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ABSTRACT 

DRIVERS AND DIRECT IMPACTS OF LEAN MASS DYNAMICS ON THE STOPOVER 

ECOLOGY AND MIGRATORY PACE OF NEARCTIC-NEOTROPICAL MIGRANT SONGBIRDS 

IN SPRING  

 

 

FEBRUARY 2022 

 

MARIAMAR GUTIERREZ RAMIREZ, B.S., UNIVERSIDAD NACIONAL AUTONOMA DE 

NICARAGUA 

 

M.S., DELAWARE STATE UNIVERSITY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Alexander R. Gerson 

 

Annual migration in songbirds is one of the most demanding life-history stages. It 

represents a period of high mortality, yet there is still much unknown about the ecological 

correlates that influence its successful completion. After long non-stop migratory flights, 

birds require a stopover period to rest and replenish depleted energy reserves. Birds use fat 

as the primary fuel to power long-distance flights. However, birds also burn lean tissue, which 



xi 

results in significant reductions in muscle and organ masses. The discovery and 

quantification of lean mass catabolism represented a paradigm shift in migration ecology 

because non-fat components were thought to remain homeostatic. Because rebuilding 

protein is slow, muscle and organ breakdown during migration may dramatically prolong 

stopover periods and delay overall migration time, which in turn dramatically reduces 

breeding success. Therefore, the breakdown of lean tissue, the conditions that lead to it, and 

its consequences are important considerations in understanding the migration strategies of 

birds.  

Through this dissertation research, I aim to understand the impact of weather on 

body condition and how physiological condition impacts subsequent migratory performance. 

I investigate (1) how weather impacts the lean mass of songbirds after crossing an ecological 

barrier, and (2) how body condition after crossing an ecological barrier affects stopover 

duration, refueling rate, and habitat use. My predictions are that higher nightly temperatures 

or drier conditions experienced during migratory flight will correspond with lower lean body 

mass on arrival; and that birds with lower lean body mass will require longer stopovers, 

different habitat, or higher foraging effort to continue migration. 

I used an integrative approach, combining the field and lab, to better understand how 

weather experienced during flight can impact the body condition of migratory birds and how 

this can influence the entire migratory cycle. By using Quantitative Magnetic Resonance 

(QMR) technology in combination with a novel automated radio-telemetry system, my 

research provides unprecedented access to detailed physiological and movement data for 

small migratory songbirds. This research underlines that successfully crossing the Gulf of 

Mexico may be a key driver of physiological and morphological adaptations. My findings 

challenge the current paradigm that birds with low lean mass require longer stopover 
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and demonstrates that species under time constraints may shorten stopover even when 

in poor condition, departing in sub-optimal body condition.  
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CHAPTER 1 

 

INTRODUCTION 

 

 Annual migration in songbirds is a very demanding life-history stage. 

Mortality rates are high (Sillett and Holmes 2002; Newton 2006; Rushing et al. 2017) and 

the challenges encountered during migration can have important carryover effects, such as 

influencing arrival at breeding sites and subsequent reproductive performance (Lozano et 

al. 1996; Smith and Moore 2003; Lerche-Jørgensen et al. 2018; Bejarano and Jahn 2018). 

Yet, there is still much that remains unknown about the ecological correlates of successful 

migration. Birds adopt a variety of behaviors and strategies to minimize energy, time, or 

predation risk during migration (Alerstam 2011) while balancing the costs (i.e., risk of 

predation, starvation) and benefits (i.e., time- or energy-saving) of their decisions, which 

are informed by the individual’s body condition, weather conditions, and/or proximity to 

destination (Wojciechowski et al. 2014; Covino et al. 2015; Deppe et al. 2015). 

During their journeys, migrants must navigate many geographic and ecological 

barriers, and the decisions made en route can dramatically impact migration timing. 

Migratory songbirds travel thousands of kilometers, through several long, non-stop 

migratory flights followed by stopover periods. Although long-distance flights are 

characteristic of migration, most of the time and energy spent during migration is on 

stopover (Hedenström and Alerstam 1997; Wikelski et al. 2003). Stopover periods are 

critically important for birds because they are used to rest, seek refuge from inclement 

weather or predators, and rebuild energy reserves that will fuel the next leg of the journey. 

Adequate staging or stopover habitats are particularly important prior to and after crossing 



 

 

inhospitable habitat or ecological barriers (Karasov and Pinshow 1998; Mehlman et al. 

2005).  

Long-distance flight is fueled primarily by fat because of its high energy density 

(Klaassen 1996; Jenni and Jenni-Eiermann 1998). Thus, most of the mass gained during 

stopover is fat. Birds with depleted fat reserves generally stay longer at stopover sites 

(Loria and Moore 1990; Yong and Moore 1997; Bayly et al. 2012), and move further and 

faster to find food resources (Cohen et al. 2012) than birds in better energetic condition. On 

the other hand, if forced to stopover, birds with fat reserves will take refuge in dense 

habitats to conserve energy and avoid predators while waiting for favorable conditions to 

continue migration (Moore and Aborn 2000). Higher fuel deposition rates and surplus fat 

reserves are associated with shorter stopover duration and migratory departures in 

seasonally-appropriate directions (Goymann et al. 2010; Woodworth et al. 2014; Covino et 

al. 2015; Deppe et al. 2015; Stach et al. 2015; Gómez et al. 2017; Lindström et al. 2019).  

During migratory flights birds also burn lean mass, which can result in significant 

reductions in muscle and organ masses (Bauchinger and Biebach 1998). Rebuilding protein 

is slow and lean tissues must be replenished first before fat can be accumulated (Carpenter 

et al. 1993), so muscle and organ breakdown during migration may dramatically prolong 

stopover periods and delay overall migration time. Therefore, the breakdown of lean mass, 

the conditions that lead to it, and its consequences are important considerations in 

understanding the migration strategies of birds and the effects from one life stage into the 

rest of the life-cycle.  

