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ABSTRACT

DISTRIBUTED LEARNING ALGORITHMS:
COMMUNICATION EFFICIENCY AND ERROR

RESILIENCE

FEBRUARY 2022

RAJ KUMAR MAITY

B.E., JADAVPUR UNIVERSITY

M.E., INDIAN INSTITUTE OF SCIENCE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Arya Mazumdar

In modern day machine learning applications such as self-driving cars, recommender

systems, robotics, genetics etc., the size of the training data has grown to the point that

it has become essential to design distributed learning algorithms. A general framework

for the distributed learning is data parallelism where the data is distributed among the

worker machines for parallel processing and computation to speed up learning. With

billions of devices such as cellphones, computers etc., the data is inherently distributed

and stored locally in the users’ devices. Learning in this set up is popularly known as

Federated Learning. The speed-up due to distributed framework gets hindered by some

fundamental problems such as straggler workers, communication bottleneck due to

high communication overhead between workers and central server, adversarial failure

popularly know as Byzantine failure. In this thesis, we study and develop distributed

algorithms that are error resilient and communication efficient.

vi



First, we address the problem of straggler workers where the learning is delayed

due to slow workers in the distributed setup. To mitigate the effect of the stragglers,

we employ LDPC (low density parity check) code to encode the data and implement

gradient descent algorithm in the distributed setup. Second, we present a family of

vector quantization schemes vqSGD (vector quantized Stochastic Gradient Descent )

that provides an asymptotic reduction in the communication cost with convergence

guarantees in the first order distributed optimization. We also showed that vqSGD

provides strong privacy guarantee. Third, we address the problem of Byzantine failure

together with communication-efficiency in the first order gradient descent algorithm.

We consider a generic class of δ- approximate compressor for communication efficiency

and employ a simple norm based thresholding scheme to make the learning algorithm

robust to Byzantine failures. We establish statistical error rate for non-convex smooth

loss. Moreover, we analyze the compressed gradient descent algorithm with error

feedback in a distributed setting and in the presence of Byzantine worker machines.

Fourth, we employ the generic class of δ- approximate compressor to develop a commu-

nication efficient second order Newton-type algorithm and provide rate of convergence

for smooth objective. Fifth, we propose COMRADE (COMmunication-efficient and

Robust Approximate Distributed nEwton ), an iterative second order algorithm that

is communication efficient as well as robust against Byzantine failures. Sixth, we

propose a distributed cubic-regularized Newton algorithm that can escape saddle

points effectively for non-convex loss function and find a local minima . Furthermore,

the proposed algorithm can resist the attack of the Byzantine machines, which may

create fake local minima near the saddle points of the loss function, also known as

saddle-point attack.
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NOTATION

The following notation is used throughout the thesis unless otherwise specified.

• , reads “is defined to be equal to.”

• v denotes a vector.

• M denotes a matrix.

• F denotes a generic field.

• R denotes the real numbers.

• N denotes the natural numbers (positive integers).

• For n ∈ N, [n] is the set {1, 2, . . . , n}.

• 0d and 1d denote the all zeros and all ones vectors in d -dimensions respectively.

• For p ∈ N, ‖x‖p = (
∑n

i=1 x
p
i )

1/p.

• Sd−1 denotes the unit sphere.
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CHAPTER 1

INTRODUCTION

The landscape of the modern technology is shaped and driven by machine learning

and data science. With billions of smart devices and modern world applications

such as self-driving cars, recommender system, genetics research etc, one of the most

challenging part is to handle large scale data which makes training of sophisticated

and powerful learning model extremely computationally-intensive and expensive. For

example the OpenAI’s GPT-3 language model has 175 billions model parameters

requiring memory exceeding 350 GB and costing 12 millions USD to train1. Even

though such expensive and computationally intensive model is rare, the moderately

larger machine learning systems are ubiquitous in modern data science industry. To

cater to the computational need of such machine learning model and large volume

of data, distributed learning setup (such as Amazon EC2) is used. A very general

framework for distributed learning is worker and central or parameter server setup.

The data is distributed among the worker nodes and being processed in parallel.

The worker nodes then communicate the update based on the data locally stored

to the central server where the final result is computed by aggregating the updates

received. In practice, distributed system faces certain challenges in the form of delay

due to straggler or slow worker, communication bottleneck due to high communication

overhead between central server and worker machines, and disruption in the form of

Byzantine failures in the worker machines. In this thesis, we address these problems

1https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/
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and develop distributed first order (gradient based) and second order (Newton type)

algorithms that are communication efficient and robust to such delays and faults.

In the rest of this chapter, we provide an overview of the thesis. We discuss the

problem settings and our contributions that are considered in each chapter.

Straggler Mitigation : Generally in a distributed set-up (e.g., [36, 138]), the

original large scale problems is divided into small problems and assigned to different

worker nodes. The central (master ) node collects the outcomes of the worker nodes

and computes the results (potentially over multiple rounds of communication). In

practical system, the process of collection of the outcomes from the worker nodes

can be prone to unpredictable delays [35]. Such delays arise due to various reasons,

including the slow-down at the workers and the congestion in the communication

networks in the system. The workers that cannot provide the outcome of their local

computation within a reasonable deadline due to these delays are termed stragglers.

The presence of the stragglers can significantly degrade the performance of the system.

Therefore, it is imperative that we address the variability in the response times of

different components of the setup during the design of the computations tasks.

Multiple recent works explore the problem of mitigating the effect of stragglers.

The replication schemes assign each task to multiple servers [104, 10, 124]. This

ensures that the task gets completed without significant delay if at least one of the

servers processing the task is non-straggler. In [84], Lee et al. explore the coding

theoretic ideas that go beyond the replication schemes to address the issue of stragglers.

In particular, they focus on linear computation, namely a matrix-vector product, and

propose to encode the columns of the matrix by a maximum distance separable (MDS)

code to obtain a taller encoded matrix. The rows of the encoded matrix are distributed

among the workers, who are responsible for computing the inner product of the rows

assigned to them with the vector in question. The redundancy among the rows of the

encoded matrix allows for computation of the intended matrix-vector product even
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if some of the servers fail to respond with the computation assigned to them. More

exploratory works can be found in Dutta et al. [41], where sparsity is introduced in

the rows of the matrix to make the computation faster. Other computational tasks

(e.g., matrix-matrix product and convolution between vectors) have been explored in

[86, 137, 42].

In Chapter 2, we consider the problem of data-fitting under square loss which

is one of the most important loss function in machine learning, optimization and

statistics. We employ projected gradient descent to solve the problem in distributed

setup. To make the process robust against stragglers we employ low density parity

check code (LDPC) to encode the second moment of the data which provide redundancy

in computation of the gradient that is being carried out by multiple worker nodes

in distributed manner. In each iteration, the master server collects the (partially)

computed gradient by the worker servers and aggregates them to update the learning

parameter. Due to the employment of LDPC in the pre-processing step the master

server is able to compute good enough estimate of the gradient when the outcomes

form the stragglers is not available. In Chapter 2 we discuss the setup, method,

advantage of using LDPC in details and provide theoretical analysis and experimental

results.

Communication Efficiency: Next, we focus on the problem of communication

bottleneck in the distributed framework for large scale stochastic gradient descent

(SGD) algorithm which is widely used in training large scale models. The distributed

SGD model can easily be scaled on the basis of need but with high dimensional data,

large scale model with millions of parameters and increasing number of servers as

in Federated setup [77] the communication has become a bottleneck to the efficiency

and speed of learning with SGD [28]. In the recent years, various quantization and

sparsification techniques [3, 6, 12, 74, 90, 107, 118, 125, 131] have been developed

to alleviate the problem of communication bottleneck. Recently, [66] even showed
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the effectiveness of gradient quantization techniques for ReLU fitting. The goal of

the quantization schemes is to efficiently compute either a low precision or a sparse

unbiased estimate of the d-dimensional gradients. One also requires the estimates to

have a bounded second moment in order to achieve guaranteed convergence.

In Chapter 3, we present a family of vector-quantization schemes that incur low

communication costs while providing convergence guarantees. In particular, we provide

explicit and efficient quantization schemes based on convex hull of specific structured

point sets that require near optimal amount of communication necessary and sufficient

for this purpose. At a high level, our scheme is based on the idea that any vector

with bounded norm can be represented as convex combination of carefully constructed

point set. Now with this construction, we can choose a point from the point set with

probability proportional to its coefficient in the representation which makes it an

unbiased estimator of the the given vector. For the purpose of communication, we can

index the points in the point set in some order and communicate just the index. This

process requires bits logarithmic of the size of the point set. We provide matching

upper and lower bounds on this communication cost.

Moreover, the data samples used to train the model often contain sensitive infor-

mation. Hence, preserving privacy of the participating clients is crucial. Differential

privacy [43, 44] is a mathematically rigorous and standard notion of privacy considered

in both literature and in practice. Informally, it ensures that the information from

the released data (e.g. the gradient estimates) cannot be used to distinguish between

two neighboring data sets. We provide construction with large convex hull where the

variation in the coefficients of the convex combination of any two points of bounded

norm is small. This kind of constructions provide privacy guarantee for certain range of

ε which is the privacy parameter. For any general value of ε, we propose Randomized

Response (RR) [130] and RAPPOR [45] based mechanisms that can be used over

the proposed quantization with small trade-off in the variance of the estimates. The
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instances of convex hull for the purpose of quantization is easy to construct and

implement in practice.

Byzantine Resilience In First Order Learning : Next in Chapter 4, we focus

on Byzantine failure which is another fundamental problem in the distributed learning

setup. In many practical scenarios, messages or output from workers are susceptible

to errors due to hardware faults or software bugs, stalled computations, data crashes,

and unpredictable communication channels. In scenarios such as Federated Learning,

users may as well be malicious and act adversarially. The inherent unpredictable (and

potentially adversarial) nature of compute units is typically modeled as Byzantine

failures ([79]). Even if a single worker is Byzantine, it can be fatal to most learning

algorithms. In Chapter 3, we provide vector qunatization for the purpose of the

communication efficiency. In Chapter 4, we address both communication efficiency

and Byzantine-robustness. Both these challenges have recently attracted significant

research attention, albeit mostly separately. The problem of developing Byzantine-

robust distributed algorithms has been considered in [7, 115, ?, 27, 135, 136, 15, 52].

And in Chapter 3, we discuss in details about the sparsification and quantization

methods in terms of communication efficiency.

A notable exception to considering communication overhead separately from

Byzantine robustness is the recent work of [13]. In this work, a sign-based compression

algorithm signSGD of [12] is shown to be Byzantine fault-tolerant. The main idea of

signSGD is to communicate the coordinate-wise signs of the gradient vector to reduce

communication and employ a majority vote during the aggregation to mitigate the

effect of Byzantine units. However, signSGD suffers from two major drawbacks. First,

sign-based algorithms do not converge in general ([71]). In particular, [71, Section

3] presents several convex counter examples where signSGD fails to converge even

though [13, Theorem 2] shows convergence guarantee for non-convex objective under

certain assumptions. Second, signSGD can handle only a limited class of adversaries,

5



namely blind multiplicative adversaries ([13]). Such an adversary manipulates the

gradients of the worker machines by multiplying it (element-wise) with a vector that

can scale and randomize the sign of each coordinate of the gradient. However, the

vector must be chosen before observing the gradient (hence ‘blind’).

For the communication efficiency, we employ δ -approximate compressor. For the

adversarial model we restrict to an adversarial model in which Byzantine workers can

provide arbitrary values as an input to the compression algorithm, but they correctly

implement the mandated compression scheme. Though this adversarial model is

restricted, we argue that it is well-suited for applications wherein compression happens

outside of worker machines. Later we provide algorithm and analysis where we get

rid of this restriction. To make the stochastic gradient descent algorithm Byzantine

robust we simply discard the output (gradient from good nodes and arbitrary or

possibly malicious value from Byzantine nodes) of a number of worker nodes (slightly

higher than the number of Byzantine nodes believed to be in the setup) based on

the norm of the output. This simple process provide good convergence property. We

provide analysis and simulation results of our scheme. Furthermore, we strengthen

our distributed learning algorithm by using error feedback to correct the direction

of the local gradient. We show (both theoretically and via experiments) that using

error-feedback [71] with a δ-approximate compressor indeed speeds up the convergence

rate and attains better (statistical) error rate.

Sparse Distributed Approximate Newton : An alternative way to reduce the

number of iterations (and hence the communication cost) between the workers and

the central machine is to use second order optimization algorithms; which are known

to converge much faster than their first order counterparts. A handful of algorithms

has been developed using this philosophy, such as DANE [108], DISCO [140], GIANT

[127], DINGO [32], Newton-MR [102], INEXACTDANE and AIDE [99]. However, the
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question of whether it is possible to employ quantization/sparsification techniques in

second order algorithms to further cut down communication cost remains unanswered.

In Chapter 5, we investigate and answer this aforementioned question affirmatively.

Here, we use a δ-approximate compressor (same as used in Chapter 4 ) to provide

communication efficiency in a recently proposed second order optimization algorithm

DINGO [32]. We show different settings where we apply compression to reduce

communication overhead in each iteration.

In each iteration of DINGO, the worker machines first communicate the local

gradients to the central machine. The central machine aggregates the local gradients

and broadcasts the global gradient to the worker machines. The worker machines then

compute the local Hessians, obtain the (pseudo) inverse, compute the product of the

inverse Hessian and the global gradient and send this vector to the central machine.

Observe that, there are multiple places where compression can be employed. Such as:

1. One round compression: Every worker machine sends the uncompressed gradients

to the central machine. However, while sending the product of the inverse (local)

Hessian and gradient, it uses a δ-approximate compressor (as mentioned before

), and sends the compressed vector. Hence, only one round of compression is

employed in each iteration.

2. Two round compression: Here every worker compresses their local gradients and

sends it to the central machine. Furthermore, while sending the product of local

inverse Hessian and gradient, it also compresses that vector. So, each worker

machine uses two rounds of compression (both with δ-approximate compressor)

in each iteration.

We provide a careful analysis of the above settings such that we can track the

effect of compression on the convergence rate. For setting 1, the conditions on the

algorithm remain almost the same as that of DINGO with availability of the gradient
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but differs in a ‘dot-product’ condition [32] as the second round of the communication

(Hessian-gradient product) is compressed. For setting 2, we provide analysis with both

rounds of communication being compressed while adhering to the same protocol of

the underlying second order algorithm.

Byzantine Resilience In Second Order Learning : In the state-of-the-art dis-

tributed second order algorithms (like GIANT [127], DINGO [32], Determinantal

Averaging [37]), which sequentially estimates functions of local gradients and Hes-

sians and communicate them with the center machine. In sharp contrast with these

algorithms, in Chapter 6, we propose COMRADE where the worker machines com-

municate only once per iteration with the center machine. We show that sequential

estimation done by the previous approximate Newton type algorithm is redundant. In

COMRADE, the worker machines only send a d dimensional vector, the product of

the inverse of local Hessian and the local gradient. Via sketching arguments, we show

that the empirical mean of the product of local Hessian inverse and local gradient

is close to the global Hessian inverse and gradient product, and thus just sending

the above-mentioned product is sufficient to ensure convergence. Hence, in this way,

we save O(d) bits of communication per iteration. Furthermore, we argue that, in

order to cut down further communication, the worker machines can even compress

the local Hessian inverse and gradient product using the δ approximate compressor.

In addition to the iteration reduction and compression for communication efficiency,

we also make the algorithm resilient to Byzantine workers. For Byzantine resilience,

COMRADE employs a simple thresholding policy on the norms of the local Hessian

inverse and local gradient product. Since the norm of the Hessian-inverse and gradient

product determines the amount of movement for Newton-type algorithms, this norm

corresponds to a natural metric for identifying and filtering out Byzantine workers.
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Escape Saddle Points: The standard and general approaches and convergence

guarantees of the distributed learning algorithms ( we discuss in Chapter 4 (first

order method) and 6 (second order method) ) work well for the convex loss function

but provide weak results in the non-convex loss as a critical point in non-convex loss

function may be a saddle point. [51, 72] shows that the stationary points of these

problems are in fact saddle points and far away from any local minimum. Moreover,

in [63, 116], it is argued that saddle points can lead to highly sub-optimal solutions

in many problems of interest. This issue is amplified in high dimension as shown in

[34], and becomes the main bottleneck in training deep neural nets. Hence designing

efficient algorithm that escapes saddle points and find a local minima is of acute

interest.

Furthermore, a line of recent work, shows that in many problems of interest, all

local minima are global minima (e.g., dictionary learning [117], phase retrieval [116],

matrix sensing and completion [14, 51], and some of neural nets [72]). Also, in [29], it

is argued that for more general neural nets, the local minima are as good as global

minima.

