Ca, Cb = argmaxC1,C2∈C(i) d(C1, C2). The final hierarchical clustering is given as

{∪ C(i)}N−1i=1 . The round-based threshold is set to the linkage cost in the corresponding round

of HAC to ensure that only a single merger is made by SCC since f is injective. �
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CHAPTER 5

DAG-STRUCTURED CLUSTERING

A key limitation to the hierarchical clustering approaches considered up until this point

is their inability to represent non-nested overlapping clusters. For example, Figure 5.1

shows a subset of the DAG structure built by our proposed method when clustering word

embeddings. The structure can simultaneously represent two senses of the word shepherd

(the type of dog and the profession). Such a structure cannot be represented by a tree. In

this section, we present algorithms for building DAG-structured clusterings at scale using a

simple extension of the reciprocal nearest neighbors algorithm [217].

5.1 Building DAG-Structured Clustering

Akin to the reciprocal nearest neighbor algorithm [217], we present a simple round-

based algorithm for building DAG-structured clusterings. First, we will depart from the

hierarchical clustering tradition by removing the assumption that each round of the algorithm

will produce a flat clustering. Instead, each round will produce a cover of the dataset. Points

may be assigned to multiple clusters1 in the given round. We use S(i) to refer to the cover

produced in round i.

The algorithm begins with each data point in its own cluster. In round i, each cluster C

finds its nearest neighbor C ′ among the members of the cover S(i−1). These two are merged

1We use cluster to refer to member sets of a cover.
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collie, sheepdog, 
shepard, shepherd

cowherd, herdsman,  
shepherd, shepherdess

beagle, chihuahua, collie,  
dachshund, doberman,  
labrador, schnauzer,  
sheepdog, shepherd, terrier

cowherd, dairymaid,  
goatherd, herder, ploughman, 
sheepherder, shepherd, 
shepherdess, swineherd

shepherd shepherdess sheepherdercollie

goatherd, herder, 
herdsman, sheepherder

Figure 5.1: DAG-structured Clustering. A substructure of the clustering produced by our
proposed algorithm on a dataset of word vectors. Observe how the word shepherd appears
in both the cluster of dog breeds as well as the cluster of farm professions.

to form a new node C ∪ C ′ in the following round. This is done for all pairs of nearest

neighbors:

N (i) = {(C,C ′) | C ′ = argmax
B∈S(i−1)

f(C,B)} (5.1)

S(i) = {C ∪ C ′|(C,C ′) ∈ N (i)}. (5.2)

Observe that non-reciprocal nearest neighbor relationships are the source of a cluster

having more than one parent in the given round. The cluster of points, C, may be the nearest

neighbor of many other clusters C ′. Any cluster C ∈ S(i−1) may have multiple supersets in

S(i), and that every nearest neighbor cluster C ′ of C ∈ S(i−1) will lead to a unique superset

of C ∈ S(i). From the data structure point of view, the node corresponding to cluster C will

have a parent corresponding to the cluster of C ∪C ′ for each unique nearest neighbor cluster

C ′.

We refer to this algorithm as Lattices by Leveraging Agglomerations and Multiple

Ancestors (LLAMA) because of its ability to build clustering structures where points have

multiple ancestries. We take the number of rounds used in the algorithm as an optional

hyperparamater. Pseudocode is given in Algorithm 11.
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The algorithm can be implemented to utilize parallelism. The computation of N (i) is

trivially parallelizable. The computation of S(i) can also be parallelized using S(i−1) and

N (i).

5.2 Limiting the Size of the DAG-structures

The size of the DAG-structures discovered by LLAMA will depend on the number

of parents of each node. The number of parents can be be bounded by an additional

hyperparameter in the algorithm, p. We can then adapt the LLAMA algorithm to select at

most p parents for each node. We propose to do this by finding the top p candidate parents

in N (i) for each particular cluster C, according to f(·, ·), we refer to this set as PC . We

will then restrict the entries in N (i) to be those tuples (C,C ′) such that (C,C ′) ∈ PC and

(C,C ′) ∈ PC′ . In words, this means the candidate parent is in the top p candidate parents

for both C and C ′ lists. Let N (i)
C be the entries in N (i) that contain C, then in our set-based

notation, this is:

PC = argtopk
(B,B′)∈N (i)

C

f(B,B′) (5.3)

N (i)′ ← {(C,C ′) | (C,C ′) ∈ PC ∩ PC′} (5.4)

We then update S(i) to include both the new sets from N (i)′ as well as singleton clusters that

were assigned no parent:

S(i)′ = {C ∪ C ′ | (C,C ′) ∈ N (i)′} ∪ {C|PC ∩N (i)′ = ∅} (5.5)
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Algorithm 11 LLAMA

1: Input: X : dataset, f : set similarity function, L: number of rounds (optional, default
∞)

2: Output: D: a DAG-structured clustering
3: S0 ← {{x} | x ∈X}
4: D ← S0

5: for i from 1 to L do
6: Ni ← {(C,C ′) | C ′ = argmaxC′′∈Si−1

f(C,C ′′)}
7: Si ← {C ∪ C ′ | (C,C ′) ∈ Ni}.
8: D ← D ∪ Si
9: if |Si| = 1; return D

10: return D

5.3 Algorithmic Details

To make the construction of N (i) more efficient, we build k-nearest neighbor graphs

with respect to the similarity function (sim) for a dataset. We weight the edges of the

graph with the similarity between the points. Edges that are missing from the graph are

assumed to have 0 similarity. We can use this k-nearest neighbor graph with verticesX and

edges E to define an analogous average linkage: 1
|A||B|

∑
a∈A

∑
b∈B wabI[(a, b) ∈ E] where

I[(a, b) ∈ E] determines if the edge is in the graph. When computing f(·, ·) we can then

restrict our consideration for candidate nearest neighbors in N (i) to connected nodes. When

considering candidate nearest neighbors of a cluster, we consider other clusters such that

there is at least one edge in the nearest neighbor graph between the points in the clusters.