The discovery that migratory birds catabolize protein represented a paradigm shift 

in migration ecology because, prior to 1990, non-fat components were thought to remain 

homeostatic during flight (Odum et al. 1964; Piersma 1990; Biebach 1998). Empirical and 

experimental studies have since confirmed lean mass breakdown in shorebirds (Battley et 



 

 

al. 2000; Lindström et al. 2000) and songbirds (Biebach 1998; Klaassen 2000; Bauchinger et 

al. 2011) during long-distance flights and after crossing ecological barriers. Lean mass 

depletions can account for up to 50% mass loss during migration, despite the persistence of 

unused fat reserves (Salewski et al. 2009). Protein is slow to rebuild, provides an eighth of 

the energy of fat, and constitutes the structure of muscles and organs (Jenni and Jenni-

Eiermann 1998), so its depletion during migration as an adaptation to long-distance flight 

has prompted several hypotheses.  

The proposed causes for the catabolism of lean mass include reducing body size for 

increased flight range (e.g. use-disuse hypothesis) and/or maintaining water balance (e.g. 

protein-for-water hypothesis). The hypothesis proposing protein catabolism to help 

maintain water balance may be a mechanism for liberating endogenous water during 

stressful conditions, such as long-distance migration. Indeed, water restriction increases the 

loss of lean mass and limits rates of lean mass gain in songbirds (Gerson and Guglielmo 

2011a; Mizrahy et al. 2011). In a long-distance migrant, the rate of lean mass loss was 

dramatically influenced by the conditions experienced during flight, with greater depletions 

recorded under a high-evaporative water loss environment (Gerson and Guglielmo 2011b; 

Groom et al. 2019; Gerson et al. 2020). Further, drought conditions have been reported to 

significantly prolong stopover, delay spring migration (Tøttrup et al. 2012), and have been 

associated with reduced energetic condition (Paxton et al. 2014). Climate change models 

predict higher temperatures, as well as increasingly unpredictable weather patterns, which 

may represent additional physiological challenges to long-distance migratory flights. 

However, causal links between environmental conditions, individual body condition 

(particularly lean mass), and migratory performance have not been investigated in wild 

migratory birds and represent an important and significant gap in our knowledge of 

migration and stopover ecology.  



 

 

To properly assess the consequences of lean mass catabolism during long-distance 

migration we need a more complete understanding of its causes and impacts on the full life-

cycle of migratory birds. Therefore, the objective of my dissertation is to investigate the 

drivers and impacts of lean mass dynamics on stopover ecology and migration speed in 

Nearctic-Neotropical passerine migratory birds after crossing an ecological barrier, the Gulf 

of Mexico. The central hypothesis of my research is that conditions encountered en route 

influence lean mass (Chapter 3) which subsequently impacts migratory performance 

(Chapter 4) and leads to delays that carryover beyond migratory stage. I used a 

combination of field and laboratory techniques to better understand how weather 

conditions experienced during flight can impact the body condition of migratory birds and 

how this can influence the entire migratory cycle. I conducted fieldwork on St. George 

Island, a barrier island 7 km off the panhandle of Florida, that offers a first landfall 

opportunity for songbirds after crossing the Gulf of Mexico (Lester et al. 2016; Gutierrez 

Ramirez et al. 2021).  

The novelty of this research is the link between individual physiological measures 

and the migratory performance of freely migrating songbirds after an ecologically relevant 

challenge. I used quantitative magnetic resonance body composition analysis (QMR) and 

plasma metabolite profiling to precisely determine body condition and refueling rates of 

migrants that had recently crossed the Gulf of Mexico. I continuously tracked individual 

migrants at the local and regional scale using the Motus Wildlife Tracking System, a 

collaborative automated radio-telemetry system, which allowed me to differentiate 

between landscape movements and migratory flights and determine stopover duration 

locally and regionally. I achieved the objective of my dissertation in three chapters. 

Barrier islands off the northern coast of the Gulf of Mexico provide the opportunity 

to study migrating birds on first landfall that have just completed a trans-Gulf migration. In 



 

 

Chapter 2, I examined the timing of migration and body condition of Nearctic-Neotropical 

migrants at a coastal stopover site in the northern Gulf of Mexico. I predicted that body 

condition would be related to overwintering range and that songbirds would increase lean 

mass at a greater rate than fat mass. I found that winter range did not influence fat or lean 

mass on arrival and that body mass increase during stopover comes from both lean and fat 

mass accumulation. These findings support the hypothesis that during stopover, initial slow 

increases in body mass are due to deposition of non-lipid body components (Carpenter et 

al. 1993). 

Flight experiments in controlled environments demonstrate that drier conditions 

lead to higher rates of lean mass loss in migratory songbirds. In Chapter 3, I used QMR 

scanning to measure the body composition of migratory birds that just completed a trans-

Gulf migration and collated temperature, humidity, and wind data over the Caribbean Sea to 

assess if weather conditions experienced by migrant birds impacts arrival body 

composition. I predicted that higher temperatures and/or drier conditions would 

correspond with lower lean mass of spring migrants on arrival. I found evidence that lower 

arrival lean mass was linked to drier conditions and to hotter overnight temperatures over 

the Caribbean Sea in some, but not all, species. These results suggest that environmental 

conditions, especially those that could lead to high rates of evaporative water loss, influence 

lean body mass of long-distance migratory songbirds in the wild. 

Long-distance non-stop migratory flights can push the physiological limits of 

migratory songbirds. In Chapter 4, I measured the body composition of migrating 

songbirds that had just crossed an ecological barrier and then tracked their movements to 

investigate if lean mass breakdown during flight limits migration timing by prolonging 

subsequent stopover. In this chapter I show that low lean body mass at arrival significantly 

increases stopover in some, but not all, species. These findings suggest that migratory birds 



 

 

can compensate for substantial lean mass losses by increasing refueling rate, relocating 

habitat, or consuming protein-rich diets. This study highlights the behavioral and 

physiological strategies used by different species to recover from a trans-Gulf flight and 

resume migration, with consequences for optimal migration strategies and the subsequent 

pace of migration. 
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 model df logLik AICc delta weight 