The issue of saddle point avoidance becomes non-trivial in the presence of Byzantine

workers. Since we do not assume anything on the behavior of the Byzantine workers,

it is certainly conceivable that by appropriately modifying their messages to the

center, they can create fake local minima that are close to the saddle point of the

loss function f(.), and these are far away from the true local minima of f(.). This is

popularly known as the saddle-point attack (see [135]), and it can arbitrarily destroy

the performance of any non-robust learning algorithm. Hence, our goal is to design an

algorithm that escapes saddle points of f(.) in an efficient manner as well as resists

the saddle-point attack simultaneously. The complexity of such an algorithm emerges

from the the interplay between non-convexity of the loss function and the behavior of

the Byzantine machines.
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The problem of saddle point avoidance in the context of non-convex optimization

has received considerable attention in the past few years. In the seminal paper of

Jin et al. [64], a gradient descent based approach is proposed. By defining a certain

perturbation condition and adding Gaussian noise to the iterates of gradient descent,

the algorithm of [64] provably escapes the saddle points of the non-convex loss function.

A few papers [133, 9] following the above use various modifications to obtain saddle

point avoidance guarantees. However, these algorithms are non-robust. A Byzantine

robust saddle point avoidance algorithm is proposed by Yin et al. [135], and probably

is the closest to this work. In [135], the authors propose a repeated check-and-escape

type of first order gradient descent based algorithm. First of all, being a first order

algorithm, the convergence rate is quite slow (the rate for gradient decay is 1/
√
T ,

where T is the number of iterations). Moreover, implementation-wise, the algorithm

presented in [135] is computation heavy, and takes potentially many iterations between

the center and the worker machines. Hence, this algorithm is not efficient in terms of

the communication cost.

Here, we consider a variation of the famous cubic-regularized Newton algorithm of

Nesterov and Polyak [94]. It is theoretically proved in [94] that a cubic-regularized

Newton method with proper choice of parameters like step size always outperforms

the gradient based first order schemes (like [135]) in all situations under consideration.

We observe that the rate of gradient decay is 1
T 2/3 , which is strictly better than the

first order gradient based methods.
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CHAPTER 2

ROBUST GRADIENT DESCENT VIA MOMENT
ENCODING AND LDPC CODES

We focus on the problem of fitting a structured linear model to the given data. In

particular, given the features or data points {xi}i∈[n]:={1,...,n} ⊂ Rd and the associated

labels {yi}i∈[n] ⊂ R, we want to learn the model parameter w∗ belonging to a

structured set w ⊂ Rd so that yi = xTi w∗ + εi, for small modeling errors {εi}i∈[n]. In

many applications, the prior knowledge about the structure of the model parameter

(such as, sparsity and group sparsity) can be expressed with the help of a regularizer

R : Rd → R so that W ≡ {w ∈ Rd : R(w) ≤ R}, for R ∈ R. In such settings, the

task of recovering w∗ can be realized by solving the following optimization problem.

min
w

1

2

m∑
i=1

(yi − xTi w)2 subject to w ∈ W = {w′ ∈ Rd : R(w′) ≤ R}. (2.1)

Note that the square loss – employed in the optimization problem above– is one of

the most pervasive loss functions in machine learning, optimization, and statistics. A

large class of estimation problems arising in practice, such as compressed sensing [47],

dictionary learning [89], and matrix completion [75], can be solved as special cases of

the general optimization problem outlined in (2.1) [121].

Even though, we focus on the constrained optimization problem, our proposed

solution easily extends to the unconstrained optimization problem

min
w∈Rd

m∑
i=1

(yi − xTi w)2/2 + λ · R(w), W ∈ {w′ ∈ Rd : R(w′) ≤ R}.
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where we incorporate the regularizer in the objective function with the help of a

regularization parameter λ ∈ R.

We note that our proposed solution can also be employed to recover the structured

model parameters for single-index or generalized linear models [65], where the given

data fits a model of the form: yi = g(xTi w∗) + εi, with g : R→ R denoting a possibly

unknown nonlinear link function. In this setting, the model parameter can again be

recovered by solving a generalized LASSO in (2.1) [96].

We employ the projected gradient descent (PGD) method to solve the underlying

optimization problem. In a distributed computing setup, the iterative optimization

procedure is implemented as follows. The master server maintains an estimate for the

model parameter. In each step, the master sends the current estimate to the workers.

The workers then compute a partial value of the gradient based on the received

estimate and send the outcome of their computations to the master. By combining the

messages received from the non-straggling workers, the master computes the gradient

and updates its current estimate for the model parameter. In this chapter, our first

contribution is to propose a preprocessing step which encodes the second moment of

the data and then distributes the encoded moments among the workers. This way,

there is some redundancy among the outcomes of the computation at the workers,

which allows the master to obtain a good enough estimate of the gradient even when

it does not receive the outcome of the computation assigned to the stragglers.

We employ the low-density parity check (LDPC) codes to encode the second

moment of the data points. As a result, the task of calculating the gradient at the

master reduces to the task of decoding an LDPC codeword in the presence of erasures,

where the erased locations depend on the identities of the stragglers. The reason for

working with LDPC codes is that the iterative decoding algorithms for these codes

provide us three-fold benefits. The decoder has very low computational complexity

and can automatically adjust to the number of the stragglers with a small number of
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decoding iterations required if there are not too many stragglers present. Additionally,

we can use the number of decoding iterations as a tuning parameter. Depending on

the number of stragglers, we can run only those many decoding iterations that are

sufficient to ensure the desired quality of the estimate of the gradient. In our setup,

the number of erased coordinates of the gradient vector serves as a measure of its

quality. Note that this measure is a non-increasing function of the number of decoding

iterations. Finally, the MDS code based solutions provided in prior literature (such

as, [84, 137]) suffer from the issue of noise-stability resulting from the low condition

number of Vandermonde matrices, which we bypass by considering LDPC matrices.

Furthermore, we show that for a random model for stragglers, the PGD method

with the proposed moment encoding scheme can be viewed as the projected stochastic

gradient descent (PSGD) method. We then use the convergence analysis for the

PSGD method to establish the convergence guarantee for our proposed solution. This

analysis clearly characterizes the advantage over non-redundant or replication based

gradient descent method in terms of the decoding iterations employed in each step of

the method. We also conduct a detailed performance evaluation of our solution on a

real-life distributed computing framework (swarm2) at the University of Massachusetts

Amherst [119]. The performance results show that, as compared to the existing

schemes, our proposed solution requires a smaller number of gradient steps in order to

converge to the correct model parameter.

Furthermore, we show that for a random model for stragglers, the PGD method

with the proposed moment encoding scheme can be viewed as the projected stochastic

gradient descent (PSGD) method. We then use the convergence analysis for the

PSGD method to establish the convergence guarantee for our proposed solution. This

analysis clearly characterizes the advantage over non-redundant or replication based

gradient descent method in terms of the decoding iterations employed in each step of

the method. We also conduct a detailed performance evaluation of our solution on a
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real-life distributed computing framework (swarm2) at the University of Massachusetts

Amherst [119]. The performance results show that, as compared to the existing

schemes, our proposed solution requires a smaller number of gradient steps in order to

converge to the correct model parameter.

Comparison with other relevant works. In [84], Lee et al. focus on performing

iterative gradient descent method in a distributed manner via repeatedly invoking

their solution for coded computation of matrix-vector product. In this chapter, we also

rely on the coded computation of matrix-vector product to realize iterative gradient

descent in a straggler tolerant manner. However, we encode the second moment

matrix as opposed to the plain data matrix as done in [84]. This leads to reduced

communication rounds. Furthermore, this also makes the analysis of the optimization

procedure completely different from that in [84]. As another novel contribution, we

utilize LDPC codes which, as discussed above, allow for both efficient decoding and

control over the quality of the (approximate) gradient computed in each step of the

optimization procedure. In [67], Karakus et al. also study the problem of recovering

the model parameter of a linear model by solving an alternative optimization problem

where they encode both data points and their labels by the matrices with maximal

(pairwise) incoherent columns. Again, our approach differs from theirs as we solve the

original optimization problem itself and rely on moment encoding as opposed to data

encoding.

In [120], Tandon et al. propose a novel framework, namely gradient coding, to

counter the effect of stragglers on the performance of the gradient descent method.

The gradient coding framework is designed for general loss functions which decompose

over the data points. The gradient coding essentially relies on replication by cleverly

assigning the data points to multiple workers to evaluate partial gradients. The specific

designs for the replication among servers in the gradient coding framework along

with their performance analysis are presented in [98, 24, 58]. Here, we note that the

14



square loss that we consider does have the additive structure. However, employing

the (replication based) gradient coding framework to square loss leads to inefficient

utilization of the compute and the communication resources. In [134], Yang et al.

also study the iterative methods to solve linear inverse problems in the presence of

stragglers. However, their setup significantly differs from our setup. In [134], multiple

instances of the gradient descent method are run on different machines in a redundant

manner such that each machine is responsible for locally solving an entire instance.

Whereas in our setup, a single instance of the linear inverse problem is solved by a

network of servers and each server communicates its partial results in each step of the

gradient descent method. There exists a large literature dealing with various issues

other than the stragglers in the context of distributed optimization and learning. We

refer the readers to [84] for an excellent exposition of the literature.

Organization. We present the exact problem formulation along with the necessary

background in Section 2.1. We present the main contribution of this chapter in

Section 2.2 where we describe the moment encoding based optimization scheme along

with its convergence analysis. In Section 2.3, we perform an extensive evaluation of

the proposed scheme in a real-life distributed computing setup and compare it with

the prior work. We present a list of notations in Table 2.1 for ease of reading.

2.1 System Model and Background

Our distributed computing setup has m worker servers and one master server.

Performing large-scale computation in this setup involves dividing the desired com-

putation problem into multiple small computation tasks that are assigned to the

workers. The master then collects the outcomes of the tasks mapped to the workers

and produces the final result. The overall computation may require multiple rounds

of communication among the master and the workers.
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Table 2.1: List of notation

n Number of samples/data points

d Dimension of samples

(N,K) Length and dimension of the employed code

l = N d
K Length of the encoded vectors

m Number of worker servers

α = l
m Number of rows mapped to each server

w Model parameter to be learnt

`
(
(y,x

)
,w) Loss associated with w for data point x and label y

L(w) Total empirical loss associated with w

k Index for LDPC decoding itrations

D Number of iteration of LDPC decoding during each gradient descent step

t Index for gradient descent steps

T Number of gradient descent steps

ηt Learning rate for gradient descent

St Set of servers available during the t-th gradient descent step

s Number of stragglers

We are given n data samples or feature vectors {xi}i∈[n] ⊂ Rd and their labels

{yi}i∈[n] ⊂ R. We are mainly concerned with learning a structured linear model. In

particular, we are interested in learning a vector w∗ ∈ W ≡ {w′ ∈ Rd : R(w′) ≤ R},

for some regularizer R : Rd → R, such that the following total empirical loss is

minimized. In this work, we are mainly concerned with the following linear regression

task, where we are interested in learning a vector w = (w1, w2, . . . , wd) ∈ Rd with

R(w) ≤ R, for some regularizer R : Rd → R, such that the following total empirical

loss function is minimized.

L(w) =
1

2
‖y −Xw‖2

2 =
1

2

(
y −Xw

)T (
y −Xw

)
=

1

2

m∑
i=1

(
yi − xTi w

)2
, (2.2)
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where y = (y1, y2, . . . , yn)T ∈ Rm and X = (x1 x2 · · · xn)T ∈ Rn×d. Note that the

gradient of the total empirical loss with respect to w has the following form.

∇wL(w) =
(
XTXw −XTy

)
=

n∑
i=1

(
xix

T
i w − yixi

)
. (2.3)

In this paper, we rely on the PGD method to solve the underlying constrained

optimization problem, which iteratively updates an estimate of w∗. Specifically, at

the t-th step, the estimate wt has the form

wt = Pw

(
wt−1 − ηt∇wL(wt−1)

)
, (2.4)

where ηt is the learning rate at the t-th step, which may potentially be independent of t;

and the projection operator Pw : Rd → Rd is defined to be w 7→ arg minw̃∈W ‖w−w̃‖2
2.

Remark 2.1. In our proposed scheme, the master performs the projection step in

(2.4). Thus, we are mainly interested in the regularizers with computationally efficient

projection operations. This is particularly true for decomposable regularizers, such as

sparsity constraints.

Preliminary: Linear codes. We rely on linear codes to perform the overall compu-

tation on a distributed computing setup in redundant manner. The redundancy allows

the master to realize the original computation task in a straggler tolerant manner.

An (n, k) linear code is simply a subspace of dimension k belonging to an n-length

vector space. Here, we focus on the vector space defined over the real numbers R.

Therefore, an (n, k) linear code C forms a k-dimensional subspace in Rn. Given an

k-length message vector x ∈ Rk, it can be encoded (or mapped) to a codeword from

the code C with the help of a generator matrix G ∈ Rn×k as c = Gx ∈ C. Thus, a

linear code can be defined as C := {c ∈ Rn : c = Gx for some x ∈ Rd}. Alternatively,
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a linear code can also be defined by a parity check matrix H ∈ R(n−k)×n as follows

C := {c ∈ Rn : Hc = 0}. A generator matrix leads to a systematic encoding, if for

each x ∈ Rk, the message vector x exactly appears as k coordinates of the associated

codeword c = Gx. The redundancy introduced by mapping a k dimensional vector x

to an n-dimensional vector c with n > k allows one to recover x from c even when

some of the coordinates of c are missing. In particular, if the code C has minimum

distance dmin, then x can be recovered even if any dmin − 1 coordinates of c are not

available.

2.1.1 The Data Coding Method of [84] and the Gradient Coding Ap-

proach of [120]

An approach to run gradient descent in a distributed system using reliable dis-

tributed matrix multiplication as a building block was recently presented by Lee et al.

[84]. Note that, in the linear regression problem, computing the gradient of the total

empirical loss involves computation of two matrix-vector products in each iteration

(see (2.3)), namely: Xwt−1 and XT (Xwt−1 − y). In [84], an MDS-coded distributed

algorithm for matrix multiplication was proposed. In this algorithm, to perform the

matrix-vector product Ax, the matrix A is premultiplied by the generator matrix

G of an MDS code of proper dimensions to get Ã = GA. Each worker node then

performs a single inner product (or a set of inner products) involving a row of Ã and

x. The results of these local computations are then sent to the master node. As long

as the number of workers that successfully deliver their local computations within the

deadline is more than a specified threshold (in other words, as long as the number of

stragglers is within the erasure correcting capability of the MDS code given by G),

the product Ax can be found at the master node. In each iteration of the gradient

descent, the above matrix-vector product protocol is applied twice (see [84] for details)
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to compute Xwt−1 and XT (Xwt−1 − y). This facilitates computation of the gradient

in each iteration in the presence of the stragglers.

In [120], Tandon et al. propose a novel framework to exactly compute gradient of

the underlying loss function in a distributed computation setup. In particular, they

consider a generic loss function which takes the following additive form.

L(w) =
∑m

i=1 `
(
(yi,xi),w

)
. For such a loss function, its gradient can be obtained

as

∇wL(w) =
m∑
i=1

∇w`
(
(yi,xi),w

)
. (2.5)

In order to compute the gradient in a distributed manner, the samples and the

corresponding labels are distributed among w workers in a redundant manner. For

i ∈ [m], the samples and labels allocated to the i-th worker server are indexed by the

set Ai ⊆ [m]. Given the samples and labels indexed by the set Ai, the i-th worker

can compute the following components of the gradient (cf. (2.5)).

Bi :=
{
∇w`

(
(yj,xj),w

)}
j∈Ai
⊂ Rd. (2.6)

Now, the i-th worker transmits a linear combination of the blocks in Bi to the master.

In particular, the transmitted block can be represented as follows.

zi =
∑
j∈Ai

bi,j∇w`
(
(yj,xj),w

)
∈ Rd. (2.7)

Equivalently, the transmitted blocks from all m workers can be represented as the

following m× d matrix.

Z = (z1, . . . , zm)T = B
(
∇w`((y1,x1),w) · · · ∇w`((yd,xd),w)

)T
,
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where B is an m×d matrix containing the coefficients associated with the transmission

from m workers (cf. (2.7)). Note that, for i ∈ [m], the support of the i-th row of the

matrix B is contained in the set Ai.

Let S ⊂ [m] denote the set of indices of the workers that successfully deliver their

local computations within the deadline. Assuming that we have s straggling workers

which do not respond with their intended transmission before the deadline, we have

|S| = m− s. Note that the master has following information at its disposal.