Previous work [216, 217] has shown that we can efficiently update the linkage function

values between newly merged clusters using the linkage function values of existing ones. For

tree structures, these are well known [216] and provide for massive speedups in the methods

as the average linkage can be computed as the sum of values for cluster pairs (instead of

having to consider all of their descendant points). However, if the clusters are overlapping

(as in our setting) the standard update rules for certain linkages will no longer be technically

correct such as for average linkage. Empirically, however we find that approximating the

average linkage by using the standard update rules from [216] achieves good performance.

Interestingly, for average linkage, this approximation looks very much like doing a bag-
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Figure 5.2: LLAMA Algorithm. An example of our proposed algorithm applied to a toy
example graph. The nearest neighbor relationships of each round are shown. The resulting
structure is shown on the far right.

based average linkage where the number of times edges are double counted is a function of

number of times the nodes has appeared in the overlap of two nodes. Table 5.2 provides

a comparison between using this approximate computation using the update rule and the

exact version.

5.4 Theoretical Analysis

In this section, we show that LLAMA is able to accurately recover the target partition

when data follows model-based separation (Assumption 1). We then demonstrate that

LLAMA is able to recover the target partition for noisy model-based separation (Assump-

tion 3) while tree-based methods such as Grinch and HAC cannot.

To show that LLAMA can recover DAG structures that contain the target model-based

separated partition C?, we first make the following observation about the pairs of nearest

neighbors that are merged in each round:
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Lemma 5. Given a dataset X and a symmetric linkage function f such that X is model-

based separated with respect to f , let C? be the target partition corresponding to the

separated data. In each round of LLAMA, each pair of nearest neighbors (C,C ′) ∈ N (i),

will satisfy:

∃C∗ ∈ C? s.t. C ∪ C ′ ⊆ C∗, C∗ ⊆ C, or C∗ ⊆ C ′.

Please see Section 5.6.1 for the proof.

Now, we show that our proposed approach can cluster the same class of data represented

by trees (model-based separation):

Theorem 8. Given a dataset X and a linkage function f such that X is model-based

separated with respect to f , let C? be the target partition corresponding to the separated

data. Let D be the DAG-structured clustering produced by LLAMA (Alg. 11), then C? is a D

consistent partition, C? ⊂ D.

Please see Section 5.6.2 for the proof.

We have now seen that LLAMA is at least as expressive as tree-based methods for

clustering model-based separated data. Now we turn to a data separation assumption that is

not recovered by tree-based methods. While model-based separation is flexible and relatively

loose compared to strict separation, an aspect of it that is overly rigid is its assumption

that every point in a cluster has some point in their cluster that is closer than every point

outside of their cluster. We now want to consider a loosening of this restriction to allow

some points to have nearest neighbors outside their clusters, noisy model-based separation

(Assumption 3).

We now prove that LLAMA recovers a DAG-structure with the noisy model-based

separated partition.

Proposition 3. Given a dataset X and a linkage function f such that X is model-based

separated with respect to f , let C? be the target partition corresponding to the noisy
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model-based separated data. Let D be the DAG-structured clustering produced by LLAMA

(Alg. 11), then C? is a D consistent partition, C? ⊂ D.

Please see Section 5.6.3 for proof.

Finally, we can see that tree-based methods such as Grinch and HAC cannot recover

noisy model-based separated data:

Proposition 4. There exists a datasetsX and symmetric linkage function f such thatX is

noisy model-based separated wrt f , let C? be the target partition corresponding to the noisy

model-based separated data. HAC and GRINCH produces a structure T such that C? is not

a tree consistent partition, C? 6⊂ T .

Please see Section 5.6.4 for proof.

5.4.1 Complexity

We analyze the space and time complexity of LLAMA. See Section 5.6.5 for proofs for

each statement.

Proposition 5. (Space Complexity). Given a dataset of N points, LLAMA produces DAG-

structured clusterings with at most O(N2) nodes.

Proposition 6. (Time Complexity). Given a dataset of N points, R rounds of LLAMA

requires at most O(R ∗N2) linkage function computations.

Proposition 7. (Number of Rounds). Let C? be the target partition of a dataset that

is (noisy) model-based separated, let K be the size of the largest cluster in C?. K =

maxC∈C? |C|. After K rounds, LLAMA produces a structure that contains C?.

We note that while the worst-case complexity is quadratic in the number of datapoints,

we find that in practice the structures are much smaller than this and typically require a much

smaller (usually constant, e.g. 50 to 200) number of rounds to get meaningful structures.
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LLAMA RcNN Affinity Grinch
Sing. Avg. Sing. Avg. Sing. Avg.