 Temperature + U-wind + V-wind +Wing 6 −52.33 120.02 1.68 0.07 

 Null model 2 −59.57 123.56 5.22 0.01 

 24 h prior Caribbean - REVI 

 Temperature + V-wind +Wing 5 −53.90 120.12 0.00 0.12 

 Day + Wing 4 −56.03 121.55 1.43 0.06 

 Temperature + Day + V-wind +Wing 6 −53.18 121.72 1.60 0.05 

 Day + V-wind +Wing 5 −54.78 121.88 1.76 0.05 

 Temperature + V-wind 4 −56.26 122.01 1.89 0.05 

 Null model 2 −59.57 123.56 3.44 0.02 

Veery 

 Overnight Caribbean - VEER 

 Day 3 −36.03 79.33 0.00 0.18 

 Null model 2 −38.32 81.25 1.92 0.07 

 24 h prior Caribbean - VEER 

 Day 3 −36.03 79.33 0.00 0.18 

 Null model 2 −38.32 81.25 1.92 0.07 

Swainson’s Thrush 

 Overnight Caribbean - SWTH 

 Sex + V-wind 4 −43.07 95.88 0.00 0.16 

 Sex 3 −44.60 96.21 0.33 0.13 

 Day + Sex + V-wind 5 −42.12 96.97 1.10 0.09 

 Sex + Humidity + V-wind 5 −42.28 97.29 1.41 0.08 

 Day + Sex 4 −43.93 97.59 1.72 0.07 

 Null model 2 −49.02 102.52 6.64 0.01 

 24 h prior Caribbean - SWTH 

 Sex 3 −44.60 96.21 0.00 0.16 

 Sex + V-wind 4 −43.29 96.32 0.11 0.15 

 Day + Sex + V-wind 5 −42.35 97.43 1.22 0.08 

 Day + Sex 4 −43.93 97.59 1.39 0.08 

 Null model 2 −49.02 102.52 6.31 0.01 

Indigo Bunting 

 Overnight Caribbean - INBU 

 Day + U-wind 4 −80.01 168.85 0.00 0.17 

 Day + U-wind + V-wind 5 −79.50 170.27 1.42 0.09 

 Day 3 −82.03 170.54 1.69 0.08 

 Day + Sex + U-wind 5 −79.70 170.67 1.82 0.07 

 Day + Humidity + U-wind 5 −79.78 170.84 1.99 0.06 

 Null model 2 −85.45 175.13 6.28 0.01 
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 model df logLik AICc delta weight 

 24 h prior Caribbean - INBU 

 Day + U-wind 4 −79.45 167.73 0.00 0.19 

 Day + U-wind + V-wind 5 −78.91 169.10 1.37 0.10 

 Day + Sex + U-wind 5 −79.00 169.28 1.55 0.09 

 Null model 2 −85.45 175.13 7.41 0.00 

Ovenbird 

 Overnight Caribbean - OVEN 

 V-wind 3 −86.66 179.86 0.00 0.08 

 Null model 2 −87.82 179.90 0.04 0.08 

 U-wind 3 −86.72 179.98 0.12 0.07 

 U-wind + V-wind 4 −85.87 180.67 0.81 0.05 

 Temperature + U-wind 4 −86.10 181.14 1.28 0.04 

 V-wind +Wing 4 −86.18 181.29 1.43 0.04 

 Humidity + V-wind 4 −86.29 181.50 1.64 0.03 

 Wing 3 −87.56 181.67 1.81 0.03 

 U-wind + Wing 4 −86.42 181.77 1.91 0.03 

 Temperature 3 −87.63 181.81 1.95 0.03 

 24 h prior Caribbean - OVEN 

 Null model 2 −87.82 179.90 0.00 0.08 

 U-wind 3 −86.79 180.13 0.23 0.07 

 V-wind 3 −86.83 180.20 0.29 0.07 

 U-wind + V-wind 4 −85.98 180.90 0.99 0.05 

 Temperature + U-wind 4 −86.16 181.24 1.34 0.04 

 V-wind +Wing 4 −86.35 181.63 1.72 0.03 

 Wing 3 −87.56 181.67 1.77 0.03 

 Temperature 3 −87.60 181.75 1.85 0.03 

Summer Tanager 

 Overnight Caribbean - SUTA 

 V-wind 3 −43.70 94.44 0.00 0.23 

 Temperature + V-wind 4 −43.21 96.23 1.79 0.09 

 Humidity + V-wind 4 −43.29 96.39 1.95 0.09 

 U-wind + V-wind 4 −43.29 96.41 1.96 0.08 

 Null model 2 −47.07 98.64 4.20 0.03 

 24 h prior Caribbean - SUTA 

 V-wind 3 −43.81 94.66 0.00 0.23 

 Temperature + V-wind 4 −43.10 96.02 1.36 0.12 

 Humidity + V-wind 4 −43.40 96.63 1.97 0.09 

 Null model 2 −47.07 98.64 3.98 0.03 
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 model df logLik AICc delta weight 

Wood Thrush 

 Overnight Caribbean - WOTH 

 Day 3 −82.61 171.95 0.00 0.17 

 Day + Humidity 4 −81.74 172.74 0.79 0.11 

 Day + V-wind 4 −82.15 173.55 1.60 0.07 

 Temperature + Day 4 −82.26 173.77 1.83 0.07 

 Null model 2 −87.34 179.03 7.09 0.00 

 24 h prior Caribbean - WOTH 

 Day 3 −82.61 171.95 0.00 0.15 

 Day + Humidity 4 −81.65 172.54 0.60 0.11 

 Temperature + Day 4 −82.16 173.57 1.62 0.07 

 Day + V-wind 4 −82.17 173.59 1.64 0.07 

 Null model 2 −87.34 179.03 7.09 0.00 

Blue Grosbeak 

 Overnight Caribbean - BLGR 

 Temperature + Sex + Humidity 5 −76.84 165.45 0.00 0.28 

 Temperature + Sex + Humidity + U-wind 6 −75.94 166.43 0.98 0.17 

 Temperature + Sex + Humidity + V-wind 6 −76.20 166.95 1.50 0.13 

 Null model 2 −90.27 184.86 19.41 0.00 

 24 h prior Caribbean - BLGR 

 Temperature + Sex + Humidity 5 −76.58 164.93 0.00 0.25 

 Temperature + Sex + Humidity + U-wind 6 −75.43 165.40 0.47 0.19 

 Temperature + Sex + Humidity + V-wind 6 −75.77 166.08 1.15 0.14 

 Null model 2 −90.27 184.86 19.94 0.00 

 Temperature + Sex + Humidity 5 −76.58 164.93 0.00 0.25 

Hooded Warbler 

 Overnight Caribbean - HOWA 

 Day + Sex + Humidity 5 −22.21 57.16 0.00 0.19 

 Day + Humidity 4 −24.34 58.42 1.26 0.10 

 Day + Sex + U-wind 5 −22.96 58.64 1.48 0.09 

 Day + U-wind 4 −24.52 58.79 1.63 0.09 

 Day 3 −26.01 59.02 1.86 0.08 

 Null model 2 −37.48 79.44 22.28 0.00 

 24 h prior Caribbean - HOWA 

 Day + Sex + Humidity 5 −22.30 57.32 0.00 0.20 

 Day + Humidity 4 −24.32 58.37 1.05 0.12 

 Day 3 −26.01 59.02 1.70 0.08 

 Null model 2 −37.48 79.44 22.12 0.00 
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Table B 2. Model selection results for the top-ranked models explaining arrival fat mass 

based on Akaike information criterion model weights for eleven species of long-distance 

Nearctic-Neotropical migratory birds. Models with ΔAICc <2.0 and the null model are 

provided. 