ZS = BS
(
∇w`((y1,x1),w) · · · ∇w`((ym,xm),w)

)T
,∈ R(m−s)×d, (2.8)

where ZS and BS denote the sub-matrices formed by the rows indexed by S in Z and

B, respectively. In order to be able to obtain the gradient

∇wL(w) =
n∑
i=1

∇w`((yi,xi),w)

= (1, . . . , 1) ·
(
∇w`((y1,x1),w) · · · ∇w`((yn,xn),w)

)T
,

we require that the all ones vector (1, . . . , 1) belongs to the subspace spanned by

the rows of the matrix BS . Therefore, the design criterion in the gradient coding

approach [120] is to find an allocation of the samples {Ai}i∈[s] and the associated

transmission matrix B such that for every S ⊂ [s] with |S| = m− s, all ones vector

(1, . . . , 1) belongs to the row-space of the matrix BS .

Our computing method crucially differs from both of the schemes of [120] and [84].

Instead of encoding the matrices X and XT with MDS codes we use a single code to

encode the matrix XTX, the second moment of the data.
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2.2 Encoding Second Moment : Optimization with Approxi-

mate Gradient

We exploit the special structure of the gradient of the square loss (cf. (2.3)) to

devise a scheme to deal with stragglers. The proposed scheme is more efficient as

compared to the gradient coding approach [120] and the reliable distributed matrix

multiplication based scheme [84] . Recall the gradient of the total empirical loss

associated with the square loss function from (2.3). Note that we need to compute

the term XTy only once at the beginning of the optimization procedure as it is

independent of the optimization parameter w. By using the notation M = XTX and

b = XTy, the t-th step of the PGD method takes the following form (cf. (2.4)).

wt = Pw

(
wt−1 − ηt∇wL(wt−1)

)
= Pw

(
wt−1 − ηt(Mwt−1 − b)

)
. (2.9)

where wt denotes the estimate of w∗ at the end of t-th step.

2.2.1 Exact Computation of Gradient in Each Step

Now, in order to perform the projected gradient descent in a distributed com-

putation setup, we distribute the task of computing matrix-vector product Mwt

among the m workers. In particular, we encode the d × d matrix M using a linear

code. The encoded matrix can be used to generate redundant tasks for workers which

subsequently enable us to mitigate the effect of stragglers.

Scheme 2.1 (Exact gradient computation using linear codes:). Given the matrix

M = XTX and an (N = m,K) linear code1 C, the gradient computation for each

step of the optimization procedure is realized as below.

1For the ease of exposition, we assume that K divides d.
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• Let m1, . . . ,md denote the d rows of the matrix M = XTX. Let P1,P2, . . . ,Pd/K ⊂

[d] represent a partition of the set indices for these rows [d] such that Pi ∩ Pj =

∅ for i 6= j and |Pi| = K ∀ i ∈ [d/K].

• For each i ∈ [d/K], we encode the K × d matrix MPi using the (N = m,K)

linear code C as

C(i) = GMPi ∈ RN×d, (2.10)

where G is an N ×K generator matrix of C. Note that the d columns of the

matrix C(i) form d codewords of C.

• In the distributed computation setup, for i ∈ [d/K] and j ∈ [N ] = [m], we now

allocate j-th row of C(i) to the j-th worker. This way, the j-th server is assigned

the following sets of α = N
m
· d
K

= d
K

vectors.

Tj =
{
c

(1)
j , . . . , c

( d
K

)

j

}
⊂ Rd, (2.11)

where c
(i)
j denotes the j-th row of the matrix C(i).

• During the t-th step of the gradient descent optimization procedure, j-th worker

is tasked with computing the inner product of the rows assigned to it with the

current estimate wt−1, i.e., the j-th worker sends α = d
K

inner products

{
〈c(1)
j ,wt−1〉, . . . , 〈c

( d
K

)

j ,wt−1〉
}

(2.12)

to the master.

• Straggler tolerant exact gradient computation: Assuming that the workers

indexed by the set SCt := [m]\St behave as stragglers during the t-th step of
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the optimization procedure, the master has access to the following information

received from the non-straggling workers.

C
(i)
Stwt−1 = GStMPiwt−1 for all i ∈ [d/K]. (2.13)

Since the code C generated by G is a linear code, it’s straightforward to verify

that for each i ∈ [d/K], C(i)wt−1 = GMPiwt−1 corresponds to a codeword of C.

Moreover, the information available at the master (cf. (2.13)) is equivalent to

observing these codewords with some of their coordinates erased. Assuming the

code C has large enough minimum distance, or equivalently, the matrix GSt is full

rank, the master can recover MP1wt−1, . . . ,MPd/Kwt−1 from the information

received from the workers indexed by the set St. This allows the master to

construct Mwt−1 = XTXwt−1 and update the estimate for w according to (2.9).

We now state the following result about the performance of Scheme 2.1, which

follows from the description of the scheme in a straightforward manner.

Proposition 2.2. Assume that the moment encoding based Scheme 2.1 employs an

(N = m,K) linear code C with minimum distance dmin. Then, the scheme implements

exact gradient descent method as long as the number of the stragglers during each step

of the optimization is strictly less than dmin.

Remark 2.2. Note that length of the code C does not need to be equal to the

number of workers. For the ease of exposition, we focus on the N = m case here.

This choice provides a simple natural allocation of computation tasks to the workers.

However, suitable allocation can also be devised for the setting with N 6= d.

Comparison with Gradient Coding Approach [120]. Encoding the second

moments offers an immediate advantage over the general gradient coding approach

for the underlying optimization problem (cf. (2.1)). In Scheme 1, during a step
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of the optimization method, each worker communicates one scalar for each of the

rows assigned to it. Whereas, in gradient coding, each worker needs to transmit a

d-dimensional vector to the master. Moreover, as for the local computation at a worker

during each step, our approach requires computing a single inner product for every row

assigned to the worker. In contrast, in the gradient coding framework, workers have

to perform matrix-vector products between d× d rank 1 matrices and d-dimensional

vectors.

In Scheme 2.1, we employ linear codes with the objective that the master should

be able to compute (decode) the exact gradient during every step of the optimization

procedure. This can be achieved by utilizing any linear code with large enough

minimum distance. However, for the PGD method to succeed, it’s not necessary

to compute the exact gradient in every step. In particular, the stochastic gradient

descent method is one of the most used versions of the gradient descent methods,

where one employs an estimate of the gradient based on a randomly chosen sample

and its label [105]. For the problem at hand, the t-th step of projected stochastic

gradient descent (PSGD) method is as follows.

wt = Pw

(
wt−1 − ηt · n · (xixTi wt−1 − yixi)

)
, (2.14)

where i denotes an integer that is picked uniformly at random from [n]. Note that

n ·
(
xix

T
i w − yixi

)
indeed gives an unbiased estimate of the true gradient (cf. (2.3))

as n · E
[(

xix
T
i w− yixi

)]
= ∇wL(w). Next, we exploit this robustness of the gradient

based procedures to the quality of the gradient.

2.2.2 Approximate Recovery of Gradient in Every Step

Here, we focus on implementing the gradient based optimization procedure in a

distributed computing setup by constructing only an estimate of the true gradient

during each step of the optimization procedure. This allows us to employ coding
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schemes that have low complexity encoding and decoding algorithms, which lowers

the overall computational complexity of the coding based approach to mitigate the

effect of stragglers. Before we describe our approximate gradient based optimization

procedure, we specify the assumptions on the identity of the stragglers during each

step of the optimization procedure.

Assumption 2.1 (Straggling behavior of the workers). Let the indices of the stragglers

SCt ⊂ [m] during the t-th step of the optimization be distributed independent of the

stragglers in the previous steps. Furthermore, let the distribution of the stragglers in

each step be such that each worker independently behaves as a straggler with probability

q0.

The analysis of this section can be modified for the other random models for the

identity of the stragglers. Here, we note that we do not ensure any such random

model for the straggling behavior during our experimental evaluations of the proposed

scheme in Section 2.3.

We are now in the position to describe the LDPC codes based optimization

procedure that rely on approximate gradient during each step of the optimization

procedure.

Scheme 2.3 (LDPC codes based optimization with approximate gradients). Given

the matrix M = XTX, we take an (N = m = d + p,K = d) LDPC code C with

H ∈ Rp×N as its (low-density) parity check matrix.2 The approximate gradient based

optimization procedure in realized as follows.

• Encode M = XTX using a systematic matrix of C, say G, as C = GM, where

without loss of generality we assume that M constitutes the first d rows of the

2For the ease of exposition, in addition to N = m, we assume that K = d. The proposed scheme
can be easily generalized to the setting with d > K, as done in Scheme 2.1 by partitioning the rows
of M in the blocks of K rows.
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matrix C. Next, distribute the m = d+ p rows of C among m workers such that

the j-th row cj is assigned to the j-th worker.

• During the t-th step of the optimization procedure, j-th worker computes the

inner product of the row assigned to it with the current estimate wt−1 and sends

c
(1)
j wt−1 ∈ R to the master.

• Assuming that the set SCt := [m]\St denotes the indices of stragglers during t-th

step, the information received at the master takes the form:

CStwt−1 = GStMwt−1. (2.15)

Note that c = GMwt−1 is a codeword of C with Mwt−1 appearing in its first d

coordinates.

• Computation of approximate gradient: Given cSt = CStwt−1 = GStMwt−1,

the master employs D iterations of an iterative erasure correction algorithm

for the LDPC code C, where Sct denotes the indices of the erased coordinates.

Let ĉ(t;D) = (ĉ(t;D)1, . . . , ĉ(t;D)d) be the estimate for the codeword c after D

iterations of the erasure correction algorithm [100]. If a particular coordinate

is not recovered by the end of D iterations, we replace the coordinate with 0.

Let Ut ⊆ [d] denote the set of indices of the coordinates that are set to 0 in this

manner. Subsequently, we construct a vector b̂t by setting those coordinates

of b = XTy to 0 that are in Ut. During the t-th step, the master updates the

current estimate of w∗ as

wt = Pw

(
wt−1 − ηl ·

((
ĉ(t;D)1, . . . , ĉ(t;D)d

)T − b̂t

))
. (2.16)

In what follows, we establish that under Assumption 2.1, Scheme 2.3 indeed imple-

ments a variant of the PSGD method. As a result, under some natural requirements

on the loss function and the initialization w0, we obtain a convergence result for
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Scheme 2.3 that is similar to those available in the literature for the PSGD method

(cf. (2.14)).

However, before we analyze the convergence of Scheme 2.3, we need to characterize

the quality of the gradient recovered at the end of D iterations of the erasure correction

algorithm of the underlying LDPC code C. The LDPC codes have been extensively

studied in the literature along with the performances of various decoding algorithms

for such codes [48, 111, 100]. Under Assumption 2.1, where each worker independently

behaves as a straggler with probability q0, the vector received by the master (cf. (2.15))

is equivalent to the outcome of an erasure channel. For a specific family of LDPC codes

and a fixed iterative erasure correction algorithm, there have been many successful

attempts to characterize the likelihood of an initially erased coordinate being recovered

after a certain number of iterations. Here, we state a special case3 of the most prominent

result in this direction which applies to various random ensembles of LDPC codes with

sufficiently large length. This results is obtained by density evolution analysis [100].

Proposition 2.4. Consider an ensemble of LDPC code defined by the random p×N

parity check matrix H such that each of the p rows (N columns) of the matrix H

have z (r) nonzero entries.4 Let each coordinate of a codeword from the ensemble be

independently erased with the probability q0. Then, the probability qk that a coordinate

of the codeword remains erased after k iterations of the iterative erasure correction

satisfies the relationship5 qk = q0 ·
(
1− (1− qk−1)r−1

)z−1
.

3In particular, we restrict ourselves to the LDPC codes with left and right regular Tanner graphs.
We refer the readers to [100] for the general version of the result that applies to LDPC codes with
irregular Tanner graphs.

4There are multiple ways of generating a random ensembles of LDPC codes (see e.g., [100][Ch. 3]).

5The relation in here is shown to hold with very high probability, which involves application of
bounded-difference concentration inequality on the random bipartite graphs corresponding to H.
Given that these are fairly standard results in the coding theory literature, we refer the readers to
[101, 100] for the details.
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Remark 2.3. The key take away from Proposition 2.4 is that the probability of a

coordinate of a codeword staying erased is a monotonically non-increasing function of

the number of iterations as long as q0 < q∗(r, z) < 1, where q∗(r, z) is function of the

row and column weights of the random matrix H.

The following lemma characterizes the quality of the gradient vector obtained at

the master after D iterations of the erasure correction algorithm of the underlying

LDPC code.

Lemma 2.5. Let the distribution of stragglers satisfy Assumption 2.1 and the master

node employs D iterations of the erasure correction algorithm. Then, during t-th step

of the optimization procedure, we have

E
[(
ĉ(t;D)1, . . . , ĉ(t;D)d

)T − b̂t

]
= (1− qD) · ∇L(wt−1),

which is a scaled version of the true gradient at wl−1.

Proof of lemma 2.5. Recall that, during the t-th step of the optimization procedure, qD

denotes the probability that a particular coordinate of the codeword c = Cwt−1 ∈ RN

is not recovered by the master (cf. Scheme 2.3). The first d coordinates of this vector

correspond to the true gradient vector at wt−1. Therefore, for i ∈ [d], we have

P [ĉ(t;D)i = ci] = 1− qD and P [ĉ(t;D)i = 0] = qD. (2.17)

Similarly, for i ∈ [d], we have,

P
[
b̂i = bi

]
= 1− qD and P

[
b̂i = 0

]
= qD. (2.18)
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By using (2.17) and (2.18), it is straightforward to verify that

E
[(
ĉ(t;D)1, . . . , ĉ(t;D)k

)T − b̂t

]
= (1− qD) ·

(
(c1, . . . , ck)

T − b
)

(i)
= (1− qD) ·

(
Mwl−1 −XTy

)
= (1− qD) · ∇L(wt−1),

where (i) follows from the systematic form associated with the generator matrix

G.

Convergence Analysis of Scheme 2.3 Here, we formally argue that the proposed

Scheme 2.3 enjoys the convergence guarantees similar to those available for the typical

PSGD method. In fact, the proof of the convergence of our scheme heavily relies on

the ideas employed in the proof of convergence for PSGD algorithm as described in

[93]. Recall that the total empirical loss associated with the model parameter w ∈ Rd

for given set of data samples {xi}i∈[n] ⊂ Rd and the corresponding labels {yi}i∈[n] ⊂ R

takes the form.

L(w) =
n∑
i=1

`
(
(yi,xi),w

)
=

1

2
·

n∑
i=1

(
yi − xTi w

)2
. (2.19)

We now state the convergence result for Scheme 2.3 which holds under natural

assumptions on the loss function and the initialization for the optimization procedure

w0. In what follows we use ‖ · ‖ to denote the `2 norm ‖ · ‖2. We also note that the

projection operator Pw is non-expanding, i.e.,

‖Pw

(
w
)
− Pw

(
w′
)
‖ ≤ ‖w −w′‖ for all w,w′ ∈ Rd.

Theorem 2.6. Suppose for all (x, y) ∈ Rd+1 and w ∈ W, the loss function satisfies

‖∇L(w)‖ ≤ B. Moreover, let the initial estimate w0 satisfy ‖w0 −w∗‖ ≤ R. Then,
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by setting the learning rate as η = R/(B ·
√
T ) in Scheme 2.3, when D iterations of

LDPC decoding are employed during each gradient descent step, ensures the following:

E
[
L(w̄T )

]
− L(w∗) ≤ RB/

(
(1− qD) ·

√
T
)
, (2.20)

where w̄T = 1
T
·
∑

t∈[T ] wt and the expectation is taken over the distribution of the

stragglers.