Ja
cc

/n
od

e ALOI 0.067 0.117 0.068 0.037 0.027 0.027 0.052
ILSVRC (Sm.) 0.154 0.284 0.146 0.076 0.044 0.047 0.171
Speaker 0.271 0.329 0.231 0.227 0.175 0.177 0.257
ImageNet 0.154 0.154 0.178 0.173 0.171 0.169 0.165
ILSVRC (Lg.) 0.023 0.023 - 0.005 0.002 0.003 -

Ja
cc

/p
t

ALOI 0.700 0.560 0.594 0.593 0.648 0.518 0.509
ILSVRC (Sm.) 0.559 0.655 0.393 0.626 0.537 0.555 0.575
Speaker 0.485 0.582 0.467 0.563 0.430 0.447 0.564
ImageNet 0.219 0.219 0.201 0.218 0.199 0.199 0.208
ILSVRC (Lg.) 0.540 0.604 - 0.621 0.546 0.530 -

Ja
cc

/lb
l

ALOI 0.759 0.647 0.704 0.669 0.713 0.605 0.615
ILSVRC (Sm.) 0.638 0.728 0.528 0.707 0.617 0.638 0.661
Speaker 0.665 0.726 0.659 0.713 0.607 0.615 0.711
ImageNet 0.390 0.399 0.366 0.384 0.360 0.360 0.372
ILSVRC (Lg.) 0.623 0.677 - 0.702 0.625 0.615 -

Table 5.1: Clustering Benchmarks. Precision metric is Jacc/node and Recall metrics are
Jacc/pt and Jacc/lbl.

5.5 Experiments

We compare the performance of LLAMA to state-of-the-art methods for hierarchical and

DAG-structured clusterings. We evaluate the effectiveness of each at recovering ground-truth

labeled data. We further attempt to automatically reconstruct the DAG-structure WordNet

[206] from vector representations of words using LLAMA.

5.5.1 Clustering Benchmarks

First, we consider datasets where each point is assigned one ground truth cluster. In

this experiment, we hope to understand if the clusters for each point that are discovered by

LLAMA are better aligned with the underlying data than those of competing methods.

Following previous work [170], we run experiments on publicly available large scale

hierarchical clustering benchmark datasets. We evaluate on the following datasets: Speaker,

feature vectors representing audio signals of spoken voices from different speakers (each

speaker is a ground truth cluster) [132]; ALOI (Amsterdam Library of Object Images),

histogram features of toy objects [123]; ILSVRC (Sm.) (50K subset) and ILSVRC (Lg.)
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LLAMA LLAMA RcNN OHC
Avg. link. Approx. Exact.

Ja
cc

/n
od

e ALOI 0.152 0.100 0.044 0.091
ILSVRC 0.346 0.2647 0.090 0.197
Speaker 0.405 0.408 0.271 0.349

ImageNet 0.275 0.324 0.280 0.268

Ja
cc

/p
t ALOI 0.984 0.979 0.950 0.990

ILSVRC 0.975 0.973 0.976 0.924
Speaker 0.804 0.832 0.813 0.827

ImageNet 0.593 0.604 0.583 0.567

Ja
cc

/lb
l ALOI 0.897 0.892 0.880 0.908

ILSVRC 0.936 0.935 0.936 0.904
Speaker 0.844 0.860 0.853 0.843

ImageNet 0.688 0.698 0.690 0.690

Table 5.2: Comparison to OHC. We sample datasets of 1000 points and report results with
average linkage. Aff. and Grinch are outperformed by other methods. We compare the two
variants of average linkage (Section 5.3).

(1.2M Images) Inception embeddings from the ImageNet ILSVRC 2012 dataset [242];

Imagenet a sample of 100k images from all 17K classes present in ImageNet. Table 5.6

provides the statistics for each dataset used in the clustering and cover-based evaluations.

We evaluate against tree-based following methods: Affinity clustering (Aff.) [31], a

round-based bottom-up hierarchical clustering method that connects each point to its nearest

neighbor in a single round and builds nodes in a tree based on connected components in

this 1-nearest neighbor graph; Grinch [210], an online hierarchical clustering method that

performs tree re-arrangements after each point is inserted; Reciprocal Nearest Neighbors

(RcNN) [217] (Section 2.6.2).

Each dataset uses cosine similarity. LLAMA, RcNN, and Affinity all make use of linkage

functions that use k-nearest neighbor graph sparsification. This technique precomputes a

k-NN graph over the dataset so as to make the argmax operations in the algorithm more

efficient (Section 5.3). For RcNN, and Aff. we report results with both single and average

linkage. For LLAMA, we use single and a approximation of average linkage that supports a
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LLAMA RcNN Aff. Grinch

Ja
cc

/n
od

e EURLex-4k 0.182 0.156 0.142 0.111
Bibtex 0.081 0.025 0.017 0.024
Wiki10-31K 0.298 0.404 0.411 –
Delicious 0.068 0.027 0.020 0.026
MediaMill 0.009 0.004 0.003 –

Ja
cc

/p
t

EURLex-4k 0.172 0.180 0.143 0.061
Bibtex 0.178 0.198 0.166 0.067
Wiki10-31K 0.184 0.104 0.168 –
Delicious 0.108 0.129 0.124 0.109
MediaMill 0.335 0.342 0.339 –

Ja
cc

/lb
l

EURLex-4k 0.466 0.455 0.424 0.332
Bibtex 0.172 0.179 0.138 0.089
Wiki10-31K 0.415 0.392 0.361 –
Delicious 0.090 0.091 0.076 0.056
MediaMill 0.099 0.096 0.089 –

Table 5.3: Covering Benchmarks. The datasets for which Grinch did not finish are marked
with dashes. All methods use average linkage.

more efficient implementation (Section5.3). For Grinch, which does not use k-NN graph

sparsification, we use its most efficient (and best performing) implementation that uses a

centroid-based linkage.