 

 model df logLik AICc delta weight 

Northern Waterthrush 

 Overnight Caribbean - NOWA 

 Humidity + V-wind 4 −87.79 184.44 0.00 0.09 

 Sex + Humidity + V-wind 5 −86.87 185.03 0.60 0.07 

 Day + Humidity + V-wind 5 −87.03 185.36 0.92 0.06 

 Humidity + U-wind + V-wind 5 −87.29 185.88 1.44 0.04 

 Humidity 3 −89.79 186.08 1.64 0.04 

 Sex 3 −89.86 186.23 1.79 0.04 

 Sex + Humidity 4 −88.77 186.40 1.96 0.03 

 Null model 2 −91.52 187.28 2.85 0.02 

 24 h prior Caribbean - NOWA 

 Humidity + V-wind 4 −88.07 184.99 0.00 0.08 

 Sex + Humidity + V-wind 5 −87.17 185.64 0.66 0.06 

 Humidity + U-wind + V-wind 5 −87.24 185.79 0.81 0.05 

 Day + Humidity + V-wind 5 −87.36 186.03 1.05 0.05 

 Sex 3 −89.86 186.23 1.24 0.04 

 Humidity 3 −89.92 186.35 1.36 0.04 

 Sex + Humidity 4 −88.88 186.61 1.63 0.03 

 Day + Humidity + U-wind + V-wind 6 −86.45 186.77 1.79 0.03 

 Humidity + U-wind 4 −89.01 186.86 1.88 0.03 

 Null model 2 −91.52 187.28 2.30 0.02 

Gray-cheeked Thrush 

 Overnight Caribbean - GCTH 

 Temperature 3 −21.82 51.49 0.00 0.12 

 Sex 3 −22.05 51.95 0.46 0.10 

 Null model 2 −23.64 52.14 0.65 0.09 

 Temperature + Sex 4 −20.47 52.27 0.78 0.08 

 Day + U-wind 4 −20.62 52.57 1.08 0.07 

 Sex + U-wind 4 −21.06 53.45 1.96 0.05 

 24 h prior Caribbean - GCTH 

 Sex 3 −22.05 51.95 0.00 0.11 

 Null model 2 −23.64 52.14 0.19 0.10 

 Day + U-wind 4 −20.48 52.30 0.35 0.09 
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 model df logLik AICc delta weight 

 Temperature 3 −22.34 52.53 0.59 0.08 

 Sex + U-wind 4 −20.95 53.23 1.28 0.06 

 U-wind 3 −22.72 53.29 1.35 0.06 

 Temperature + Sex 4 −21.02 53.38 1.44 0.05 

Red-eyed Vireo 

 Overnight Caribbean - REVI 

 U-wind + V-wind 4 −48.75 106.98 0.00 0.16 

 U-wind + V-wind + Wing 5 −47.92 108.15 1.17 0.09 

 U-wind 3 −50.76 108.37 1.39 0.08 

 Humidity + U-wind + V-wind 5 −48.28 108.87 1.89 0.06 

 Null model 2 −56.35 117.11 10.13 0.00 

 24 h prior Caribbean - REVI 

 U-wind + V-wind 4 −48.65 106.78 0.00 0.17 

 U-wind + V-wind + Wing 5 −47.73 107.78 1.00 0.10 

 Temperature + U-wind + V-wind 5 −48.19 108.68 1.90 0.07 

 U-wind 3 −50.95 108.76 1.98 0.06 

 Humidity + U-wind + V-wind 5 −48.23 108.76 1.98 0.06 

 Null model 2 −56.35 117.11 10.33 0.00 

Veery 

 Overnight Caribbean - VEER 

 Day 3 −34.77 76.80 0.00 0.16 

 Day + Humidity 4 −33.39 77.01 0.21 0.14 

 Day + V-wind 4 −34.05 78.31 1.51 0.08 

 Null model 2 −37.20 79.00 2.19 0.05 

 24 h prior Caribbean - VEER 

 Day 3 −34.77 76.80 0.00 0.17 

 Day + Humidity 4 −33.50 77.23 0.42 0.14 

 Day + V-wind 4 −34.20 78.62 1.82 0.07 

 Null model 2 −37.20 79.00 2.19 0.06 

Swainson’s Thrush 

 Overnight Caribbean - SWTH 

 V-wind 3 −36.63 80.26 0.00 0.15 

 Null model 2 −38.41 81.31 1.05 0.09 

 Temperature 3 −37.47 81.94 1.69 0.06 

 24 h prior Caribbean - SWTH 

 V-wind 3 −36.59 80.19 0.00 0.17 

 Null model 2 −38.41 81.31 1.12 0.10 

Indigo Bunting 
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 model df logLik AICc delta weight 