Proof. Proof of Theorem 2.6: It follows from the convexity of the loss function L(·)

that

L(w̄T )− L(w∗) ≤ 1

T

T∑
t=1

L(wt)− L(w∗) ≤ 1

T

T∑
t=1

∇L(wt) · (wt −w∗). (2.21)

Recall from (2.16) that, for 0 ≤ t ≤ T − 1, we have

wt+1 = Pw

(
wt − gt(wt)

)
,

where gt(wt) =
(
ĉ(t+ 1;D)1, . . . , ĉ(t+ 1;D)k

)T − b̂t+1. Now, consider

‖wt+1 −w∗‖2 ≤ ‖Pw

(
wt − gt(wt)

)
−w∗‖2 (i)

= ‖Pw

(
wt − gt(wt)

)
− Pw

(
w∗
)
‖2

≤ ‖wt − gt(wt)−w∗‖2

= ‖wt −w∗‖2 − 2η · 〈gt(wt), (wt −w∗)〉+ η2‖gt(wt)‖2

≤ ‖wt −w∗‖2 − 2η · 〈gt(wt), (wt −w∗)〉+ η2B2, (2.22)

where (i) follows from the fact that w∗ ∈ W and (ii) holds as the operator Pw is

non-expanding, i.e.,

‖Pw

(
w
)
− Pw

(
w′
)
‖ ≤ ‖w −w′‖ for all w,w′ ∈ Rd.
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Let Ht denote the history, i.e., identity of the stragglers, before the (t+ 1)-th step of

the optimization procedure. Note that it follows from Lemma 2.5 that

E[gt(wt) | Ht] = (1− qD) · ∇L(wt). (2.23)

By combining (2.22) and (2.23), we obtain that

E[‖wt+1 −w∗‖2 | Ht] ≤ ‖wt −w∗‖2 − 2η · (1− qD) · 〈∇L(wt), (wt −w∗)〉+ η2B2.

(2.24)

Now taking expectation on the both sides gives us that

E[‖wt+1 −w∗‖2] ≤ E[‖wt −w∗‖2]− 2 · E[η · (1− qD) · 〈∇L(wt), (wt −w∗)〉] + η2B2.

(2.25)

or

(1− qD) · E[〈∇L(wt), (wt −w∗)〉] ≤ 1

2η
· E[‖wt −w∗‖2]− 1

2η
· E[‖wt+1 −w∗‖2] +

ηB2

2
.

(2.26)

By taking the average of the aforementioned inequality over T iteration, we obtain

that

E

[
1

T

T−1∑
t=0

〈∇L(wt), (wt −w∗)〉

]
≤ 1

2η(1− qD)
·
(E[‖w0 −w∗‖2]

T
− E[‖wT −w∗‖2]

T
+ η2B2

)
≤ ‖w0 −w∗‖2

2ηT (1− qD)
+

ηB2

2(1− qD)

≤ R2

2ηT (1− qD)
+

ηB2

2(1− qD)
(i)

≤ 1

1− qD
· RB√

T
, (2.27)

where (i) follows form the choice of η. Now, Theorem 2.6 follows by combining (2.21)

and (2.27).
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2.3 Simulation Results

In this section, we conduct a detailed evaluation of our moment encoding based

scheme (cf. Scheme 2.3) for distributed computation. In particular, we perform experi-

ments on distributed setting to obtain solutions of two problems: 1) Least-square esti-

mation, and 2) Sparse recovery. Recall that, for least-square estimation, given inputs

y ∈ Rn and X ≡ {x1,x2, . . .xm} ∈ Rn×d the task is to find arg minw∈Rd ‖y −Xw‖2
2.

Note that this problem does not require a projection step during the optimization

procedure. In the sparse recovery problem, one seeks to find a u-sparse vector w ∈ Rd

(this means at most u coordinates out of d of the vector w are nonzero) from linear

samples y = Xw, for some matrix X ∈ Rn×d. In this case, t-th step of the projected

gradient descent procedure takes the form [50] wt = Hu(wt−1 − η∇wL(wt−1)), where

∇wL(w) = XTXw −XTy is the gradient of the squared loss ‖y −Xw‖2
2 and Hu(w)

is the thresholding operation that sets all except the largest u coordinates in absolute

value of w ∈ Rd to zero. To compute the gradient we again employ the moment encod-

ing method with LDPC codes as outlined in Scheme 2.3. Note that the thresholding

operation can be easily performed by the master node itself.

Figure 2.1 presents the results for the least-square estimation problem. In our

experiments, the data samples X ≡ {x1,x2, . . .xn} ⊂ Rd are randomly generated with

the dimensions d ∈ {200, 400, 800, 1000} and the number of total samples n = 2048.

The corresponding labels y are created by multiplying the data matrix X with

randomly drawn vector w∗ ∈ Rd. We implement Scheme 2.3 on a real-life distributed

computing framework (swarm2) at the University of Massachusetts Amherst [119]

using mpi4py Python package. The setup involves a cluster of 41 computing nodes

(40 worker nodes and 1 master nodes). Throughout this section, the plotted results

are averaged over 100 trials. We compare our LDPC codes based (rate= 1/2) moment

encoding scheme with the recently proposed data encoding (with MDS/Gaussian
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Figure 2.1: Total number of iterations and total computation time for solving the linear
regression problem (m = 2048). The number of stragglers are 5 (top-left), 10 (top-right), 5
(bottom-left) and 10 (bottom-right).

matrices) scheme of Karakus et al. (KSDY17 in the figures) [67], as well as with

uncoded and replication-based schemes (2-replication).6 In all cases, we wait for either

30 or 35 workers to respond before the computations at the master node, i.e., the

number of stragglers is 10 or 5, respectively. In order to implement our scheme, we

utilize a (40, 20) LDPC code. In the replication-based schemes, we partition the data

and repeat each partition of the data twice. We use sub-sampled Hadamard and

6Here, we do not compare our scheme with the approaches proposed in [120] and [84] as both
of these schemes involve significantly different computation and communication requirements. For
example, the gradient coding scheme [120] requires communicating d-dimensional vectors; and the
approach of [84] involves encoding of two different matrices and two rounds of communications per
step of the optimization procedure.
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Figure 2.2: Total number of iterations for solving sparse recovery problem in an overdeter-
mined system (m = 2048). The left two figures correspond to the dimension 800 and the
remaining ones correspond to dimension 1000. The number of stragglers are 5(top-left), 10
(top-right), 5 (bottom-left)and 10 (bottom-right).

Gaussian matrices to implement the data encoding method from [67]. We sampled

the columns of 4096 × 4096 Hadamard matrix and generated 4096 × 2048 random

Gaussian matrices for the purpose of our experiments. For each case we record the

number of steps until the Euclidean distance of the evaluated parameter from the

actual parameter vector w∗ is within a small threshold.

For the sparse recovery problem, we consider both the over-determined (n > d)

and the under-determined (n < d) cases. For n > d, we adopt the same experimental

setup as described above with n = 2048, but restrict ourselves to the dimensions d ∈

{800, 1000}. For each d, we consider different sparsities: for f ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
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Figure 2.3: Number of iterations and computation time for the sparse recovery problem in
an underdetermined system (k = 2000,m = 1024). The number of stragglers are 5(top-left),
10 (top-right), 5 (bottom-left)and 10 (bottom-right).

u = d · f entries in w∗ are nonzero. Figure 2.2 presents the results for the sparse

recovery problem in this over-determined setup. We only plot the number of steps of

the optimization procedure. The total computation time shows a similar trend. For

n < d, we generate the matrix X as a 1024×2000 matrix with i.i.d. entries distributed

according to the standard normal distribution. The true parameter vector w∗ is

drawn randomly with sparsity levels u ∈ {100, 200}. The results obtained from our

experiments are presented in Figure 2.3. As it is evident from the plots in Figure 2.1,

2.2 and 2.3, our scheme requires smaller number of steps to converge to the true model

parameters. Furthermore, our scheme also leads to smaller overall computation time.
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2.4 Conclusion and Future Direction

In this chapter, we propose to encode the second moment of the data for the

purpose of mitigating the effect of the stragglers in the distributed gradient descent

algorithm. This scheme is specifically tailored for the purpose of squared loss function

as the idea revolves around the the second moment of the loss function. This idea can

be easily generalized to other loss functions -such as logarithmic loss or the Poisson

loss function. We used LDPC code for the purpose of encoding and took advantage of

the decoding scheme to tune the algorithm ensuring the desired quality of the estimate

of the gradient.

One very serious direction of future work is to figure out encoding scheme for

general loss function especially non-linear loss function that appears in training neural

network (relu network). It would be interesting to see what functional of the data

that needs to be encoded for the purpose of the straggler mitigation. One important

thing is that all the encoding scheme including ours work on the linear operation

specifically the Matrix-vector product part of the computations. But encoding for

non-linear computation is still a open problem. Also in this chapter, we show the

convergence analysis for the case of the randomized straggler case where each machine

can be straggler with some probability. Even though the scheme will work for the

adversarial case, further analysis is required.
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CHAPTER 3

VQSGD: VECTOR QUANTIZED STOCHASTIC
GRADIENT DESCENT

In the previous chapter, we focus on the issue of stragglers in the distributed SGD.

Now we focus on the issue of high communication overhead between parameter (central

) server and worker nodes which can cause bottleneck to the efficiency and speed of

learning using SGD [28]. In the recent years, various quantization and sparsification

techniques [3, 6, 12, 74, 90, 107, 118, 125, 131] have been developed to alleviate

the problem of communication bottleneck. In this chapter, we present a family of

privacy-preserving vector-quantization schemes that incur low communication costs

while providing convergence guarantees. In particular, we provide explicit and efficient

quantization schemes based on convex hull of specific structured point sets in Rd that

require O(d log d/R2) bits to communicate an unbiased gradient estimate that has

variance bounded above by R2: this is within a log d factor of the optimal amount of

communication that is necessary and sufficient for this purpose.

At a high level, our scheme is based on the idea that any vector v ∈ Rd with

bounded norm can be represented as a convex combination of a carefully constructed

point set C ⊂ Rd. This convex combination essentially allows us to chose a point

c ∈ C with probability proportional to its coefficient, which makes it an unbiased

estimator of v. The bound on the variance is obtained from the circumradius of the

convex hull of C. Moreover, communicating the unbiased estimate is equivalent to

communicating the index of c ∈ C (according to some fixed ordering) that requires

only log |C| bits.
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Large convex hulls have small variation in the coefficients of the convex combination

of any two points of bounded norm. This observation allows us to obtain ε-differential

privacy (for any ε > ε0), where ε0 depends on the choice of the point set. We also

propose Randomized Response (RR) [130] and RAPPOR [45] based mechanisms that

can be used over the proposed quantization to achieve ε-differential privacy (for any

ε > 0) with small trade-off in the variance of the estimates.

The family of schemes described above is fairly general and can be instantiated

using different structured point sets. The cardinality of the point set bounds the

communication cost of the quantization scheme. Whereas, the diameter of the point

set dictates the variance bounds and the privacy guarantees of the scheme.

We provide a strong characterization of the point-sets that can be used for our

quantization scheme. Using this characterization, we propose construction of point-sets

that allow us to attain a smooth trade-off between variance and communication of the

quantization scheme. We also propose some explicit structured point sets and show

tradeoff in the various parameters guaranteed by them. Our results1 (summarized in

Table 3.1) are the first quantization schemes in literature to achieve privacy directly

through quantization. While our randomized construction is optimal in terms of

communication, the explicit schemes are within log d factor of a lower bound that we

provide.

Empirically we compare our quantization schemes to the state-of-art schemes

[6, 118]. We observe that our cross-polytope vqSGD, performs equally well in practice,

while providing asymptotic reduction in the communication cost. The communication

results are compared in Table 3.2(up).

While differential privacy for gradient based algorithms [2, 110] were considered

earlier in literature, cpSGD [5] is the only work that considered achieving differential

1Note that ε denotes the privacy parameter and ε refers to the packing parameter of ε-nets.

2Oε hides terms involving ε
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Point set Error Communication
(bits) Privacy Efficiency

Gaussian-Sampling
(Theorem 3.7) for any c > log(d)

d
cN Nc - O(exp(c))

Reed-Muller (CRM )
(Proposition 3.9)

d
N N log 2d - O(d)

Cross-polytope (Ccp)
(Proposition 3.10

d
N N log 2d ε > O(log d) O(d)

Scaled ε-Net (Cnet)
(Proposition 3.12 )

1
N Oε(Nd)

2 - O
((

1
ε

)d)
Simplex (CS)
(Proposition 3.13)

d2

N N log(d+ 1) ε > log 7 O(d)

Hadamard (CH)
(Proposition 3.14)

d2

N N log d ε > log(1 +
√
2) O(d)

Cross-polytope (Ccp) + RR
(Theorem 3.16)

d2

N N log(2d) ε > 0 O(d)

Cross-polytope (Ccp) + RAPPOR
(Theorem 3.17 )

d2

N 2Nd ε > 0 O(d)

Table 3.1: List of results. (N : number of worker nodes, d: dimension).

privacy for gradient based algorithms and simultaneously minimizing the gradient

communication cost. The authors propose a binomial mechanism to add discrete

noise to the quantized gradients to achieve communication-efficient (ε, δ)-differentially

private gradient descent with convergence guarantees. The quantization schemes used

are similar to those presented in [118] and hence require Ω(d) bits of communication

per compute node. The parameters of the binomial noise are dictated by the required

privacy guarantees which in turn controls the communication cost.

In this work we show that certain instantiations of our quantization schemes

are ε-differentially private. Note that this is a much stronger privacy notion than

(ε, δ)-privacy. Moreover, we get this privacy guarantee directly from the quantization

schemes and hence the communication cost remains sublinear (log d) in dimension.

We also propose a Randomized Response [130] based private-quantization scheme

that requires O(log d) bits of communication per compute node to get an ε-differential

privacy while losing a factor of O(d) in convergence rate. Table 3.2(down) compares
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the guarantees provided by our private quantization schemes with the results of cpSGD

[5].

Organization: In Section 3.1, we describe some other related work on communica-

tion efficiency in the federated learning setup. We start in Section 3.2 describing the

settings for our results. The vqSGD quantization scheme is presented in Section 3.3.

In Section 3.4 we provide a handle to test whether a point-set is a valid vqSGD

scheme, and prove existence of a point-set that achieves a communication cost equal

to the dimension divided by the variance, which matches a lower bound we prove.

We provide a few structured deterministic constructions of point sets in this section

as well. Section 3.5 emphasizes the privacy component of vqSGD - and derives the

privacy parameters of several vqSGD schemes. Finally, we provide some experiments

to support vqSGD in Section 3.6.

Method Error Comm
QSGD
[6] min{ d

s2
,
√
d
s }

1
N Ns(s+

√
d)

DME
[118] min{ 1

Ns ,
log d

N(s−1)2 } Nsd

vqSGD
QCcp

d
Ns Ns log d

Gaussian d
Nsc Nsc

Method Error Comm DP (ε)

cpSGD [5] Oδ
(
d
N

) 3 Oδ(d)
δ > 0,
ε > f(δ)

vqSGD QCcp O
(
d
N

)
O (log d) ε > O(log d)

vqSGD QCS O
(
d2

N

)
O (log d) ε > log 7

vqSGD QCH O
(
d2

N

)
O (log d) ε > log(2.5)

vqSGD QCcp
+ RR

O
(
d2

N

)
O (log d) ε > 0

Table 3.2: (Up): Comparison of non private quantization schemes. (Down): Com-
parison of private quantization schemes. (N : number of worker nodes, s, c: tuning
parameter (≥ 1))
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3.1 Related Work

The foundations of gradient quantization was laid by [103] and [114] with schemes

that require the compute nodes to send exactly 1-bit per coordinate of the gradient.

They also suggested using local error accumulation to correct the global gradient in

every iteration. While these novel techniques worked well in practice, there were no

theoretical guarantees provided for convergence of the scheme. These seminal works

fueled multiple research directions.

Quantization & Sparsification: [6, 125, 131] propose stochastic quantization

techniques to represent each coordinate of the gradient using small number of bits.

The proposed schemes always return an unbiased estimator of the local gradient

and require c = Ω(
√
d) bits of communication to compute the global gradient with

variance bounded by a multiplicative factor of O(d/c). The quantization techniques for

distributed SGD, can be used in the more general setting of communication efficient

distributed mean estimation problem, which was the focus of [118]. The quantization

schemes proposed in [118] require O(d) bits of communication per compute node to

estimate the global mean with a constant (independent of d) squared error (variance).

Even though the tradeoff between communication and accuracy achieved by the above

mentioned schemes are near optimal [139], they were unable to break the
√
d barrier

of communication cost. Moreover, the schemes proposed in [6, 118] are variable length

codes that achieve low communication in expectation. The worst case communication

cost could be higher. In a parallel work [90], the authors propose an efficient fixed-

length quantization scheme that achieves near-optimal convergence with T -rounds of

SGD. However, the goal of their work is different from ours, and the methodologies

are different as well.

3Oδ hides terms involving δ.
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In this work, we propose (fixed length) quantization schemes that require o(d) (as

low as log d) bits of communication and are almost optimal as well. In fact for any

c-bits of communication, the quantization scheme with Gaussian points achieves a

variance of O(d/c) that meets the lower bounds for any unbiased quantization scheme

(also shown in the current work).