Table 5.1 shows the results for this experiment. We observe that LLAMA outperforms the

other methods in all but three of the dataset/metric combinations. We hypothesize that the

improvements observed by LLAMA are due to the DAG structure’s flexibility in representing

alternative clusterings. Importantly, LLAMA performs better on both the precision-based

(Jacc/node) and recall-based (Jacc/pt, Jacc/lbl) metrics. This indicates that the structures

discovered by the method include, on average, nodes that are better aligned with the ground

truth clustering (recall) and fewer spurious nodes that do not have significance with respect

to the underlying data (precision). The dashed cells indicate the algorithm exceeded our

10hr, 150GB RAM limit.
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Leaf Node Ancestors Discovered by LLAMA

blossoming

{blossom, blossoming}, {budding, blossoming}, {budding, emergent,
emerging, fledgling, incipient, nascent, blossoming}, {abloom, blooming,
flowered, flowering, bloom, bloomer, bloomers, blossom, blossoming},
{abloom, autumn-flowering, blooming, early-blooming, early-flowering,
fall-blooming, flowered, flowering, half-hardy, late-blooming, late-flowering,
planted, seeded, sown, spring-blooming, sprouted, summer-bloom}

disloyal

{disloyal, allegiance, disloyalty, loyalty}, {anti-american, disloyal,
pro-american, seditious, traitorous, treasonable, treasonous, un-american,
unpatriotic, collaborationist, disloyalty, incitement,
quisling, sedition, traitor, treason, treasonist, turncoat },
{adulterous, disloyal, faithless, unfaithful, adulterer, adultery, allegiance,
commitment, dedication, devotedness, devotion,
disloyalty, faithfulness, faithlessness, fealty, fidelity, fornication,
infidelity, loyalty, unfaithful}

Table 5.4: Example Clusters Discovered by LLAMA. Sample nodes from the DAG-
structured clustering. We observe that the algorithm discovers interesting overlapping
components clusters in the vector space with different lineages of leaf nodes revealing
multiple senses of each word.

To compare with bottom-up DAG-structured clustering algorithms that operate in a

sequential fashion, we compare to Overlapping Hierarchical Clustering (OHC) [156].

OHC is a DAG-structured clustering method that considers agglomerations, like HAC, one

edge at a time and uses a distance threshold to determine whether a node should participate

in multiple agglomerations. We could not get results for OHC on the above datasets in the

10 hours/dataset we allot to each method as these are much larger than the ones used by in

the original paper. To provide a comparison to OHC, we compare the methods on a random

subset of 1000 points and evaluate the methods on these subsets. We run a hyperparameter

sweep over the parameters of OHC (merging criterion and batch size) and report the best

performing OHC result for each dataset in Table 5.2.

In the experiments, we use 50 rounds for LLAMA and restrict the number of parents to

be 5. RcNN needs around 100 rounds for convergence on all except ILSVRC (Lg.) needing

200 rounds. In Section 5.5.6, we analyze hyperparameters of LLAMA including the number

of neighbors in the k-NN sparsification and the number of rounds used.
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5.5.2 Covering Benchmarks

Next, we take extreme multi-label classification benchmark datasets for which the

ground truth is a cover rather than a partition (See Table 5.6): MediaMill, Delicious,

BiBTeX, EURLex-4k, Wiki10-31K.

We compare to the same set of algorithms as used in Section 5.5.1. We use the same

Jaccard-based metrics as before since these metrics can be applied to both partition and

cover-based labelings of data. We use the same experimental settings that are used for the

partition-based benchmarks. Table 5.3 provides the results for this experiment. We observe

that our proposed method either outperforms or is competitive with tree-based metrics on all

datasets/metrics.

5.5.3 WordNet Reconstruction

We perform analysis on the task of automatically building lexical resources. WordNet

[113, 206] is a manually curated resource that records, among other information, synsets,

sets of English words that are synonymous. Words may be polysemous and so the same

word spelling may exist in two synsets. We attempt to recover these synsets from the vector

data using LLAMA and other approaches.

We select the subset of WordNet for which the word type has a representation in the

fasttext model (leaving 64K words) [205]. We again use average linkage with cosine

similarities as in the prior experiments. Each word has a single embedding for its spelling.

LLAMA LLAMA RcNN Aff. Grinch
Rounds 50 5

Jacc/node 0.307 0.474 0.571 0.667 0.532
Jacc/pt 0.714 0.714 0.695 0.645 0.664
Jacc/lbl 0.869 0.869 0.857 0.823 0.839

Table 5.5: WordNet Reconstruction evaluation metrics.
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This means that both senses of the word crane are represented by the same point. We take

the synset labels of these words as the ground truth labels.

Table 5.5 provides the quantitative results. We show results for two variants of LLAMA,

one with 50 rounds and another with 5 rounds. We hypothesized that the structure of the

synsets is relatively fine grained and so introducing additional rounds of the algorithm that

adds larger nodes is the reason for the decrease in the precision-based mean Jaccard per

node metric.

Despite each word having a single point representation, we are able to discover alternative

senses of various words using LLAMA (Figure 5.1 and Table 5.4). We showed an example

(Figure 5.1) of how the word shepherd appears in both a cluster of dog breeds as well

as in a cluster of farming professions. In Table 5.4, we provide additional examples

where disloyalty is described to cluster with words meaning tyranny as well as adultery

and blossoming is clustered with the floral sense and the emergent sense. These results

highlight how in high dimensional spaces these word vectors are able to be close to each

other via many different directions. Further, they indicate examples where such overlapping

cluster assignments would not be possible in tree-based methods.