 Overnight Caribbean - INBU 

 Day + U-wind 4 −55.35 119.54 0.00 0.18 

 Day + Sex + U-wind 5 −54.72 120.73 1.18 0.10 

 U-wind 3 −57.26 121.00 1.46 0.09 

 Null model 2 −63.06 130.36 10.82 0.00 

 24 h prior Caribbean - INBU 

 Day + U-wind 4 −54.93 118.70 0.00 0.14 

 U-wind 3 −56.54 119.56 0.86 0.09 

 Day + Sex + U-wind 5 −54.21 119.70 1.00 0.09 

 Sex + U-wind 4 −55.55 119.93 1.23 0.08 

 Day + U-wind + V-wind 5 −54.64 120.56 1.86 0.06 

 Day + Humidity + U-wind 5 −54.67 120.62 1.92 0.06 

 Null model 2 −63.06 130.36 11.66 0.00 

Ovenbird 

 Overnight Caribbean - OVEN 

 Temperature + U-wind + V-wind 5 −67.27 145.97 0.00 0.18 

 Temperature + U-wind 4 −68.63 146.18 0.21 0.16 

 Temperature + Day + U-wind 5 −68.10 147.63 1.66 0.08 

 Temperature + U-wind + V-wind + Wing 6 −66.95 147.94 1.97 0.07 

 Null model 2 −73.56 151.39 5.42 0.01 

 24 h prior Caribbean - OVEN 

 Temperature + U-wind 4 −67.32 143.58 0.00 0.17 

 Temperature + U-wind + V-wind 5 −66.24 143.91 0.34 0.14 

 Temperature + Day + U-wind 5 −66.43 144.28 0.70 0.12 

 Temperature + Humidity + U-wind 5 −66.74 144.91 1.33 0.09 

 Temperature + Day + U-wind + V-wind 6 −65.60 145.24 1.66 0.07 

 Null model 2 −73.56 151.39 7.81 0.00 

Summer Tanager 

 Overnight Caribbean - SUTA 

 Temperature 3 −40.10 87.24 0.00 0.22 

 Null model 2 −42.88 90.27 3.03 0.05 

 24 h prior Caribbean - SUTA 

 Temperature 3 −40.25 87.54 0.00 0.20 

 Null model 2 −42.88 90.27 2.73 0.05 

Wood Thrush 

 Overnight Caribbean - WOTH 

 Temperature + Day + U-wind 5 −85.61 183.15 0.00 0.25 

 Temperature + Day 4 −87.90 185.04 1.89 0.10 
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 model df logLik AICc delta weight 

 Null model 2 −95.25 194.86 11.71 0.00 

 24 h prior Caribbean - WOTH 

 Temperature + Day + U-wind 5 −86.62 185.17 0.00 0.23 

 Temperature + Day 4 −88.81 186.87 1.70 0.10 

 Null model 2 −95.25 194.86 9.69 0.00 

Blue Grosbeak 

 Overnight Caribbean - BLGR 

 Temperature + Humidity + U-wind 5 −73.23 158.23 0.00 0.21 

 Temperature + Humidity + U-wind + V-wind 6 −71.99 158.52 0.29 0.18 

 Temperature + Humidity 4 −75.53 160.20 1.97 0.08 

 Null model 2 −97.82 199.97 41.74 0.00 

 24 h prior Caribbean - BLGR 

 Temperature + Humidity + U-wind 5 −74.91 161.58 0.00 0.13 

 Temperature + Humidity 4 −76.24 161.62 0.04 0.13 

 Temperature + Humidity + U-wind + V-wind 6 −74.06 162.67 1.09 0.08 

 Humidity 3 −78.37 163.40 1.82 0.05 

 Temperature + Humidity + V-wind 5 −75.89 163.54 1.95 0.05 

 Null model 2 −97.82 199.97 38.39 0.00 

Hooded Warbler 

 Overnight Caribbean - HOWA 

 Day + Sex 4 −17.51 44.76 0.00 0.11 

 Null model 2 −20.36 45.21 0.45 0.07 

 Day 3 −19.54 46.08 1.32 0.06 

 Sex 3 −19.61 46.22 1.46 0.06 

 U-wind 3 −19.72 46.44 1.68 0.06 

 Humidity 3 −19.80 46.60 1.84 0.05 

 V-wind 3 −19.87 46.75 1.99 0.05 

 24 h prior Caribbean - HOWA 

 Day + Sex 4 −17.51 44.76 0.00 0.11 

 Null model 2 −20.36 45.21 0.45 0.09 

 Day 3 −19.54 46.08 1.32 0.06 

 Sex 3 −19.61 46.22 1.46 0.06 

 U-wind 3 −19.65 46.30 1.54 0.05 

 Humidity 3 −19.78 46.55 1.79 0.05 
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APPENDIX C 

 

C. SUPPLEMENTAL MATERIALS FOR CHAPTER 4 

 

C.1 Supplemental results 

C.1.1. Capture dates 

The average dates of capture and departure from the island are listed in Table C1.  

 

C.1.2. Initiation of migratory flight 

Swainson’s Thrush initiated migratory flight on average at 11:34 pm EST, Northern 

Waterthrush at 10:37 pm EST, Gray-cheeked Thrush at 10:50 pm EST, and Yellow-billed 

Cuckoo at 4:50 am EST (Figure C2). 

 

C.1.3. Arrival body condition 

The average and range of body mass, fat mass, lean mass, and body measurements 

of all species are listed in Table C2. There were no annual differences in fat mass (SWTH: F2, 

24 = 0.06, P = 0.9; NOWA: F2, 25 = 1.32, P = 0.3; YBCU: F2, 5 = 4.07, P = 0.09). Scaled lean mass 

was significantly different among years for Northern Waterthrush (F2,25 = 4.17, P = 0.03). A 

post hoc Tukey test showed that scaled lean mass was greater in 2016 than in 2018. There 

were no annual differences in lean mass for Swainson’s Thrush (F2, 24 = 0.62, P = 0.55) or 

Yellow-billed Cuckoo (F2, 5 = 0.69, P = 0.54). Birds with low lean mass had similar island and 

total stopover durations as birds with high lean mass (island: F1,54 = 2.7409, P = 0.1; total: 

F1,61 = 1.9255, P = 0.17). 
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C.1.4. Plasma metabolites 

We obtained triglyceride concentration from 76 tagged individuals. The average 

maximum bleed time was 15.63 minutes (range: 1 - 32 minutes); the average minimum 

bleed time was 3.93 min (range: 1 - 14 minutes). Bleed times did not influence plasma 

triglyceride concentration in any species (SWTH: F1,25 = 1.01, P = 0.33; NOWA: F1,24 = 0.015, 

P = 0.9; GCTH: F1,13 = 0.23, P = 0.64; YBCU: F1,6 = 5.56, P = 0.06).  

The average triglyceride concentration for each species is listed in Table C2. 