Gradient sparsification techniques with provable convergence (under standard

assumptions) were studied in [3, 8, 62, 113]. The main idea in these techniques is to

communicate only the top-k components of the d-dimensional local gradients that can

be accumulated globally to obtain a good estimate of the true gradient. Unlike the

quantization schemes described above, gradient sparsification techniques can achieve

O(log d) bits of communication, but are not usually unbiased estimates of the true

gradients. [107] suggest randomized sparsification schemes that are unbiased, but are

not known to provide any theoretical convergence guarantees in very low sparsity

regimes.

See Table 3.2 for a comparison of our results with the state of the art quantization

schemes.

Error Feedback: Many works focused on providing techniques to reduce the

error incurred due to quantization [61, 70] using locally accumulated errors. In this

work, we focus primarily on gradient quantization techniques, and note that the

variance reduction techniques of [61] can be used on top of the proposed quantization

schemes.

3.2 Preliminaries

For any x,y ∈ Rd, we denote the Euclidean (`2) distance between them as ‖x−y‖2.

For any vector x ∈ Rd, xi denotes its i-th coordinate. For any c ∈ Rd, and r > 0, let

Bd(c, r) denote a d-dimensional `2 ball of radius r centered at c. Let ei ∈ Rd denote
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the i-th standard basis vector which has 1 in the i-th position and 0 everywhere else.

Also, for any prime power q, let Fq denote a finite field with q elements.

For a discrete set of points C ⊂ Rd, let conv(C) denote the convex hull of points

in C, i.e., conv(C) :=
{∑

c∈C acc | ac ≥ 0,
∑

c∈C ac = 1
}
.

Suppose w ∈ Rd be the parameters of a function to be learned (such as weights of

a neural network). In each step of the SGD algorithm, the parameters are updated as

w← w − ηĝ, where η is a possibly time-varying learning rate and ĝ is a stochastic

unbiased estimate of g, the true gradient of some loss function with respect to w. The

assumption of unbiasedness is crucial here, that implies Eĝ = g.

The goal of any gradient quantization scheme is to reduce cost of communicating

the gradient, i.e., to act as an first-order oracle, while not compromising too much on

the quality of the gradient estimate. The quality of the gradient estimate is measured

in terms the convergence guarantees it provides. In this work, we develop a scheme

that is an almost surely bounded oracle for gradients, i.e., ‖ĝ‖2
2 ≤ B with probability 1,

for some B > 0. The convergence rate of the SGD algorithm for any convex function

f depends on the upper bound of the norm of the unbiased estimate, i.e., B, cf. any

standard textbook such as [106].

Although we provide an almost surely bounded oracle as our quantization scheme,

previous quantization schemes, such as [6], provides a mean square bounded oracle,

i.e., an unbiased estimate ĝ of g such that E‖ĝ‖2
2 ≤ B for some B > 0. It is known

that, even with a mean square bounded oracle, SGD algorithm for a convex function

converges with dependence on the upper bound B [17]. As discussed in [6], one can

also consider the variance of ĝ without any palpable difference in theory or practice.

Therefore, below we consider the variance of the estimate ĝ as the main measure of

error.

In distributed setting with N worker nodes, let gi and ĝi are the local true gradient

and its unbiased estimate computed at the ith compute node for some i ∈ {1, . . . , N}.
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For g = 1
N

∑
i gi, the variance of the estimate ĝ = 1

N

∑
i ĝi is defined as

Var(ĝ) := E

[
‖ 1

N

N∑
i=1

gi −
1

N

N∑
i=1

ĝi‖2
2

]
=

1

N2

N∑
i=1

E
[
‖gi − ĝi‖2

2

]
.

In this work, our goal is to design quantization schemes to efficiently compute unbiased

estimate ĝi of gi such that Var(ĝ) is minimized.

For the privacy preserving gradient quantization schemes, we consider the standard

notion of (ε, δ)-differential privacy (DP) as defined in [44]. Consider data-sets from a

domain X . Two data-sets U, V ∈ X , are neighboring if they differ in at most one data

point.

Definition 3.1. A randomized algorithm M with domain X is (ε, δ)-differentially

private (DP) if for all S ⊂ Range(M) and for all neighboring data sets U, V ∈ X ,

Pr[M(U) ∈ S] ≤ eε Pr[M(V ) ∈ S] + δ,

where, the probability is over the randomness inM. If δ = 0, we say thatM is ε-DP.

We will need the notion of an ε-nets subsequently.

Definition 3.2 (ε-net). A set of points N(ε) ⊂ Sd−1 is an ε-net for the unit sphere

Sd−1 if for any point x ∈ Sd−1 there exists a net point u ∈ N(ε) such that ‖x−u‖2 ≤ ε.

There exist various constructions for ε-net over the unit sphere in Rd of size at

most (1 + 2/ε)d [30].

3.3 Quantization Scheme

We first present our quantization scheme in full generality. Individual quantization

schemes with different tradeoffs are then obtained as specific instances of this general

scheme.
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Let C = {c1, . . . , cm} ⊂ Rd be a discrete set of points such that its convex hull,

conv(C) satisfies

Bd(0d, 1) ⊂ conv(C) ⊆ Bd(0d, R), R > 1. (3.1)

Let v ∈ Bd(0d, 1). Since Bd(0d, 1) ⊆ conv(C), we can write v as a convex linear

combination of points in C. Let v =
∑m

i=1 aici, where ai ≥ 0,
∑m

i=1 ai = 1. We

can view the coefficients of the convex combination (a1, . . . , am) as a probability

distribution over points in C. Define the quantization of v with respect to the set of

points C as follows:

QC(v) := ci with probability ai

It follows from the definition of the quantization that QC(v) is an unbiased estimator

of v.

Lemma 3.1. E(v)] = v.

Proof of Lemma 3.1. E[QC(v)] =
∑|C|

i=1 ai · ci = v.

We assume that C is fixed in advance and is known to the compute nodes and the

parameter server.

Remark 3.1. Communicating the quantization of any vector v, amounts to sending

a floating point number ‖v‖2, and the index of point QC(v) which requires log |C| bits.

For many loss functions, such as Lipschitz functions, the bound on the norm of the

gradients is known to both the compute nodes and the parameter server. Therefore, we

can avoid sending ‖v‖2 and the cost of communicating the gradients is then exactly

log |C| bits.

Remark 3.2. If, for any vector v, we send the floating point number ‖v‖2 sepa-

rately, instead of there being a known upper bound on gradient, we can just assume
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without loss of generality that v ∈ Sd−1. In this case, in the subsequent bounds on

variance in this section, R2 can be replaced by R2 − 1

Any point set C that satisfies Condition (3.1) gives the following bound on the

variance of the quantizer.

Lemma 3.2. Let C ⊂ Rd be a point set satisfying Condition (3.1). For any v ∈

Bd(0d, 1), let v̂ := QC(v). Then, ‖v̂‖2
2 ≤ R2 almost surely, and E [‖v − v̂‖2

2] ≤ R2.

Proof of Lemma 3.2. From the definition of the quantization function,

E[‖v −QC(v)‖2
2] = E[‖QC(v)‖2]− ‖v‖2 ≤ R2.

This is true as C satisfies Condition (3.1) and therefore, each point ci ∈ C has a

bounded norm, ‖ci‖ ≤ R.

From the above mentioned properties, we get a family of quantization schemes

depending on the choice of point set C that satisfy Condition (3.1). For any choice

of quantization scheme from this family, we get the following bound regarding the

convergence of the distributed SGD.

Theorem 3.3. Let C ⊂ Rd be a point set satisfying Condition (3.1). Let gi ∈ Rd

be the local gradient computed at the i-th node, Define ĝ := 1
N

∑N
i=1 ĝi, where ĝi :=

‖gi‖ ·QC(gi/‖gi‖). Then,

E[ĝ] = g and E
[
‖g − ĝ‖2

2

]
≤ (R/N)2

∑
i

‖gi‖2.
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Proof of Theorem 3.3. Since ĝ is the average of N unbiased estimators, the fact that

E[ĝ] = g follows from Lemma 3.1. For the variance computation, note that

E[‖g − ĝ‖2
2] =

1

N2

(
N∑
i=1

E[‖gi − ĝi‖2
2]

)
( since ĝi is an unbiased estimator of g )

≤ R2

N2

N∑
i=1

‖gi‖2 (from Lemma 3.2).

Remark 3.3. Computing the quantization QC(.) amounts to solving a system of

|C| linear equations in Rd. For general point sets C, this takes about O(|C|3) time

(since |C| ≥ d). However, we show that for certain structured point sets QC(.) can be

computed in linear time.

From Theorem 3.3 we observe that the communication cost of the quantization

scheme depends on the cardinality of C while the convergence is dictated by the

circumradius R of the convex hull of C. In the Section 3.4, we present several

constructions of point sets which provide varying tradeoffs between communication

and variance of the quantizer.

Reducing Variance: Here, we propose a simple repetition technique to reduce the

variance of the quantization scheme. For any s > 1, let QC(s,v) := 1
s

∑s
i=1Q

(i)
C (v) be

the average over s independent applications of the quantization QC(v). Note that even

though QC(s,v) is not a point in C, we can communicate QC(s,v) using an equivalent

representation as a tuple of s independent applications of QC(v) that requires s log |C|

bits. Using this repetition technique we see that the variance reduces by factor of s

while the communication increases by the exact same factor.

Proposition 3.4. Let C ⊂ Rd be a point set satisfying Condition (3.1). For any

v ∈ Bd(0d, 1), and any s ≥ 1, let v̂ := QC(s,v). Then, E [‖v − v̂‖2
2] ≤ R2/s.
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Proof of Proposition 3.4. The proof follows simply by linearity of expectations and

Lemma 3.2.

E
[
‖v − v̂‖2

2

]
= E

[
‖1

s

s∑
i=1

(v −QC(v)) ‖2

]
≤ 1

s
·R2.

3.4 Constructions of Point Sets and Lower Bound

In this section, we propose constructions of point sets that satisfy Condition (3.1)

and provide varying tradeoffs between communication and variance of the quantization

scheme. But first, we start with a lower bound that shows that one must communicate

Ω( d
R2 ) bits to achieve an error of O(R2) in the estimate of the gradient as per

Condition (3.1).

Theorem 3.5. Let C ⊆ Rd be a discrete set of points that satisfy Condition (3.1).

Then

|C| ≥ exp(αd/R2)

for some absolute constant α > 0.

Proof of Theorem 3.5. We use a packing argument for Sd−1. Let c ∈ C. We will

estimate the cardinality of the set P (c) := {x ∈ Sd−1 : 〈x, c〉 ≥ 1} under the uniform

measure over Sd−1. Using Theorem 3.6, size of C must be at least

area(Sd−1)

maxc∈C area(P (c))

for it to satisfy Condition (3.1).

Note that, P (c) is a hyper-spherical cap with angle φ such that cosφ ≥ 1
‖c‖ ≥

1
R
,

since C satisfy Condition (3.1). The area of a cap can be computed using the
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incomplete beta functions, however a probabilistic argument below will serve to lower

bound this.

If we uniformly at random choose a vector z from Sd−1, then the probability p

that it is within an angular distance φ of a fixed unit vector, u, will exactly be the the

ratio of the areas of the hyper-spherical cap and the sphere. Again this probability is

known to follow a shifted Beta distribution, but we can estimate it from above using

concentration bounds.

Since the area of the hyper-spherical cap is invariant to its center, we can take u

to be the first standard basis vector. It is known that if g = (g1, g2, . . . , gd) ∈ Rd is a

random vector with i.i.d. Gaussian N (0, 1) entries, then z := g/‖g‖ is uniform over

Sd−1. Therefore,

Pr(〈z,u〉 ≥ 1/R) = Pr(g1/‖g‖ ≥ 1/R)

≤ Pr(g1 ≥ ‖g‖/R | ‖g‖ ≥
√
d/4) + Pr(‖g‖ <

√
d/4)

≤ Pr(g1 ≥
√
d/4R) + Pr(‖g‖ <

√
d/4).

Now since g1 is N (0, 1), Pr(g1 ≥
√
d

4R
) ≤ exp(− d

32R2 ), from Chernoff bound. On

the other hand ‖g‖2 is a χ2 distribution of d degrees of freedom. Since that is

sub-exponential, we have Pr(‖g‖ <
√
d/4) ≤ Pr(‖g‖2 < d/16) ≤ exp(−225d

2048
) ≤

exp(− d
32R2 ) for any R ≥ 1.

This implies, |C| ≥ (2 exp(−d/(32R2)))−1.

We also show a strong characterization of the point sets that satisfy Condition (3.1),

and later use this characterization to construct point sets with optimal trade-offs.

Theorem 3.6. Let C = {c1, . . . , cm} ⊆ Rd be a discrete set of points. The unit ball

Bd(0d, 1) ⊆ conv(C) if and only if for all points x ∈ Sd−1, there exists a point c ∈ C

such that 〈x, c〉 ≥ 1.
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Proof of Theorem 3.6. Assume that for some x ∈ Sd−1, 〈x, c〉 < 1 for all c ∈ C.

Which implies that all points of C, and therefore the conv(C), are separated from x

by the hyper-plane Hw := {w ∈ Rd|〈x,w〉 = 1}. Therefore x /∈ conv(C).

To prove the other side, assume Bd(0d, 1) 6⊂ conv(C). LetHw := {z ∈ Rd|〈w, z〉 =

1} be the separating hyper-plane that partitions Bd(0d, 1) such that conv(C) lies on

one side of the hyper-plane. Without loss of generality, we assume conv(C) ⊂ H−w :=

{z ∈ Rd|〈w, z〉 < 1}. Since Hw partitions the unit ball, the distance of Hw from the

origin is 1/‖w‖ ≤ 1.

Now consider the point x := w/‖w‖ ∈ Sd−1. For this point, 〈x, c〉 = 1
‖w‖〈w, c〉 < 1

for all c ∈ C.

3.4.1 Gaussian Point Set

We provide a randomized construction of point set using the characterization

defined above, that is optimal in terms of communication.

Theorem 3.7. Let R ∈ [5, 6
√
d]. There exists a set C of exp(O(d/R2 + log d)) points

of `2 norm at most R each, that satisfy Condition (3.1).

This theorem is one of our main results and is proved by choosing exp(O(d/R2))

i.i.d. zero-mean spherical Gaussian vectors with variance σ2 := R2/9d for each

coordinate, and then using them as a covering for an ε-net of the unit sphere with

properly chosen ε.

To prove Theorem 3.7, we first show the following lemma that allows us to union

bound over the discrete set of points in an ε-net of a unit sphere. Consider an ε-net

for the unit sphere N(ε) for any ε ≤ 1/R. We know that such a set exists with

|N(ε)| ≤
(
1 + 2

ε

)d ≤ (3
ε

)d [30].

Lemma 3.8. Let C be a set of points in Rd such that ‖c‖2 ≤ R2 for all c ∈ C. If for

each y ∈ N(ε), yTc ≥ 2 for some c ∈ C, then it holds that for each x ∈ Sd−1, there is

a c′ ∈ C such that xTc′ ≥ 1.
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Proof. Let y ∈ N(ε) be a net-point, and c ∈ C be such that yT c ≥ 2. Note that

all points x ∈ Sd−1 in the ε-neighborhood of y can be written as x = y + ỹ, where

ỹ ∈ Rd has norm at most ε. Therefore, xTc = yTc + ỹTc ≥ 2− ‖ỹ‖‖c‖ ≥ 1. Since

N(ε) covers the entire unit sphere, it follows that for all points x on the unit sphere,

there will be a c ∈ C such that xTc ≥ 1.

Proof of Theorem 3.7. Let us choose the random set C of t := e
20d
R2 +2 log d points in Rd

in the following way: Each coordinate of any c ∈ C is chosen independently from a

zero-mean Gaussian distribution with variance σ2 := R2

9d
.

We say that a vector x ∈ Sd−1 is a witness for C if xTc < 1 for all c ∈ C. We now

show that with high probability, there is no witness for C in Sd−1. Using Lemma 3.8,

it is sufficient to show that for any x ∈ N(ε), xTc ≥ 2 for some c ∈ C, ε ≤ 1/R.

Let us define E1 to be the event that ‖c‖2 ≤ R2 for all c ∈ C. Since every

entry of c is chosen from i.i.d. Gaussian, the norm ‖c‖2 is distributed according to

χ2-distribution with variance 2dσ4. Since χ2-distribution is sub-exponential [123][

Eq. 2.18], for any c ∈ C, we have, for any l ≥ 1, Pr(‖c‖2 > dσ2(l + 1)) ≤ e−dl/8. This

implies,

Pr(‖c‖2 > R2) ≤ e−
1
8

(R2/σ2−d) ≤ e−d,

substituting the value of σ2.