5.5.4 Discovering Topics In US Patents

We also apply LLAMA to US Patent data. We represent each patent by a Sent2Vec

[226] embedding of the title of the patent. We then run LLAMA with average linkage on

these patent titles. Interesting, we find that LLAMA can discover meaningful overlapping

clusters of patent topics. We show two examples in Figure 5.3. Interesting, we find that

patents related to Headphones appear in both clusters related to Hearing Aids as well as

Acoustic Systems. However, the Hearing Aids and Acoustic Systems clusters are otherwise

non-overlapping. We observe a similar scenario in the clusters related to Locks. We find three

clusters about Safes and locks, Lock extractors, and Luggage / portable locks that are disjoint

other than their overlap on general lock related patents. The Sent2Vec embeddings provide
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Headphones

Directional Hearing Aids

Disposable Noise 
Reducing Hearing Aid

Hearing Aids

Acoustic system

Acoustic transmitter

Piezoelectric acoustic device
Plexiglass speakers

Lock

Luggage lock

Lightweight-type 
 Detachable Lock

Luggage zipper lock
Handbag lock

Tamper resistant lock

Auto safe lock

Wall safe

Utility system wall safe Lock De-icer

Lock Extractor

Figure 5.3: LLAMA discovering topics in Patent Data. Two sample overlapping clusters
discovered when LLAMA is applied to 500K US Patent Titles, which are represented by
Sent2Vec embeddings [226].

a single representation per patent, yet LLAMA is able to discover meaningful overlapping

clusters, highlighting the complexity of the high dimensional vector space of the titles.

5.5.5 Analysis of Jaccard-based Clustering Metrics

Dendrogram Purity [146] (Eq. 2.4) is a metric that is often used to evaluate the quality

of a hierarchical clustering of a dataset which has a ground truth flat partition. Rather than

demanding a particular flat clustering be extracted from the tree structure, dendrogram purity

evaluates the quality of the tree consistent partitions encoded in the hierarchical clustering.

We note that there are trivial DAG structures which would achieve perfect dendrogram

purity. In particular, the DAG structure which contains the cluster for each pair of points in

the dataset.

We are interested to understand which of the Jacc/pt, Jacc/lbl, Jacc/node is most

correlated to dendrogram purity for trees. To analyze this, we sample synthetic data from

Dirichlet Process Mixture Models (DPMMs) with spherical variance. We sample 10 datasets

from 75 different DPMM hyperparameter settings in R10 for a total of 750 datasets. The
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Figure 5.4: Dendrogram Purity and Jaccard Metrics on Synthethic Data. We report the
Spearman (ρ) and Pearson r correlation for each and p value in parenthesis. We observe
that Jacc/pt is well correlated with dendrogram purity. While the other metrics are not
correlated, this does not diminish our interest in them as metrics. Jacc/node captures
how precise or compact the structures are, unlike dendrogram purity. Jacc/lbl measures
at the label level how well represented the ground truth clusters are. Unlike Jacc/pt and
dendrogram purity, Jacc/lbl weights each ground truth cluster equally independent of the
size of the cluster. As the data here has CRP distributed cluster sizes, it is no surprise that
Jacc/lbl looks quite different than Jacc/pt.

75 settings come from the cartersian product of (number of points ({100, 1000, 5000}),

variances ({0.25, 0.4, 0.5, 0.75, 1.0}), and alpha parameters of CRP ({1, 5, 10, 25, 100}).

For each dataset we run the best tree-based method, reciprocal nearest neighbors and report

all metrics. We plot each metric against dendrogram purity in Figure 5.4 and observe that

Jacc/pt is most correlated to dendrogram purity. We note that dendrogram purity is by

no means the only metric that we are interested in and so the lack of correlation for the

other two metrics is not a negative result, it simply implies that they capture something

different about the structures. Furthermore, for this particular choice of generative models,

which encourages rich-get-richer cluster sizes, it is no surprise that Jacc/lbl looks quite

different than Jacc/pt. Similarly, Jacc/node measures the compactness of the structure and

so captures properties that dendrogram purity does not.

We also show these same plots for the results of all three tree-based methods compared

(reciprocal nearest neighbor, Affinity, Grinch) on the real world clustering datasets. The

results follow a similar trend as the synthetic data and are shown in Figure 5.6.
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Figure 5.5: Hyperparameter Analysis. We compare performance on the Speaker and
ILSVRC (Sm.) datasets using various numbers of rounds and various settings of the number
of nearest neighbors in the nearest neighbor graph. We observe comparable performance
across various kinds of nearest neighbors. We observe that around 20-40 rounds is required
for competitive performance of the metrics. Importantly, while the complexity of LLAMA

does grow faster than the other methods in terms of time and number of nodes, we observe
good performance can be achieved in the parts of the time/space curves that are much closer
to tree-based methods.
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Num. Points Num. Labels Dim

P
ar

tit
io

n-
ba

se
d

ALOI 108K 1000 128
ILSVRC (Sm.) 50K 1000 2048
Speaker 36.5K 4958 6388
ImageNet 100K 17K 2048

C
ov

er
-

ba
se

d

EURLex-4k 19K 3993 5000
Bibtex 7K 159 1836
Delicious 16K 983 500
MediaMill 43.9K 101 120

Table 5.6: Dataset Statistics. The sizes and number of labels for the datasets used in DAG
experiments.
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Figure 5.6: Dendrogram Purity and Jaccard Metrics on Real Data. As in Figure 5.4,
we report the values of the metrics in this case on the hierarchical clustering benchmark
datasets.