Triglyceride concentration was not different among years (SWTH: F2, 24 = 0.5, P = 0.62; 

NOWA: F2, 23 = 0.5, P = 0.62; YBCU: F2,5 = 1.76, P = 0.26) or between sexes (SWTH: F1,24 = 

1.23, P = 0.27; GCTH: F1, 13 = 0.14, P = 0.72). Triglyceride concentration did not change as a 

function of ordinal day (SWTH: F1,25 = 0.31, P = 0.58; NOWA: F1, 24 = 0.47, P = 0.5; GCTH: F1, 13 

= 0.78, P = 0.39; YBCU: F1,6 = 0.003, P = 0.96). 

Plasma triglycerides were positively related to fat mass (SWTH: F1,25 = 7.9, P = 0.009; 

NOWA: F1, 24 = 5.133, P = 0.03; YBCU: F1,6 = 20.78, P = 0.004), except in Gray-cheeked Thrush 

(F1, 13 = 0.07, P = 0.78). Thus, we used residual triglyceride to remove the impact of fat mass 

on triglycerides to investigate refueling rates (Zajac et al. 2006). There was no relationship 

between triglyceride concentration and scaled lean mass in any species (SWTH: F1,25 = 0.75, 

P = 0.4; NOWA: F1, 24 = 0.06, P = 0.8; GCTH: F1, 13 = -1.526, P = 0.15; YBCU: F1,6 = 0.43, P = 

0.54). 

We obtained uric acid concentration from 63 tagged individuals. The average uric 

acid concentration for each species is listed in Table C2. There were no annual (SWTH: F2,20 

= 0.5, P = 0.63; NOWA: F2, 16 = 0.64, P = 0.54; YBCU: F2,3 = 0.37, P = 0.72) or sex (SWTH: F1,20 = 

0.34, P = 0.57; GCTH: F1, 13 = 1.08, P = 0.32) differences in uric acid concentration. Uric acid 

concentration did not change as a function of ordinal day (SWTH: F1,21 = 1.01, P = 0.33; 

NOWA: F1, 17 = 0.77, P = 0.39; GCTH: F1, 13 = 0.19, P = 0.67; YBCU: F1,4 = 0.9, P = 0.4). Uric acid 
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concentration was not correlated with triglyceride concentration (SWTH: F1,21 = 1.75, P = 

0.2; NOWA: F1, 17 = 2.0, P = 0.18; GCTH: F1, 13 = 0.28, P = 0.61; YBCU: F1,4 = 2.6, P = 0.18).  

There was no relationship between uric acid concentration and fat mass (NOWA: F1, 

17 = 0.7, P = 0.41, r2 = -0.02; GCTH: F1, 13 = 1.95, P = 0.19, r2 = 0.06; YBCU: F1,4 = 5.7, P = 0.08, 

r2 = 0.48), except in Swainson’s Thrush (F1,21 = 4.61, P = 0.04, r2 = 0.14). There was no 

relationship between uric acid concentration and scaled lean mass (SWTH: F1,21 = 0.01, P = 

0.9, r2 = -0.05; NOWA: F1, 17 = 2.26, P = 0.15, r2 = 0.07; GCTH: F1, 13 = -1.058, P = 0.3, r2 = 

0.008; YBCU: F1,4 = 2.06, P = 0.23, r2 = 0.17).  

 

C.1.5. Deuterium 

The average feather deuterium for each species is presented in Table C2. There was 

no difference in deuterium between sexes (SWTH: F1,24 = 1.51, P = 0.23; GCTH: F1, 13 = 2.17, P 

= 0.16). Deuterium did not change as a function of ordinal day (SWTH: F1,25 = 0.02, P = 0.9; 

NOWA: F1, 24 = 0.07, P = 0.8; GCTH: F1, 13 = 0.003, P = 0.96; YBCU: F1,6 = 0.34, P = 0.58). 

Deuterium was significantly more depleted in 2018 for Yellow-billed Cuckoo (F2,5 = 17.3, P = 

0.006). There were no annual differences in deuterium for Swainson’s Thrush (F2, 24 = 0.06, 

P = 0.94) or Northern Waterthrush (F2, 25 = 0.01, P = 0.98). 

 

 

C.2 Supplemental tables 

Table C 1. Average capture/tagging date ± SD and average date of departure from the 

island ± SD for 4 species of migratory birds during spring stopover on St. George Island, 

Florida from 2016-2018. Sample sizes in parenthesis. 
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Swainson’s Thrush 

 2016 2017 2018 

Capture day 25 April (n = 3) 24 April – 10 May 

(mean 4 May ± 5.65, n 

= 15) 

15 – 28 April (mean 24 

April ± 4.82, n = 9) 

Departure 

from island 

25 – 28 April 

(mean 26 April ± 

1.73 days, n = 3)  

25 April - 17 May 

(mean 6 May ± 7.23 

days, n = 15) 

22 April - 3 May (mean 

27 April ± 8.13 days, n = 

9) 

Northern Waterthrush 

 2016 2017 2018 

Capture day 21 April – 2 May 

(mean 25 April ± 

4.14, n = 8) 

14 April – 9 May 

(mean 24 April ± 9.77, 

n = 16) 

10 April – 3 May (mean 

25 April ± 8.67, n = 5) 

Departure 

from island 

23 April - 3 May 

(mean 26 April ± 

11.32 days, n = 7) 

15 April - 16 May 

(mean 28 April ± 7.99 

days, n = 16) 

11 April - 8 May (mean 

28 April ± 10.41 days, n 

= 5) 

Gray-cheeked Thrush 

 2016 2017 2018 

Capture day -- 7 May (n = 1) 20 - 29 April (mean 26 

April ± 2.2, n = 15) 

Departure 

from island 

-- 8 May (n = 1) 21 April - 5 May (mean 

29 April ± 11.89 days, n 

= 14) 

Yellow-billed Cuckoo 

 2016 2017 2018 

Capture day 17 – 28 April 

(mean 21 April ± 

6.08, n = 3) 

24 April (mean 24 

April ± 0, n = 4) 

10 – 28 April (mean 22 

April ± 10.12, n = 3) 

Departure 

from island 

19 April - 1 May 

(mean 25 April ± 

12.89 days, n = 3) 

24 April - 25 April 

(mean 25 April ± 0.58 

days, n = 3) 

28 April - 30 April 

(mean 29 April ± 1.41, n 

= 2) 

 



 

 111 

Table C 2. Summary of means ± SD and ranges of masses, plasma metabolite concentrations, size measurements (wing chord and tarsus), 

feather deuterium, and arrival and departure dates of 4 species of migratory birds during spring stopover on St. George Island, Florida 

from 2016-2018. Fat and lean mass collected by QMR. Sample sizes in parenthesis. 