Then by union bound over all c ∈ C.

Pr[Ē1] ≤ te−d = e−d+20d/R2+2 log d ≤ e−Ω(d), (3.2)

for R ≥ 5.

Let E2 denote the event that for each y ∈ N(ε), there exists c ∈ C such that

yTc ≥ 2. For any fixed y ∈ N(ε), and c ∈ C, define py,c to be the probability that

yTc ≥ 2. Note that since c has i.i.d. Gaussian entries, then for any fixed y ∈ N(ε),
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the inner product yTc is distributed according to N (0, σ2). Using standard bounds

for Gaussian distributions [16],

py,c := Pr[yTc ≥ 2] ≥ 2σ

(σ2 + 4)
√

2π
e−

2
σ2

≥ 1√
2π

min(σ−1, σ/4)e−
2
σ2 ≥ R

12
√

2πd
e−

2
σ2 ,

for any R ≤ 6
√
d.

Since each c is chosen independently, the probability that yTc < 2 for all c ∈ C is

(1− py,c)t ≤ e−t·py,c . Now for ε = 1/R, by union bound, since |N(ε)| ≤
(

3
ε

)d,
Pr[Ē2] = Pr[∃ y ∈ N(ε) s.t. yTc < 2 ∀ c ∈ C]

≤ e−t·py,c+d log 3R

= e−t·e
− 18d
R2 −log( 12

√
2πd
R

)
+d log 3R

= e−e
2d
R2 +2 log d−log( 12

√
2πd
R

)
+d log 3R

= e−d
2e

2d
R2−log( 12

√
2πd
R

)
+d log 3R

≤ e−Ω(d).

Therefore, Pr[Ē1 ∪ Ē2] ≤ e−Ω(d). Then using Lemma 3.8 and Theorem 3.6, we obtain

the statement of the theorem.

The above stated theorem provides a randomized algorithm to generate a point

set of size exp(Θ(d/R2)) such that the quantization scheme defined in Section 3.3

instantiated with this point set achieves a variance of O(R2) while communicating

O(d/R2) bits, hence meeting the lower bound of Theorem 3.5. In particular, there exists

a quantization scheme that achieves O(1) variance with O(d) bits of communication.

Also, at the cost of communicating only O(log d) bits, our quantization scheme can
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achieve a variance of O(d/ log d). The deterministic constructions we provide , meet

this bound up to a factor of log d.

3.4.2 Derandomizing with Reed Muller Codes

In this section, we propose a deterministic construction of point set based on first

order Reed-Muller codes that satisfy Condition 3.1. We assume d to be a power of 2,

i.e., d = 2p for some p ≥ 1.

Our quantization scheme is based on the first order Reed-Muller codes, RM(1, p) [87].

Each codeword of RM(1, p) is given as the evaluation of a degree 1, p-variate polyno-

mial over all points in Fp2. Mapping these codewords to reals using the coordinate-wise

map φ : F2 → R defined as φ(b) = (−1)b will give us a set of 2d points in {±1}d. Let

RM denote this set of mapped codewords.

We show that the set of points in RM satisfy the characterization of Theorem 3.6,

and therefore will give us a quantization scheme with log 2d communication and the

following guarantees:

Proposition 3.9. For any v ∈ Bd(0d, 1), let v̂ := QCRM (v). Then, Ev̂] = v and

E [‖v − v̂‖2
2] = O(d).

Proof of Proposition 3.9. We prove this theorem by showing that the point set CRM

satisfies the characterization of Theorem 3.6. Since all points in CRM have squared

norm exactly d, from Lemma 3.1 and Lemma 3.2, the proof follows.

First note that the matrix with the points in CRM as its rows, has the following

structure:

H :=

 Hp

−Hp


where, Hp is the 2p × 2p Hadamard matrix.
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For any fixed x ∈ Sd−1, consider the sum S(x) :=
∑

c∈CRM (xTc)2. We first show

that S(x) ≥ 2(d+ 1).

S(x) =
∑

c∈CRM

(xTc)2 = 2
∑

hi∈Hp

(xThi)
2

= 2‖Hpx‖2 = 2(xTHT
p )(Hpx)

(i)
= 2d · ‖x‖2 = 2d.

(i) follows from the fact that the columns of the Hadamard matrix are mutually

orthogonal and therefore, HT
p Hp = d · Id, where, Id denotes the d× d identity matrix.

By an averaging argument, it then follows that there exists at least one c ∈ CRM

such that |xTc| ≥ 1. Since for every c ∈ CRM , there exists −c ∈ CRM , we get that

xTc ≥ 1 for some c ∈ CRM .

Remark 3.4. Instead of first order Reed-Muller codes, we can use any binary

linear code C ⊆ Fd2 to construct the point set as follows. Map all the codewords from

Fd2 to Rd using φ described above. The point set containing all such mapped codewords,

and their complements will give a quantization scheme with variance O(d). The

communication will however be log(2|C|), where |C| denotes the number of codewords

in C. In this regard, the first order Reed-Muller codes described above provide the best

communication guarantees and is also efficiently computable.

3.4.3 Other Deterministic Constructions

We now present several explicit constructions of point sets that give quantization

schemes with varying tradeoffs. On one end of the spectrum, the cross-polytope

scheme requires only O(log d) bits to communicate an unbiased estimate of a vector

in Rd with variance O(d). While on the other end, the ε-net based scheme achieves a

constant variance at the cost of O(d) bits of communication.

54



3.4.3.1 Cross Polytope Scheme

Consider the following point set of 2d points in Rd:

Ccp := {±
√
d ei | i ∈ [d]},

The convex hull conv(Ccp) is a scaled cross polytope that satisfies Condition (3.1)

with R =
√
d . Let QCcp be the instantiation of the quantization scheme described in

Section 3.3 with the point set Ccp.

To compute the convex combination of any point v ∈ conv(Ccp), we need a

non-negative solution to the following system of equations

[
√
dId −

√
dId

]
a1

...

a2d

 =


v1

...

vd

 s.t.
2d∑
i=1

ai = 1, (3.3)

where, Id is the d× d identity matrix. Equation 3.3 leads to the following closed form

solution that can be computed in O(d) time:

ai =



vi√
d

+ γ
2d

if vi > 0 and i ≤ d

− vi√
d

+ γ
2d

if vi ≤ 0 and i > d

γ
2d

otherwise

(3.4)

where, γ := 1− ‖v‖1√
d
, is a non-negative quantity for every v ∈ Bd(0d, 1).

The bound on the variance of the quantizer follows directly from Lemma 3.2.

Proposition 3.10. For any v ∈ Bd(0d, 1), let v̂ := QCcp(v). Then, E[v̂] = v and

E [‖v − v̂‖2
2] = O(d).

Proof of Proposition 3.10. The proof of Proposition 3.10 follows directly from Lemma 3.2

provided the point set Ccp satisfies Condition (3.1) with R =
√
d. We will now prove

this fact.

55



Since each vertex is of the form ±
√
dei, it follows that all the vertices of conv(Ccp),

and hence the entire convex hull lies inside a ball of radius
√
d, i.e., , conv(Ccp) ⊂

Bd(0d,
√
d).

To prove that the unit ball is contained in the convex hull conv(Ccp), we pick any

arbitrary point v ∈ Bd(0d, 1) and show that it can written as a convex combination of

points in Ccp. The fact follows from the solution to the system of linear equations (3.3)

given in Equation (3.14). Note that the solution satisfies ai ≥ 0 and
∑

i ai = 1 for any

point v ∈ Bd(0, 1).

Moreover, using the variance reduction technique described in Section 3.3 with

s = O( d
log d

), the cross polytope based quantization QCcp achieves a variance of O(log d)

at the cost of communicating O(d) bits.

We note that the cross-polytope quantization scheme described above when used

along with the variance reduction technique (by repetition), is in essence similar to

Maurey sparsification ([3]).

3.4.3.2 Scaled ε-nets

On the other end of the spectrum, we now show the existence of points sets of

exponential size that are contained in a constant radius ball. This point set allows

us to obtain a gradient quantization scheme with O(d) communication and O(1)

variance. We show that an appropriate constant scaling of an ε-net points satisfies

Condition (3.1).

Lemma 3.11. For any 0 < ε < 1, let R = 1
1−ε . The point set Cnet := {R · u | u ∈

N(ε)} satisfies Condition (3.1).

Proof of Lemma 3.11. Let K := conv(N(ε)) be the convex hull of the ε-net points

of the unit sphere. Let Bd(0d, r) be the inscribed ball in K for some r < 1. We show

that r ≥ 1− ε.
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Consider the face of K that is tangent to Bd(0d, r) at point z. We will show that

‖z‖2 ≥ 1− ε. Extend the line joining (0d, z) to meet Sd−1 at point x. Since x ∈ Sd−1,

we know that there exists a net point u at a distance of at most ε from it. Therefore, the

distance of x from K is upper bounded by ε, i.e., dist(x, K) = ‖x−z‖ ≤ ‖x−u‖ ≤ ε.

Therefore ‖z‖ = 1− ‖x− z‖ ≥ 1− ε.

Therefore scaling all the points of N(ε) by any R ≥ 1
1−ε we see that Bd(0d, 1) ⊆

conv(C).

Let Qnet be the instantiation of vqSGD with point set Cnet. From Lemma 3.2, we

then get the following guarantees for the quantization scheme obtained from scaled

ε-nets, Cnet for some constant ε < 1.

Proposition 3.12. For any v ∈ Bd(0d, 1), let v̂ := QCnet(v). Then, E[v̂] = v and

E [‖v − v̂‖2
2] = 1

(1−ε) .

Moreover, Qnet requires O(d log 1
ε
) bits to represent the unbiased gradient estimate.

3.5 Private Quantization

In this section we show that under certain conditions the quantization scheme

QC(.) obtained from the point set C is also ε-differentially private. First, we see why

the quantization scheme described in Section 3.3 is not privacy preserving in general.

Let C be any point set with |C| > d+ 1. For any point x =
∑|C|

i=1 aici ∈ conv(C),

let supp(x)C = {ci ∈ C | ai 6= 0} denote the points in C that are in the range of

QC(x).

In order for QC to be ε-DP for any ε > ε0, we have to show for gradients x,y ∈ Rd

of any two neighboring datasets and for any z ∈ supp(x)C ∪ supp(y)C,

Pr[QC(x) = z] ≤ eε0 · Pr[QC(y) = z]. (3.5)
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If |C| > d+ 1, there may exist two gradients x,y ∈ conv(C) such that supp(x)C 6=

supp(y)C. Therefore, for z ∈ supp(x)C \ supp(y)C, Eq. (3.5) will not hold for any

finite ε0.

The discussion above establishes a sufficient condition for the quantization scheme

QC to be differentially private. Essentially, we want all points in Bd(0d, 1) to have full

support on all the points in C. This is definitely possible when |C| = d+ 1. Therefore

if the point set satisfying Condition (3.1) has size |C| = d+ 1, then the quantization

scheme QC is ε-differentially private, for some ε > ε(C).

We now present two constructions of point sets C of size exactly d+ 1 satisfying

Condition (3.1) that give an ε-differentially private quantization scheme. Both the

schemes achieve a communication cost of log(d + 1), but the variance is a factor d

larger than the non-private scheme, QCcp .

(1) Simplex Scheme: Consider the following set of d+ 1 points

CS = {2d ei | i ∈ [d]} ∪ {−41d}.

The convex hull of CS satisfies Condition (3.1) with R = O(d). Since the size of

the set is exactly d+ 1, every point in the unit ball can be represented as a convex

combination of all the points in CS (i.e., all coefficients of the convex combination are

non zero). This fact will be used crucially to show that this scheme is also differentially

private.

The coefficients of the convex combination of any point v ∈ conv(CS) can be

computed from the following system of linear equations:

[
−41Td 2

√
dId

] [
a0 . . . ad

]T
=

[
v1 . . . vd

]T
such that

d∑
i=0

ai = 1. (3.6)

Equation 3.6 leads to the following closed form solution that can be computed in

linear-time:

58



a0 = 1/3− (
d∑
i=1

vi)/(6d) ai = vi/(2d) + 2a0/d ∀i ≥ 1. (3.7)

Proposition 3.13. For any v ∈ Bd(0d, 1), let v̂ := QCS(v). Then, E[v̂] = v and

E [‖v − v̂‖2
2] = O(d2). Moreover, QCS is ε-DP for any ε > log 7.

Proof of Proposition 3.13. First we show that the point set CS satisfies Condition (3.1)

with R = 2d. The fact that conv(CS) ⊂ Bd(0d, 2d) follows trivially from the

observation that each point in CS ∈ Bd(0d, 2d).

To show that Bd(0d, 1) ⊂ conv(CS), consider any face of the convex hull, Fc :=

conv(CS \ {c}), for some c ∈ CS. We show that Fc is at an `2 distance of at least 1

from 0d. This in turn shows that any point outside the convex hull must be outside

the unit ball as well.

First consider the case when c = −41d. We observe that the face Fc is contained

in the hyper-plane Hc := {x ∈ Rd | 1√
d
1Td x = 2

√
d}, and therefore is at a distance of

O
(√

d
)
from the origin.

Now consider the case when c = 2d e1. Let w = 1√
9
16
− 1

2d

(−3
4
+ 1

2d
, 1

2d
, . . . , 1

2d
)T ∈ Rd

be a unit vector. We note that Fc ⊂ Hc, where Hc := {x ∈ Rd | wTx = 1√
9
16
− 1

2d

} is

the hyper-plane defined by the unit normal vector w that is at a distance of at least 1

from 0d.

Since all other faces are symmetric, the proof for the case c = 2dei, i ∈ [d] follows

similarly.

Privacy: We now show that the quantization scheme is ε-differentially private for

any ε > log 7. From the definition of ε-DP, it is sufficient to show that for any

x,y ∈ Bd(0d, 1) , and every c ∈ CS,

Pr[QCS(x) = c]

Pr[QCS(y) = c]
≤ 7.
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Since x,y ∈ conv(CS), we can express them as the convex combination of points in

CS. Let x =
∑

c∈CS a
(x)
c c. Similarly, let y =

∑
c∈CS a

(y)
c c. Then, from the construction

of the quantization function QCS , we know that

Pr[QCS(x) = c]

Pr[QCS(y) = c]
=
a

(x)
c

a
(y)
c

.

We now show that the ratio a
(x)
c

a
(y)
c

is at most 7 for any pair x,y ∈ Bd(0d, 1) and any

c ∈ CS. The privacy bound follows from this observation.

First, consider the case c = −41d. From the closed form solution for any

x ∈ conv(CS) described in Equation (3.7), we know that a(x)
c = 1

3
−

∑d
i=1 xi
6d

.

For any x ∈ Bd(0d, 1),
∑d

i=1 xi ∈ [−‖x‖1, ‖x‖1] ⊆
[
−
√
d,
√
d
]
. Therefore, a(x)

c ∈[
1
3
− 1

6
√
d
, 1

3
+ 1

6
√
d

]
. It then follows that for any x,y ∈ Bd(0d, 1) and c = −41d,

a
(x)
c

a
(y)
c

≤
1
3

+ 1
6
√
d

1
3
− 1

6
√
d

= 1 +
2

2
√
d− 1

≤ 3

Now we consider the case when c = 2d e1. Then from the closed from solution in

Equation (3.7), we get that for any x ∈ conv(CS) the coefficient a(x)
c = x1

2d

(
1− 2

3d

)
−∑d

i=2 xi
3d2 + 2

3d
. Note that this quantity is maximized for x = e1 and minimized for

x = −e1. Therefore the ratio for any x,y ∈ Bd(0d, 1) and c = 2d e1 is at most

a
(x)
c

a
(y)
c

≤ 7d− 2

d+ 2
≤ 7

The ratio for all other vertices can be computed in a similar fashion and is bounded

by the same quantity.

(2) Hadamard Scheme: We now propose another quantization scheme with same

communication cost, but provides better privacy guarantees. This quantization

60



scheme is similar to the one presented in Section 3.4.2 and is based on the columns of

a Hadamard matrix.

Let us assume that d + 1 is a power of 2, i.e., d + 1 = 2p for some p ≥ 1. For

any i ∈ [d + 1], let hi ∈ Rd denote the i-th column of Hp with the first coordinate

punctured. Consider the following set of d+ 1 points obtained from the punctured

columns of Hp:

CH = {2
√
d hi | i ∈ [d+ 1]}

The quantization scheme QCH can be implemented in linear time since computing the

probabilities requires computing a matrix vector product,

(d+ 1) ·
[
a1 · · · ad+1

]T
= HT

p

[
1 vT/(2

√
d)

]T

that has closed form solution for each ai as:

ai = (1 + (hTi v)/(2
√
d))/(d+ 1) (3.8)

Proposition 3.14. For any v ∈ Bd(0d, 1), let v̂ := QCH (v). Then, E[v̂] = v and E [‖v − v̂‖2
2] =

O(d2). Moreover, QCH is ε-DP for any ε > log(1 +
√

2).