5.5.6 Hyperparameter Analysis

We analyze two hyperpameters of LLAMA, RecipNN, and Affinity, the number of

neighbors of the nearest neighbor graph (described above) and the number of rounds of the

algorithm used. Figure 5.5 shows the results. We observe that around 20-40 rounds are

required for competitive performance. We observe that the number of nearest neighbors

between 3 and 1000 does not lead to major variation in performance. We observe that

while LLAMA can become much more expensive than tree structures when the number of

rounds or graph density becomes very large, the algorithm does not much more time than

the tree-based methods to achieve better-than-tree structure performance.
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5.5.7 Running Time Analysis

In Table 5.7, we report a timing comparison of running 100 rounds of LLAMA and

Reciprocal NN algorithm on the clustering benchmarks. We use 10 threads in parallelizing

each algorithm’s computation of the neighbors and linkage function values. For LLAMA, we

use the comparably efficient approximate average linkage. We report the time of clustering

the pre-computed sparse graph (which is done using ScaNN [137]).

Running Time (s) Avg. Clusters / Point
RcNN LLAMA RcNN LLAMA

ALOI 12.32 7.58 18.474 127.621
Speaker 10.43 53.63 19.819 238.21
ILSVRC (Sm.) 3.955 10.66 24.18 162.35
ImageNet 16.754 224.533 21.513 600.67
ILSVRC (Lg.) 86.32 495.19 44.387 356.311

Table 5.7: Running Times & Structure Size. The running time of the two algorithms on
each of the clustering benchmarks. Interestingly, LLAMA takes less time on the ILSVRC
(Sm.) dataset than the Speaker dataset, despite it being larger. We hypothesize that the time
taken by LLAMA is directly impacted by the underlying structure of the dataset’s similarity
graph and with more separation in the data (as seems to be the case here), LLAMA can be
more efficient. For the same runs as the timing numbers, we report the number of average
number of clusters each point has been assigned to in the structures, which share a similar
trend.

5.6 Proofs and Additional Details

5.6.1 Proof of Lemma 5

Lemma 5 Given a dataset X and a linkage function f such that X is model-based

separated with respect to f , let C? be the target partition corresponding to the separated

data. In each round of LLAMA, each pair of nearest neighbors (C,C ′) ∈ N (i), will satisfy

either:

1. ∃ C? ∈ C? such that C ⊆ C? and C ′ ⊆ C?, or

2. ∃ C? ∈ C? such that C? ⊆ C or C? ⊆ C ′.
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Proof. We will prove this by induction. The first round of the algorithm, in which each

point sits in its own cluster, satisfies the above property. Now let us assume that N (i−1) has

the above property. We want to show that N (i) has the property as well. Each C ∈ S(i−1)

finds its nearest neighbor in S(i−1) according to the linkage function f , we denote this as

C ′ = argminC′′∈S(i−1)\C f(C,C
′′). There are three cases.

Case A: ∃ C? ∈ C?, s.t., C = C?. In this case, the node C corresponds exactly to the

ground truth cluster. For any node that it pairs with it will satisfy Condition (2) above.

Case B: ∃ C? ∈ C?, s.t., C? ⊆ C. In this case, as a ground truth cluster is already

consumed by the cluster C, Condition (2) above is already satisfied.

Case C: ∃ C? ∈ C?, s.t., C ⊂ C?. This final case is the most interesting one. We will

show that the node it chooses to pair with must be from the same ground truth cluster as C.

By condition 1, we know that there must be a C ′ such that C ′ ⊆ C? \C because the C 6= C?.

There also must exist a C ′ such that C is connected to C ′ according to φ(·, ·). Therefore, by

the definition of model-based separation C’s nearest neighbor will be some cluster that is is

connected to and that is in its cluster. Thus we will maintain property 1 in N (i). �

5.6.2 Proof of Theorem 8

Theorem 8. Given a datasetX and a linkage function f such thatX is model-based

separated with respect to f , let C? be the target partition corresponding to the separated

data. Let D be the DAG-structured clustering produced by LLAMA (Alg. 11), then C? is a D

consistent partition, C? ⊂ D.

Proof. We will prove this by contradiction and by Lemma 5. Suppose not, let C? ∈ C? be

any of the ground truth clusters and C? 6∈ D. In the first round, each member point of C?

appears as a singleton cluster. Define the pairs of clusters that are nearest neighbors and are

both subsets of C? in round i and subsequent nodes:
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N (i)(C?) = {(C,C ′) | (C,C ′) ∈ N (i), C ⊂ C? ∧ C ′ ⊂ C?} (5.6)

S(i)(C?) = {C ∪ C ′ | (C,C ′) ∈ N (i)(C?)} (5.7)

Let’s consider the earliest round that the above is empty, N (i)(C?) = ∅, call this round

e. We will now show that C? ∈ Se−1. Lemma 1 tells us that each member of the pairs in

N (e−1)(C?) must be both subsets C? and so we know that: ∀C ′′ ∈ S(e−1)(C?), C ′′ ⊆ C?.

If N (e)(C?) is empty, then we know that for each member C ∈ S(e−1)(C?) it is the

case that C found a nearest neighbor C ′ such that C ′ 6⊂ C?. By model based separation, if

C ⊂ C? and C ∈ S(e−1)(C?), then its nearest neighbor must be some other subset that is

also a subset of C?. Some such subset must exist because there exists at least one point that

connects the points in C to all other points C? in the underlying model-based separation

latent graph. And so C must not be a subset of C?. If this C is not a subset of C?, then by

lemma 1 it must be a superset and by our supposition of C? not being in D, a strict superset.