 

 Swainson’s Thrush Northern Waterthrush Gray-cheeked Thrush Yellow-billed Cuckoo 

 mean range mean range mean range mean range 

Body mass (g) 25.73 ± 

1.86 

21.63 – 28.64 

(n = 27) 

15.39 ± 

1.96 

12.42 – 19.79 

(n = 28) 

24.90 ± 

2.17 

21.15 – 29.64 

(n = 15) 

41.66 ± 

3.47 

36.65 – 45.78 

(n = 8) 

Fat mass (g) 1.28 ± 

0.97 

0 – 3.42 

(n = 27) 

1.95 ± 

1.58 

0.21 – 5.38 

(n = 28) 

1.45 ± 

1.01 

0.04 – 2.9 

(n = 15) 

1.09 ± 

1.43 

0 – 4.07 

(n = 8) 

Lean mass (g) 20.32 ± 

1.44 

17.3 – 22.67 

(n = 27) 

11.2 ± 

1.16 

9.12 – 13.24 

(n = 28) 

19.08 ± 

1.63 

16.17 – 22.50 

(n = 15) 

31.69 ± 

2.22 

28.32 – 34.0 

(n = 8) 

Wing (mm) 97.9 ± 

3.97 

90 – 106 

(n = 27) 

74.1 ± 

3.39 

69 – 84 

(n = 28) 

99.8 ± 4.1 94 – 110 

(n = 15) 

142.9 ± 

3.68 

138 – 149 

(n = 8) 

Tarsus (mm) 28.98 ± 

0.88 

26.94 – 30.73 

(n = 27) 

22.17 ± 

0.95 

20.2 – 23.72 

(n = 28) 

31.25 ± 

1.29 

28.69 – 33.29 

(n = 15) 

29.12 ± 

1.67 

27.43 – 32.04 

(n = 8) 

Triglyceride 

(mmol/L) 

1.63 ± 

0.82 

0.57 – 4.51 

(n = 27) 

1.25 ± 

0.37 

0.567 – 1.885 

(n = 26) 

1.56 ± 

0.95 

0 – 3.731 

(n = 15) 

1.1 ± 

0.65 

0.21 – 2.043 

(n = 8) 

Uric acid 

(mmol/L) 

2.77 ± 

1.48 

0.96 – 6.32 

(n = 23) 

1.91 ± 

0.84 

0.45 – 3.38 

(n = 19) 

1.67 ± 

0.88 

0.79 – 4.25 

(n = 15) 

1.40 ± 

0.53 

0.51 – 1.91 

(n = 6) 

Deuterium ‰ -92.83 ± 

23.09 

-132.6 – -37.4 

(n = 27) 

-119.74 ± 

23.57 

-157 – -81.4 

(n = 28) 

-122.27 ± 

25.25 

-144 – -44 

(n = 15) 

-27.93 ± 

16.08 

-55.7 – -11.3 

(n = 8) 

Island arrive 

(ordinal) 

28.56 ± 

7.18 

14 – 39 

(n = 27) 

23.64 ± 

8.4 

9 – 38 

(n = 28) 

25.53 ± 

3.6 

19 – 36 

(n = 15) 

20.38 ± 

6.44 

9 – 27 

(n = 8) 

Island depart 

(ordinal) 

31.15 ± 

7.2 

21 – 46 

(n = 27) 

27.21 ± 

9.0 

10 – 45 

(n = 28) 

28.67 ± 

4.54 

20 – 37 

(n = 15) 

25 ± 3.78 18 – 30 

(n = 8) 
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Table C 3. Exponentiated coefficients of the model predicting the island stopover duration 

of Swainson’s Thrush during spring stopover on St. George Island, Florida, USA, 2016-2018 

(n = 27). A generalized linear model was fitted with a negative binomial distribution and a 

log link function. All continuous predictors are mean-centered and scaled by 1 standard 

deviation. *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 451.34 * 1.83 111534.15 22.89 0.00 

Lean mass 0.99  0.76 1.30 -0.04 0.969 

Fat mass 0.54 **  0.36 0.79 -3.15 0.002 

Ordinal day 0.93 **  0.88 0.98 -2.81 0.005 

Deuterium 0.99 0.97 1.00 -1.40 0.162 

 

 

Table C 4. Exponentiated coefficients of the model predicting the regional stopover 

duration of Swainson’s Thrush during spring stopover in Apalachicola Bay, Florida, USA, 

2017-2018 (n = 24). A generalized linear model was fitted with a negative binomial 

distribution and a log link function. All continuous predictors are mean-centered and scaled 

by 1 standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 330.34 * 2.71 40306.5 31.54 0.00 

Lean mass 0.98 0.78 1.24 -0.14 0.89 

Fat mass 0.74 0.51 1.07 -1.61 0.11 

Ordinal day 0.98 0.94 1.02 -0.96 0.34 

Deuterium 0.99 0.98 1.01 -0.73 0.46 

 

 

Table C 5. Exponentiated coefficients of the model predicting the island stopover duration 

of Northern Waterthrush during spring stopover on St. George Island, Florida, USA, 2016-

2018 (n = 28). A generalized linear model was fitted with a negative binomial distribution 

and a log link function. All continuous predictors are mean-centered and scaled by 1 

standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05. 
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 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 17040.8 *** 384.94 754380.82 23.529 0.000 

Lean mass 0.59 *** 0.44 0.79 -3.520    0.000 

Fat mass 0.75 *   0.60 0.94 -2.465    0.014 

Ordinal day 0.99     0.95 1.04 -0.358    0.721 

Deuterium 0.99     0.98 1.01 -0.954    0.340 

 

 

Table C 6. Exponentiated coefficients of the model predicting the regional stopover 

duration of Northern Waterthrush during spring stopover in Apalachicola Bay, Florida, USA, 

2017-2018 (n = 21). A generalized linear model was fitted with a negative binomial 

distribution and a log link function. All continuous predictors are mean-centered and scaled 

by 1 standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05 

 

 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 73193.0 *** 1616.32 3314462.5 26.829 0.000 