Proof of Proposition 3.14. First, we show that CH satisfies Condition (3.1) with R =

2d. The fact that conv(CH) ⊂ Bd(0d, 2d) is trivial and follows since every point in

CH is contained in Bd(0d, 2d).

To show that Bd(0d, 1) ⊂ CH , consider any x ∈ Bd(0d, 1), and the closed form

solution for the coefficients ai given by Equation (3.8). We now show that these

coefficients indeed give a convex combination. Note that ai := 1
d+1

(
1 + cTx

4d

)
≥ 0.
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This holds since cTx ≥ ‖c‖‖x‖ ≥ −2d. Moreover, from the property of Hadamard

matrices,
d+1∑
i=1

ai =
1

d+ 1

[
1 . . . 1

]
HT
p

 1

x
2
√
d

 = 1.

The last equality follows from the following property of the Hadamard matrices that

can be proved using induction.

[
1 . . . 1

]
HT
p =

[
2p 0 . . . 0

]
.

Therefore, any x ∈ Bd(0d, 1) can be expressed as a convex combination of the points

in CH , i.e., , x =
∑d+1

i=1 aici, for ci ∈ CH .

Privacy: We now show that the quantization scheme is ε-differentially private

for any ε > 0.4. From the definition of ε-DP, it is sufficient to show that for any

x,y ∈ Bd(0d, 1), and any c ∈ CH ,

Pr[QCH (x) = c]

Pr[QCS(y) = c]
≤ 1 +

√
2

Since x,y ∈ conv(CS), we can express them as the convex combination of points in

CH . Let x =
∑

c∈CH a
(x)
c . Similarly, let y =

∑
c∈CH a

(y)
c . Then, from the construction

of the quantization function QCH , we know that

Pr[QCH (x) = c]

Pr[QCH (y) = c]
=
a

(x)
c

a
(y)
c

. (3.9)

From the closed form solution in Equation (3.8), we know that for any x ∈ conv(CH),

the coefficient of c in the convex combination of x is given by a(x)
c = 1

d+1

(
1 + cTx

4d

)
.

Plugging this in Equation (3.9), we get

Pr[QCH (x) = c]

Pr[QCH (y) = c]
=
a

(x)
c

a
(y)
c

=
1 + cTx

4d

1 + cTy
4d

= 1 +
cT (x−y)

4d

1 + cTy
4d

(3.10)
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≤ 1 +
‖c‖2‖x− y‖2

4d− ‖c‖2

for y = − c

‖c‖2

(3.11)

≤ 1 +
2
√

2d

4d− 2d
(3.12)

(since ‖x− y‖2 ≤
√

2 and ‖c‖2 = 2d.)

= 1 +
√

2 (3.13)

This concludes the proof of Proposition 3.14.

Finally, we remark that even though the point set Ccp in the cross-polytope scheme

has more than d+ 1 points, it still gives us ε-DP - although with slightly worse privacy

guarantee.

Proposition 3.15. QCcp is ε-DP for any ε > log d.

Proof of Proposition 3.15. The fact that QC̃cp
satisfies Condition (3.1) with R = 2

√
d

follows from the proof of Proposition 3.10. For any v ∈ Rd, we can compute the

convex combinations as

ai =



vi
2
√
d

+ γ
2d

if vi > 0 and i ≤ d

− vi
2
√
d

+ γ
2d

if vi ≤ 0 and i > d

γ
2d

otherwise

(3.14)

where, γ := 1− ‖v‖1
2
√
d
, is a non-negative quantity for every v ∈ Bd(0d, 1).

To prove the privacy guarantees of this scheme, we first state a few observations:

• Since ‖v‖1 ∈ [−
√
d,
√
d], the quantity γ ∈ [1/2, 3/2].

• For any coordinate i ∈ [d], if xi > 0, then the coefficients ai = |xi|
2
√
d

+ γ
2d
, and

ad+i = γ
2d
.
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• Similarly, if xi ≤ 0, then the coefficients ai = γ
2d
, and ad+i = |xi|

2
√
d

+ γ
2d
.

• For any x ∈ Bd(0d, 1), xi ∈ [−1, 1]

Let x,y ∈ Bd(0d, 1) and for any c ∈ C̃cp, we need to upper bound the following

quantity to prove the privacy guarantees of the scheme:

pc :=
Pr[QC̃cp

(x) = c]

Pr[QC̃cp
(y) = c]

Note that it is sufficient to consider only one of the points c = 2
√
dej in the

following four scenarios:

1. xi > 0, yi > 0, then pc =
|xi|
2
√
d

+ γx
2d

|yi|
2
√
d

+
γy
2d

≤
1

2
√
d

+ 3
4d

1
4d

≤ O(
√
d).

2. xi > 0, yi ≤ 0, then pc =
|xi|
2
√
d

+ γx
2d

γy
2d

≤
1

2
√
d

+ 3
4d

1
4d

≤ O(
√
d).

3. xi ≤ 0, yi > 0, then pc =
γx
2d

|yi|
2
√
d

+
γy
2d

=
3
4d
1
4d

≤ 3

4. xi ≤ 0, yi ≤ 0, then pc =
γx
2d
γy
2d

=
3
4d
1
4d

≤ 3.

Therefore, the privacy guarantees hold for any ε > O(log d).

We now show a Randomized Response (RR) scheme that can be used on top of

any of our quantization schemes to achieve privacy. This scheme incurs the same

communication as the original quantizer, however, the price of privacy is paid by

factor of d increase in the variance. We also propose a weaker version using Rappor ,

that incurs a higher communication cost depending on the point set of choice.

3.5.1 Randomized Response

We present a Randomized Response (RR) [130] mechanism that can be used over

the output of QC to make it ε-DP (for any ε > 0). This modified scheme retains the

original communication cost of QC , but the cost for privacy is paid by a factor of O(d)

in the variance term.
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Recall that the quantization scheme described in Section 3.3, QC(v), takes a vector

v ∈ Bd(0d, 1) and returns a point ci ∈ C. The RR scheme takes the output of QC(v)

and returns a another random vector from C.

For any ε > 0, define p := p(ε) = eε

eε+|C|−1
and q := 1−p

|C|−1
= 1

eε+|C|−1
. We define the

private quantization of a vector v ∈ Bd(0d, 1) as

v̂ = PQC,ε(v) =
1

p− q

|C|∑
i=1

(1{y=ci} − q)ci,

where, 1{y=ci} is an indicator of the event y = ci and y := RR p(QC(v), C) is defined

as

RR p(QC(v), C) =

 QC(v) w.p. p

z ∈ C \ {QC(v)} w.p. q

We claim that the quantization scheme PQC,ε is ε-differentially private.

Theorem 3.16. Let C ⊂ Rd be any point set satisfying Condition (3.1). For

any ε > 0, let p = eε

eε+|C|−1
and q = 1

eε+|C|−1
. For any v ∈ Bd(0d, 1), let v̂ =

PQC,ε(v) = 1
p−q
∑|C|

i=1(1{y=ci} − q)ci, where, y := RR p(QC(v), C). Then, E[v̂] = v

and E [‖v − v̂‖2
2] = O(|C|R2), where the expectation is taken over the randomness in

both QC and RR p. Moreover, the scheme is ε-differentially private.

Proof of Theorem 3.16. First we show that v̂ = PQC,ε(v) = 1
p−q
∑|C|

i=1(1{y=ci} − q)ci

is an unbiased estimator of v. From linearity of expectations, we have

E[v̂] =
1

p− q

|C|∑
i=1

(Pr[y = ci]− q)ci, (3.15)

where, the expectation is taken over the randomness of both the quantization and RR

scheme. Recall that

y := RR p(QC(v), C) ∈ C,
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where p = eε

eε+|C|−1
. Therefore,

Pr(y = ci) =

|C|∑
j=1

Pr[y = ci|QC(v) = cj] · Pr[QC(v) = cj]

= (p− q)ai + q.

Therefore E[v̂] = 1
p−q
∑|C|

i=1 aici = v.

Now we bound the variance of the estimator

E[‖v − v̂‖2] = E[‖
|C|∑
i=1

(
1

p− q
(1{y=ci} − q)− ai)ci‖2]

≤
|C|∑
i=1

E[‖( 1

p− q
(1{y=ci} − q)− ai)2‖ci‖2]

=

|C|∑
i=1

V ar[‖( 1

p− q
(1{y=ci} − q))‖ci‖2]

=
( 1

p− q
)2
|C|∑
i=1

V ar(1{y=ci})‖ci‖2

= O(|C|R2)

As ‖ci‖2 ≤ R2 and V ar(1{y=ci}) ≤ 1/4 .

Privacy Now we show that our scheme is ε differentially private where ε is the input

parameter to the RR algorithm. For any two points v,w ∈ Bd(0d, 1),

PQC,ε(v) = y

PQC,ε(w) = y
=

∑|C|
i=1 Pr(y|QC(v) = ci) Pr(QC(v) = ci)∑|C|
j=1 Pr(y|QC(w) = cj) Pr(QC(w) = cj)

(3.16)

≤ maxi Pr(y|QC(v) = ci)
∑|C|

i=1 Pr(QC(v) = ci)

minj Pr(y|QC(w) = cj)
∑|C|

i=1 Pr(QC(w) = cj)
(3.17)

=
maxi Pr(y|QC(v) = ci)

minj Pr(y|QC(w) = cj)
≤ eε (3.18)
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we are using the following privacy property of Randomized Rounding [130] mechanism

in Equation (3.18)

sup
i,j

Pr(y|QC(v) = ci)

Pr(y|QC(w) = cj)
≤ eε ∀v,w

3.5.2 Privacy Using Rappor

In this section, we present an alternate mechanism to make the quantization scheme

ε-DP (for any ε > 0). The main idea is to use the Rappor [45] mechanism over a

1-hot encoding of the indices of vertices in C. Though in doing so, we have to tradeoff

on the communication a bit. Instead of sending log |C| bits, this scheme now requires

one to send O(|C|) bits to achieve privacy.

Recall that the quantization scheme described in Section 3.3, QC(v), takes a vector

v ∈ Bd(0d, 1) and returns a point ci in C. We can interpret the output as the bit

string b ∈ {0, 1}|C| which is the indicator of the point ci in C (according to some

fixed arbitrary ordering of C). Note that this is essentially the 1-hot encoding of ci.

In the RAPPOR scheme each bit of the 1-hot bit string b is flipped independently

with probability p := p(ε) = 1
(eε/2+1)

.

For any ε > 0, let p = 1
(eε/2+1)

. Define, the private quantization of a vector

v ∈ Bd(0d, 1) as

v̂ := PQC,ε(v) =
1

(1− 2p)

|C|∑
j=1

(yj − p) cj

where, y := Rappor p(1-hot (QC(v), C)) ∈ {0, 1}|C|.

We claim that the quantization scheme PQC,ε is ε-differentially private. Moreover,

adding the noise over the 1-hot encoding maintains the unbiasedness of the gradient

estimate but incurs a factor of |C| in variance term while the communication cost is

O(|C|).
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Theorem 3.17. Let C ⊂ Rd be any point set satisfying Condition (3.1). For any

ε > 0, let p = 1
(eε/2+1)

. For any v ∈ Bd(0d, 1), let v̂ := 1
1−2p

∑|C|
j=1 (yj − p) cj, where,

y := Rappor p(1-hot (QC(v), C)). Then, E[v̂] = v and E [‖v − v̂‖2
2] = O(|C|R2).

Moreover, the scheme is ε-differentially private.

Proof of Theorem 3.17. First we show that v̂ = 1
(1−2p)

∑|C|
j=1 (yj − p) cj is an unbiased

estimator of v. From linearity of expectations, we have

E[v̂] =
1

(1− 2p)

|C|∑
j=1

(E[yj]− p) cj, (3.19)

where, the expectation is taken over the randomness of both the quantization and

RAPPOR scheme.

Recall that

y := Rappor p(1-hot (QC(v), C)) ∈ {0, 1}|C|.

Each entry of the vector y is an independent binary random variable and

E[yj] = Pr(yj = 1) =

|C|∑
i=1

Pr(yj, QC(v) = ci)

=

|C|∑
i=1

Pr(yj|QC(v) = ci)Pr(QC(v) = ci)

= Pr(yj|QC(v) = cj)Pr(QC(v) = cj)

+

|C|∑
i 6=j

Pr(yj|QC(v) = ci)Pr(QC(v) = ci)

= (1− p)aj + p(1− aj) = p+ (1− 2p)aj. (3.20)

Plugging Equation (3.20) in Equation (3.19) , we get

E(v̂) =
1

(1− 2p)

|C|∑
j=1

(p+ (1− 2p)aj − p) cj =

|C|∑
j=1

ajcj = v (3.21)
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Now we show a bound on the variance of the estimate

E
[
‖v − v̂‖2

2

]
= E

‖ |C|∑
j=1

ajcj −
1

(1− 2p)

|C|∑
j=1

(yj − p) cj‖2
2

 (3.22)

=

|C|∑
j=1

E
(
aj −

(yj − p)
(1− 2p)

)2

|cj|2 (3.23)

( all the cross terms are 0 as they are mutually independent and E
(
aj − yj−p

1−2p

)
= 0)

=

|C|∑
j=1

var

(
yj − p
1− 2p

)
|cj|2 (3.24)

=

(
1

1− 2p

)2 |C|∑
j=1

var(yj) |cj|2 = O(|C|R2) (3.25)

Equation (3.25) comes form the fact that yj is a binary random variable and V ar(yj) =

Pr(yj)(1− Pr(yj)) ≤ 1
4
and |cj|2 ≤ R2.

Privacy Now we show that our scheme is ε differentially private where ε is the input

parameter to the RAPPOR algorithm. For any two points v,w ∈ Bd(0d, 1),

PQC,ε(v) = y

PQC,ε(w) = y
=

∑|C|
i=1 Pr(y|QC(v) = ci) Pr(QC(v) = ci)∑|C|
j=1 Pr(y|QC(w) = cj) Pr(QC(w) = cj)

(3.26)

≤ maxi Pr(y|QC(v) = ci)
∑|C|

i=1 Pr(QC(v) = ci)

minj Pr(y|QC(w) = cj)
∑|C|

i=1 Pr(QC(w) = cj)
(3.27)

=
maxi Pr(y|QC(v) = ci)

minj Pr(y|QC(w) = cj)
≤ eε (3.28)

By the privacy property of RAPPOR [45] mechanism , we are using the following fact

in equation (3.28)

sup
i,j

Pr(y|QC(v) = ci)

Pr(y|QC(w) = cj)
≤ eε ∀v,w
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Communication : Now we show that for the RAPPOR based scheme the expected

communication is linear in |C|. Say y is the output when RAPPOR is applied to one

hot encoded binary string. Without loss of generality say the the bit string is ei. The

output y is generated as follows

Pr(yj = 1) =


p if j 6= i

(1− p) if j = i

So the expected sparsity (l0 norm) of the output is

E[‖y‖0] =

|C|∑
i

yi = (|C| − 1)p+ (1− p)

= |C|p+ (1− 2p) = O(|C|)

3.6 Experiments

We use our gradient quantization scheme to train a fully connected ReLU activated

network with 1000 hidden nodes using the MNIST [81] and the Fashion MNIST [?]

dataset (60000 data points with 10 classes for each). We use the cross-entropy loss

function for the training the neural network with a total of d = 795010 parameters.

The dataset is divided equally among 100 workers. Each worker computes the

local gradients and communicates the quantized gradient to the master which then

aggregates and send the updated parameters. We plot the error at each iteration

(Figure 3.1) and compare our results with QSGD quantization.

We use vqSGD with cross polytope scheme, QCcp , along with the variance reduction

technique with repetition parameter s = 100. Therefore, each local machine sends

about 2060 = 100 · log(2d) bits per iteration whereas, QSGD requires 3825.05 bits
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for MNIST and 2266.79 bits for Fashion MNIST, of communication per iteration

per machine (computed by averaging over the total bits of communication over 50

iterations) to communicate the quantized gradient. Our results indicate that vqSGD

converges at a similar rate to QSGD while communicating much lesser bits.