But this reaches a contradiction as each member of S(e−1)(C?) was made by merging two

pure subsets of C?. �

5.6.3 Proof of Proposition 3

Proposition 3 Given a dataset X and a linkage function f such that X is model-

based separated with respect to f , let C? be the target partition corresponding to the noisy

model-based separated data. Let D be the DAG-structured clustering produced by LLAMA

(Alg. 11), then C? is a D consistent partition, C? ⊂ D.

Proof. The first round of the algorithm creates N (1) and the clusters that are input to the

next round S(1). We will show that S(1) is model-based separated with respect to f and

the original graph G (not noisy model-based separated) and then apply the results from

Theorem 8.
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To achieve this, we will show that for each C? ∈ S?, ∃ C1, C2, . . . , CK ∈ S1 such that

∪i=1:kCi = C?, there by showing that the original partition C? is a model-based separated

partition of S(1). We can partition S(1) into the connected and disconnected clusters:

C
(1)
conn = {C |C is connected in G} (5.8)

C
(1)
sep = {C |C is not connected in G} (5.9)

For each ground truth cluster C? the noisy model-based separation property tells us that

at most 1/2 of the points of any ground truth cluster can have nearest neighbors that are not

connected (and outside the cluster). And so, we have that for each ground truth cluster C?,

each point must participate in at least one member of S(1)
conn, i.e.,

∀C? ∈ C? ∀x ∈ C? ∃C ∈ C
(1)
conn, x ∈ C (5.10)

Now observe that by definition of G, only those ground truth clusters described in the

last equation will be connected. For the remaining rounds of the algorithm, all cluster

sizes will be greater than 1 and so all nearest neighbors will be from the same cluster, i.e.,

model-based separation holds. We can use the result from Theorem 8. �

5.6.4 Proof of Proposition 4

Proposition 4 There exists a datasetsX and symmetric linkage function f such thatX

is noisy model-based separated wrt f , let C? be the target partition corresponding to the

noisy model-based separated data. HAC and GRINCH produces a structure T such that C?

is not a tree consistent partition, C? 6⊂ T .

Proof. Consider a very simple dataset with three pointsX = {a, b, c}, let the target partition

be C? = {{a, b}, {c}}. Now let f(b, c) = 2 and f(a, b) = 1 and f(a, c) = 0. We observe

that HAC and Grinch will put b and c in the same cluster and so could not represent {a, b}.
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However, we also have that a’s nearest neighbor is b and so the DAG-structured method

would be able to represent the cluster {a, b}. �

5.6.5 Proof of Complexity of LLAMA

Proposition (Space Complexity). Given a dataset of N points, LLAMA produces DAG-

structured clusterings with at most O(N2) nodes.

Proof. Assuming we have a symmetric linkage function, in each round, each cluster is

merged with one other cluster. By the pigeon-hole principle, a round starting with N clusters

will produce at most N − 1 clusters. Therefore, the total number of nodes that can be

produced is O(
∑1

i=N i) = O(N2). �

Proposition (Time Complexity). Given a dataset of N points, R rounds of LLAMA

produces requires at most O(R ∗N2) linkage function computations.

Proof. In each round, we need to find the nearest neighbor of each of the clusters produced

by the previous rounds. Without a nearest neighbor index, each round would require O(N2)

time to compute the nearest neighbor of each cluster. If nearest neighbor index structures

are used, this time can of course be reduced. �

Proposition (Number of Rounds). Let C? be the target partition of a dataset that

is (noisy) model-based separated, let K be the size of the largest cluster in C?. K =

maxC∈C? |C|. After K rounds, LLAMA produces a structure that contains C?.

Proof. We observe that that all points from the same ground truth cluster will be merged

before points from different ground truth clusters. In the worst case, this means that a cluster

with K points will take K rounds (by the same logic as the space complexity above) to

form. �

What DAG structures can be formed by LLAMA? We note that the LLAMA algorithm

cannot produce any DAG-structured clustering. Instead, it is limited to a subset with
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polynomial size. In future work, we hope to better understand the properties of the kind of

structure LLAMA can produce.
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Summary of Contributions

In this thesis, we have presented algorithms for non-greedy incremental clustering.

Our algorithms support constructing tree structures one point at a time while efficiently

reconsidering past decisions. We extend our incremental methods to methods that utilize

mini-batch parallelism by using bottom-up level-wise approaches. We further extend our tree-

based methods to DAG-based methods that represent a richer class of nested, overlapping

clusterings. We analyze each method that is presented both theoretically and empirically.

Theoretically, we study a generalization of commonly used clustering assumptions which

we call model-based separation. Empirically, we evaluate on both clustering benchmarks

as well as entity resolution tasks. We achieve multiple point improvements in dendrogram

purity and scalability to billions of points.

6.2 Limitations

There are several limitations to the work presented in this thesis. First, we note that all

methods presented scale as a function of the dataset size. This could become prohibitively

expensive for very large datasets. Further, for certain applications it is not needed to give

the cluster assignment of every point, but rather the discovered cluster parameters (e.g.,

centroid) are of interest. Coreset based methods for clustering could be considered to scale

independently of the dataset size.

Second, we did not focus on how to efficiently operate in distributed computing frame-

works. However, the algorithms presented have sub-components with a long history of
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distributed computing (e.g., connected components, nearest neighbor search). It would

be important to be better able to determine where and when distributed computation is

necessary and how to modify off-the-shelf distributed algorithms conditioned on their use in

our proposed algorithms.