Lean mass 0.57*** 0.43 0.75 -3.943    0.000 

Fat mass 0.64 *** 0.51 0.81 -3.788    0.000 

Ordinal day 1.02    0.98 1.06 0.947    0.344 

Deuterium 1.00     0.99 1.02 0.292    0.770 

 

 

Table C 7. Exponentiated coefficients of the model predicting the island stopover duration 

of Gray-cheeked Thrush during spring stopover on St. George Island, Florida, USA, 2017-

2018 (n = 15). A generalized linear model was fitted with a negative binomial distribution 

and a log link function. All continuous predictors are mean-centered and scaled by 1 

standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 742.36 *** 15.57 35385.03 32.892    0.000 

Lean mass 1.04     0.87 1.25 0.430    0.667 

Fat mass 0.54 *** 0.40 0.72 -4.202    0.000 



 

 114 

Ordinal day 0.90 *   0.83 0.98 -2.543    0.011 

Deuterium 1.00  0.98 1.01 -0.878    0.380 

 

 

Table C 8. Exponentiated coefficients of the model predicting the regional stopover 

duration of Gray-cheeked Thrush during spring stopover in Apalachicola Bay, Florida, USA, 

2017-2018 (n = 15). A generalized linear model was fitted with a negative binomial 
distribution and a log link function. All continuous predictors are mean-centered and scaled 

by 1 standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 321.11 *** 12.39 8320.26 42.309    0.000 

Lean mass 0.94 0.81 1.10 0.672    0.501 

Fat mass 0.73 * 0.57 0.93 -2.950    0.003 

Ordinal day 1.01    0.94 1.08 -0.044    0.965 

Deuterium 1.00    0.99 1.01 -1.053    0.293 

 

 

Table C 9. Exponentiated coefficients of the model predicting the island stopover duration 

of Yellow-billed Cuckoo during spring stopover on St. George Island, Florida, USA, 2016-

2018 (n = 8). A generalized linear model was fitted with a negative binomial distribution 

and a log link function. All continuous predictors are mean-centered and scaled by 1 

standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

 Estimate CI 25% CI 95% z-value p-value 

(Intercept) 345883.7* 1.22 97904924759.3 24.755    0.000 

Lean mass 0.82     0.58 1.16 -1.146    0.252 

Fat mass 0.52 **  0.35 0.77 -3.242    0.001 

Ordinal day 0.90 *   0.84 0.98 -2.467    0.014 

Deuterium 0.98    0.95 1.01 -1.120    0.263 
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Table C 10. Lotek nano-tag radio transmitter model numbers, estimated weights, and 

estimated radio-tag lifespan according to custom pulse rate intervals.  

 

Model Pulse rate Estimated battery 

lifespan 

2016 2017 2018 

NTQB-2 (0.35 g) 9.69 s 50 – 76 d 8 13 0 

NTQB-2 (0.35 g) 12.7 s 58 – 187 d 0 3 10 

NTQB-3-2 (0.67 g) 14.9 s 150 – 226 d 0 0 10 

NTQB-3-2 (0.67 g) 19.9 s 169 – 254 d 3 17 1 

NTQB-2-3-2 (0.62 g) 14.9 s 246 – 369 d 0 0 9 

NTQBW-3-2 (1.1 g) 25.1 s 184 – 276 d 4 4 1 
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Table C 11. Location and operating status of automated radio receiving towers within 

Apalachicola, Florida USA in spring 2016-2018. Map number refers to Figure 8A. 

 

Receiver Name Map # latitude longitude 2016 2017 2018 

St. George Island ANERR  

Unit 4 

1 29.6734 -84.8408 Y Y Y 

St. George Island 

Private property, banding site 

2 29.6721 -84.8414 N N Y 

St. George Island 

Private property 

3 29.6555 -84.8832 Y N N 

St. George Island ANERR  

Nick's Hole 

4 29.6413 -84.9135 N Y Y 

St. Vincent National Wildlife 

Refuge 

5 29.6343 -85.1424 Y N N 

Eastpoint ANERR Dock 6 29.7694 -84.8815 Y Y Y 

Box R Wildlife Management 

Area 

7 29.7275 -85.0935 Y Y Y 

East Bay Fire Tower Station 8 29.8285 -84.889 Y Y Y 

Carrabelle Tate’s Hell State 

Forest Headquarters 

9 29.8428 -84.6949 Y Y Y 

Florida State University 

Marine Lab 

10 29.9158 -84.511 N Y N 

Tate's Hell State Forest, Deep 

Creek 

11 29.8592 -84.9123 N Y Y 

Howard's Creek 12 29.891 -85.0687 Y N Y 

Sumatra Weather Station 

Apalachicola National Forest 

13 30.0204 -84.9859 N Y Y 

Wilma Work Station 

Apalachicola National Forest 

14 30.1635 -84.9696 N Y Y 

Apalachicola Work Station 

Apalachicola National Forest 

15 30.2895 -85.0176 N Y N 

Telogia Creek 16 30.3549 -84.948 N Y Y 
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Bradwell Game Farm 

Apalachicola National Forest 

17 30.3867 -84.6769 N Y Y 

Wakulla Work Station 

Apalachicola National Forest 

18 30.3058 -84.4248 N Y Y 

St. Marks National Wildlife 

Refuge (operated by Region 4 

USFWS) 

19 30.088 -84.1628 N Y Y 
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C.3 Supplemental figures 

 

  

Figure C 1. Percentage of birds using two different stopover strategies (island only or 

island-mainland) at our costal FL study site during spring migration. 
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Figure C 2. Variation in the migratory departure timing of 4 different songbird species 

measured using automated radio telemetry in the northern Gulf of Mexico, Florida, USA. The 

line within the boxplot represents the median departure time 
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Figure C 3 Examples of raw signal strength data for two radio-tagged migratory birds prior 

to departure and during flight on multiple radio telemetry receivers deployed in coastal 

northern Florida, USA in spring 2017-2018. (A) Northern Waterthrush (Parkesia 

noveboracensis), tag 23298 departs the island on May 4th and flies north into the mainland, 

where the signal is detected by two inland receivers before the signal disappears. The signal 

is redetected further north on May 10th as the bird resumes migration. (B) Swainson’s 

Thrush (Catharus ustulatus) tag 18596 detected moving north non-stop through the 

automated radio telemetry array. Vertical yellow lines represent sunrise; vertical blue lines 

represent sunset. 
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