Third, we note that much of the running time complexity of the algorithms is in the

nearest neighbor search operations. In one sense, this makes the algorithms modular, with

each advancement in nearest neighbor search techniques improving our methods. However,

it often requires the construction of an auxiliary structure for nearest neighbor search. It

would be interesting to instead consider how search and clustering can use the same structure.

Fourth, the analysis of algorithms is typically with respect to separability assumptions of

the data. It would be important to better understand the degree to which these assumptions

hold in practice. We also did not provide analysis with respect to hierarchical clustering

costs such as Dasgupta’s [94].

Lastly, we assume a predefined similarity function is given for all of the proposed

methods. Often this function would not be known in advance and we would like to jointly

discover the clustering and fit this similarity function.

6.3 Future Work

In this thesis, we explored building DAG-structured clusterings in the batch setting where

the entire dataset is known in advance (Chapter 5). We can extend the LLAMA algorithm

(Algorithm 11) for DAG construction to give a mini-batch algorithm in the same way

MBSCC (Algorithm 10) extends SCC (Algorithm 9). This algorithm would simply update

the 1-nearest neighbor selection of each node in the DAG structure. Beyond this simple

extension, there are several interesting considerations of DAG structured clustering in the

online setting. It would be interesting to consider how to use the DAG structure to represent a

distribution over hierarchical clusterings in the online setting [134]. Representing uncertainty

over hierarchical clusterings could provide a mechanism to recover from greediness /
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difficulties of operating in the online setting in a way similar to beam search or Combinatorial

Sequential Monte Carlo [212, 279]. We could also explore more compact DAG-structured

representations of multiple trees [134] and how to search [133] through these structures for

high quality tree structures at the scale of work presented in this thesis and in the online

setting. This could include continuous relaxations of tree and DAG-structures [64].

A strong assumption in this thesis is the use of predefined vector representation of

similarity function. However, in many cases these representations are not known in advance,

but rather we would want to jointly learn representations and perform clustering. Recent

work [62] has shown the benefits of using clustering as a part of the representation learning

objective. It would be interesting to consider how the kinds of online clustering methods

and DAG-structured clustering methods that are central to this thesis could be used in the

representation learning setting. It would also be interested to consider these clustering

approaches in grouped-data setting such as language models discovering word and topic

embeddings [294].

Most of the applications considered in this thesis are focused on clustering for data

analysis or entity resolution. However, there several other tasks and downstream uses cases

that could be interesting applications of our work.

In reinforcement learning, the goal is to maximize the expected discounted reward

attained by an agent. Q-learning builds a function which estimates the expected reward

of each action in each state. Deep learning methods [208] often require a large amount of

training data to achieve high quality results. To reduce this complexity model-free episodic

control [46, 234], replaces the complex deep model with a simple non-parametric approach.

It does this by not having a look up table that uses k-nearest neighbor to generalize to

unobserved states. We could replace the k-nearest neighbor based approach for episodic

control with latent variable approach. The latent variable approach will assign states to

clusters and model the reward of a cluster-action pair. We hope that this will allow for better
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generalization as well as a smaller Q table. Our online clustering work would be used to

incrementally update the assignment of states to clusters.

Nearest neighbor indices are often used for efficient retrieval models in larger neural

network architectures [138]. For instance, in question answering, candidate paragraphs

among a massive corpora which may contain the answer [91] to a particular query. Often,

the model that is used to do retrieval is based on a learned encoding of the query and the

candidate paragraphs. This model embeds each query and each candidate paragraph as a

vector to facilitate efficient nearest neighbor computations using the aforementioned index

structures. This learned model is updated during training, thus changing the embedding

vectors for each query and candidate paragraph. This is an expensive operation and we

would like to consider ways to approximate this effectively. We could perhaps provide an

approximation based on maintaining a clustering of the data and only updating the encoded

representation of a point if another point within the same cluster was observed in training.

In continual learning and streaming settings, we attempt to design algorithms for efficient

training classification models in the presence of ever-changing training data distributions.

In particular, we hope to design methods to avoid catastrophic forgetting [200]. Recent

work has shown replay-memory based approaches which summarize past training data with

a subset of examples and continue to train on these summaries in the presence of new

data are quite effective [48, 193, 268]. Recently work has used coresets, which are akin

to fine-grained clusters, to determine these training data summaries for continual learning

[48]. We could potentially use our hierarchical and DAG-structured clustering methods

to represent multiple granularities of coresets for continual learning. We hope that this

structure would provide for more useful abstractions as it allows for more uncertainty and

relaxes a hard-assignment constraint on points to coresets.

Lastly, we could consider ways to do representation learning / similarity function learning

not just from one dataset, but from a collection of datasets. We observed in our work that the

linkage function of average linkage restricted to include only the top-K nearest neighbors is
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very effective across all datasets. This raises an interesting question as to how to know the

number of neighbors that is best for a given dataset. Furthermore, it raises questions about

whether higher order neighbor relationships should be considered, such as which points

are the nearest neighbor of the nearest neighbors of a given point. Rather than trying to

design a model ourselves to capture these properties, we propose to use labeled data (e.g.,

classification datasets) to learn what inter/intra-cluster neighborhoods look like. Dataset

agnostic features using K-nn graphs with edges labeled by percentile or rank of the similarity

rather than the individual features of the data point can be used. One could then train a

model to weight or embed these features in a manner such that top-K average linkage is an

effective clustering algorithm using training techniques such as those in our previous work

on supervised clustering [288]. This model has the potential to discover patterns of how

clusters are formed across an array of different datasets, which we hope would be beneficial

to clustering unobserved datasets.
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