We also our vqSGD with the cross polytope scheme, QCcp , to train a ReLU network

with 4000 hidden nodes using the CIFAR 10 dataset [78]. This dataset also has 10

classes, every other set up is same except now we have d = 12332010 parameters.

The dataset is again equally divided among 100 users. Using vqSGD, each machine

send 2455 bits per iteration using the variance reduction scheme. On the other hand,

for QSGD, the number of bits per machine per iteration is 4096.9 (computed by

averaging over the total bits of communication over 50 iterations). As is evident from

the plot in Figure 3.1, vqSGD communicates lesser number of bits to achieve similar

performance.

(a) MNIST (b) Fashion MNIST (c) CIFAR10

Figure 3.1: Convergence for fully connected ReLU network compared to QSGD

Further we experimentally show the performance of vqSGD using the cross polytope

Qcp, to solve the least squares problem and logistic regression for binary classification.

Least Squares: In the least square problem, we solve for θ∗ = arg minθ ‖Aθ−b‖2
2,

where the matrix A ∈ Rn×d and θ∗ ∈ Rd are generated by sampling each entry from

N (0, 1) and we set b = Aθ∗.

In order to show the performance of vqSGD, we simulate the iterations of distributed

SGD with n = 10000 data samples distributed equally among N = 500 worker nodes.
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In every iteration of SGD, each worker node computes the local gradient on individual

data batch and communicates the quantized version of the local gradient to the

parameter server. The parameter server on receiving all the quantized gradients

averages them and broadcasts the updated model to all the workers. The convergence

of SGD is measured by the error term ‖θ∗−θt‖2, where θt is the computed parameter

at the end of t-th iteration of distributed SGD.

We compare the convergence of the least square problem for d = 100, 200, 500

against the state-of-the-art quantization schemes - DME [118] and QSGD [6]. The

results are presented in Figure 3.2.

(a) d=100 (b) d=200 (c) d=500

Figure 3.2: Comparison of convergence for the least square problem with d =
100, 200, 500.

The results indicate that vqSGD achieves the same rate of convergence and accuracy

as DME and QSGD while communicating only log(2d) bits and one real (l2 norm of

the vector form each server), whereas, DME (one bit stochastic quantization) and

QSGD both require communication of about
√
d bits and one real.

For the same problem setup, we also show the improvement in the performance

of vqSGD using the repetition technique for variance reduction. Recall that using

repetition technique, each worker now sends s different indices instead of 1 which

increases the communication to s log(2d) bits and 1 real. In Figure 3.3 we plot

the convergence of the lease square problem with d = 200 with different values of

s = 1, 5, 10, 20. We see the evident improvement in the convergence of vqSGD using

this repetition scheme with increasing s.
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Figure 3.3: Convergence of θt for s = 1, 5, 10, 20. for least square problem

Binary Classification: We compared the performance of vqSGD against DME

and QSGD for the binary classification problem with logistic regression using various

datasets from the UCI repository [22]. The logistic regression objective is defined as

1

n

n∑
i=1

log(1 + exp(−biaTi θ) +
1

2n
‖θ‖2

2, (3.29)

where θ ∈ Rd is the parameter, ai ∈ Rd is the feature data and bi ∈ {−1,+1} is its

corresponding label.

We partition the data into 20 equal-sized batches, each assigned to a different

worker node. We calculate the classification error for different (test) datasets after

training the parameter in the distributed settings (same as described in least square

problem). Results of the experiments are presented in Table 3.3, where each entry is

averaged over 20 different runs.

Method DME QSGD vqSGD
a5a (d = 122) 0.238± 0.0003 0.238± 0.0002 0.2368± 0.0029
a9a (d = 123) 0.234± 0.0003 0.234± 0.00017 0.234± 0.0015
gisset-scale (d = 5000) 0.0947± 0.00384 0.10475± 0.006 0.1480± 0.0174
splice (d = 60) 0.467± 0.017 0.4505± 0.0352 0.16618± 0.0054

Table 3.3: Comparison in classification error (mean± standard deviation) for various
UCI datasets
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We note that for most datasets, with the exception of gisset-scale, vqSGD with

O(N log d) bits of communication per iteration performs equally well or sometimes

even better than QSGD and DME with O(Nd) bits of communication per iteration.

3.7 Conclusion and Future Direction

In this chapter, we propose a general framework of convex-hull based private quan-

tization schemes for distributed stochastic gradient descent that can be instantiated

with any point set satisfying certain properties. We also provide randomized and

deterministic point sets for the quantization and based on the point sets, we achieve

different communication, variance and privacy trade-off. With the Gaussian point

set, we theoretically establish the communication- variance trade-off and for practi-

cal purpose, the repetition scheme is suitable to tune the communication-variance

trade-off.

In the future, it would be interesting to consider communication, variance and

privacy together. It is to be noted that our cross-polytope scheme which is very

efficient and easy to implement, achieve O(log d) privacy due to the construction while

enjoying O(d) variance. But if we want to design quantization for any value of ε, in

this chapter we used randomized response on top of it. Due to this, the variance blows

up. It would be challenging to study whether there is a quantization scheme that can

achieve a certain level of privacy, with a communication budget and low variance. In

a recent work [25], the authors proposed a deterministic construction with Kashin

representation to answer this particular question. But a more general theoretical

study is warranted to understand the relationship between the iteration complexity of

optimization and communication cost under data privacy. Also, in this chapter we

considered pure differential privacy with δ = 0. It would be also be interesting to see

if a better (lower) value of ε can be attained by leveraging some δ > 0.
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CHAPTER 4

COMMUNICATION-EFFICIENT AND
BYZANTINE-ROBUST DISTRIBUTED LEARNING WITH

ERROR FEEDBACK

In this chapter, we develop a communication-efficient distributed statistical learning

algorithm that is provably robust against Byzantine workers. Specifically, we consider

the following setup. There are m worker machines, each storing n data points. The

data points are generated from some unknown distribution D. The objective is to

learn a parametric model that minimizes a population loss function F :W → R, where

F is defined as an expectation over D, and W ⊆ Rd denotes the parameter space.

We choose the loss function F to be non-convex. With the rapid rise of the neural

networks, the study of local minima in non-convex optimization framework has become

imperative [112, 51]. For gradient compression at workers, we consider the notion of

a δ-approximate compressor from [71] that encompasses sign-based compressors like

signSGD [13] and top-k sparsification [113]. We also assume that 0 ≤ α < 1/2 fraction

of the worker machines are Byzantine. We first consider a restricted (as described

next) adversarial model in Section 4.4, and in the subsequent section, we remove this

restriction by slightly changing the learning algorithm.

Our key idea is to use a simple threshold (on local gradient norms) based Byzantine

resilience scheme instead of robust aggregation methods such as coordinate wise median

or trimmed mean of [135]. We mention that similar ideas are used in gradient clipping,

where gradients with norm more than a threshold is truncated. This is used in

applications like training neural nets [97] to handle the issue of exploding gradients,

and in differentially private SGD [26], to limit the sensitivity of the gradients. Note
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that although gradient clipping and norm based thresholding have some similarities,

they are not identical. In gradient clipping, although we scale down (clip) the gradients,

we retain them. On the other hand, in norm based thresholding, we aim to identify the

Byzantine machines and remove them. Note that in our learning framework, we have α

fraction of Byzantine workers, and an estimate of α is known to the learning algorithm.

When α is very close to 0, our learning algorithm does not trim worker machines, and

the effect of all gradients are considered. If we employ gradient clipping in this regime,

depending on the threshold used in the clipping operation, some gradients may be

scaled back. As a result, the convergence rate will suffer. On the other hand, suppose

α is large. In this regime, our algorithm tend to identify and remove the influence of

the Byzantine workers, where gradient clipping would scale them down, but retain

term in the learning process. This could potentially slow down the learning as the

Byzantine machines may send any arbitrary updates, which are different for the actual

gradient norms and directions. Hence, in both the regimes, the knowledge of α helps

our algorithm to handle the Byzantine workers graciously compared to the gradient

clipping operation.

Our main result is to show that, for a wide range of compression factor δ, the

statistical error rate of our proposed threshold-based scheme is (order-wise) identical

to the case of no compression considered in [135]. In fact, our algorithm achieves order-

wise optimal error-rate in parameters (α, n,m). Furthermore, to alleviate convergence

issues associated with sign-based compressors, we employ the technique of error-

feedback from [71]. In this setup, the worker machines store the difference between the

actual and compressed gradient and add it back to the next step so that the correct

direction of the gradient is not forgotten. We show that using error feedback with our

threshold based Byzantine resilience scheme not only achieves better statistical error

rate but also improves the rate of convergence. We outline our specific contributions

in the following.
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Our Contributions: We propose a communication-efficient and robust dis-

tributed gradient descent (GD) algorithm. The algorithm takes as input the gradients

compressed using a δ-approximate compressor along with the norms1 (of either com-

pressed or uncompressed gradients), and performs a simple thresholding operation

based on gradient norms to discard β > α fraction of workers with the largest norm

values. We establish the statistical error rate of the algorithm for arbitrary smooth

population loss functions as a function of the number of worker machines m, the

number of data points on each machine n, dimension d, and the compression factor δ.

In particular, we show that our algorithm achieves the following statistical error rate

for the regime δ > 4β + 4α− 8α2 + 4α3:

Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
. (4.1)

We first note that when δ = 1 (uncompressed), the error rate is Õ(d2[α
2

n
+ 1

mn
]), which

matches [135]. Notice that we use a simple threshold (on local gradient norms) based

Byzantine resilience scheme in contrast with the coordinate wise median or trimmed

mean of [135]. We note that for a fixed d and the compression factor δ satisfying

δ ≥ 1− α2, the statistical error rate become Õ(α
2

n
+ 1

mn
), which is order-wise identical

to the case of no compression [135]. In other words, in this parameter regime, the

compression term does not contribute (order-wise) to the statistical error. Moreover,

it is shown in [135] that, for strongly-convex loss functions and a fixed d, no algorithm

can achieve an error lower than Ω̃(α
2

n
+ 1

mn
), implying that our algorithm is order-wise

optimal in terms of the statistical error rate in the parameters (α, n,m).

Furthermore, we strengthen our distributed learning algorithm by using error

feedback to correct the direction of the local gradient. We show (both theoretically

and via experiments) that using error-feedback with a δ-approximate compressor indeed

1We can handle any convex norm.
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speeds up the convergence rate and attains better (statistical) error rate. Under the

assumption that the gradient norm of the local loss function is upper-bounded by σ,

we obtain the following (statistical) error rate:

Õ
(
d2

[
α2

n
+

(1− δ)σ2

d2 δ
+

1

mn

])

provided a similar (δ, α) trade-off2. We note that in the no-compression setting (δ = 1),

we recover the Õ(α
2

n
+ 1

mn
) rate. In experiments (Section ??), we see that adding error

feedback indeed improves the performance of our algorithm.

We experimentally evaluate our algorithm for convex and non-convex losses. For

the convex case, we choose the linear regression problem, and for the non-convex case,

we train a ReLU activated feed-forward fully connected neural net. We compare our

algorithm with the non-Byzantine case and signSGD with majority vote, and observe

that our algorithm converges faster using the standard MNIST dataset.

A major technical challenge here is to handle compression and the Byzantine

behavior of the worker machines simultaneously. We build up on the techniques of

[135] to control the Byzantine machines. In particular, using certain distributional

assumption on the partial derivative of the loss function and exploiting uniform bounds

via careful covering arguments, we show that the local gradient on a non-Byzantine

worker machine is close to the gradient of the population loss function.

Organization: We describe the problem formulation in Section 4.1, and give

a brief overview of δ-compressors in Section 4.2. Then, we present our proposed

algorithm in Section 4.3. We analyze the algorithm, first, for a restricted (as described

next) adversarial model in Section 4.4, and in the subsequent section, remove this

restriction. In Section 4.4, we restrict our attention to an adversarial model in

2See Theorem 4.7 for details.
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which Byzantine workers can provide arbitrary values as an input to the compression

algorithm, but they correctly implement the same compression scheme as mandated.

In Section 4.5, we remove this restriction on the Byzantine machines. As a

consequence, we observe (in Theorem 4.6) that the modified algorithm works under a

stricter assumption, and performs slightly worse than the one in restricted adversary

setting. In Section 4.6, we strengthen our algorithm by including error-feedback

at worker machines, and provide statistical guarantees for non-convex smooth loss

functions. We show that error-feedback indeed improves the performance of our

optimization algorithm in the presence of arbitrary adversaries.

Related Work

Gradient Compression: The foundation of gradient quantization was laid in

[114, 103]. In the work of [6, 131, 125] each co-ordinate of the gradient vector is

represented with a small number of bits. Using this, an unbiased estimate of the

gradient is computed. In these works, the communication cost is Ω(
√
d) bits. In

[118], a quantization scheme was proposed for distributed mean estimation. The

tradeoff between communication and accuracy is studied in [139]. Variance reduction

in communication efficient stochastic distributed learning has been studied in [61].

Sparsification techniques are also used instead of quantization to reduce communication

cost. Gradient sparsification has beed studied in [113, 8, 62] with provable guarantees.

The main idea is to communicate top components of the d-dimensional local gradient

to get good estimate of the true global gradient.

Byzantine Robust Optimization: In the distributed learning context, a generic

framework of one shot median based robust learning has been proposed in [?]. In

[27] the issue of Byzantine failure is tackled by grouping the servers in batches and

computing the median of batched servers. Later in [135, 136], co-ordinate wise

median, trimmed mean and iterative filtering based algorithm have been proposed and
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optimal statistical error rate is obtained. Also, [92, 33] considers adversaries may steer

convergence to bad local minimizers. In this work, we do not assume such adversaries.

Gradient compression and Byzantine robust optimization have simultaneously been

addressed in a recent paper [13]. Here, the authors use signSGD as compressor and

majority voting as robust aggregator. As explained in [71], signSGD can run into

convergence issues. Also, [13] can handle a restricted class of adversaries that are

multiplicative (i.e., multiply each coordinate of gradient by arbitrary scalar) and blind

(i.e., determine how to corrupt the gradient before observing the true gradient). In

this paper, for compression, we use a generic δ approximate compressor. Also, we can

handle arbitrary Byzantine worker machines.

Very recently, [71] uses error-feedback to remove some of the issues of sign based

compression schemes. In this work, we extend the framework to a distributed setting

and prove theoretical guarantees in the presence of Byzantine worker machines.

Throughout the paper, we assume C,C1, C2, .., c, c1, .. as positive universal con-

stants, the value of which may differ from instance to instance.

4.1 Problem Formulation

In this section, we formally set up the problem. We consider a standard statistical

problem of risk minimization. In a distributed setting, suppose we have one central

and m worker nodes and the worker nodes communicate to the central node. Each

worker node contains n data points. We assume that the mn data points are sampled

independently from some unknown distribution D. Also, let f(w, z) be the non-

convex loss function of a parameter vector w ∈ W ⊆ Rd corresponding to data

point z, where W is the parameter space. Hence, the population loss function is

F (w) = Ez∼D[f(w, z)]. Our goal is to obtain the following:

w∗ = argminw∈WF (w),

80



where we assume W to be a convex and compact subset of Rd with diameter D. In

other words, we have ‖w1 − w2‖ ≤ D for all w1,w2 ∈ W. Each worker node is

associated with a local loss defined as Fi(w) = 1
n

∑n
j=1 f(w, zi,j), where zi,j denotes

the j-th data point in the i-th machine. This is precisely the empirical risk function

of the i-th worker node.

We assume a setup where worker i compresses the local gradient and sends to the

central machine. The central machine aggregates the compressed gradients, takes a

gradient step to update the model and broadcasts the updated model to be used in

the subsequent iteration. Furthermore, we assume that α fraction of the total workers

nodes are Byzantine, for some α < 1/2. Byzantine workers can send any arbitrary

values to the central machine. In addition, Byzantine workers may completely know

the learning algorithm and are allowed to collude with each other.

Next, we define a few (standard) quantities that will be required in our analysis.

Definition 4.1. (Sub-exponential random variable) A zero mean random variable Y

is called v-sub-exponential if E[eλY ] ≤ e
1
2
λ2v2, for all |λ| ≤ 1

v
.

Definition 4.2. (Smoothness) A function h(.) is LF -smooth if h(w) ≤ h(w′) +

〈∇h(w′),w −w′〉+ LF
2
‖w −w′‖2 ∀w, w′.

Definition 4.3. (Lipschitz) A function h(.) is L-Lipschitz if ‖h(w) − h(w′)‖ ≤

L‖w −w′‖ ∀w, w′.

4.2 Compression at Worker Machines

In this section, we consider a generic class of compressors from [113] and [71] as

described in the following.

81



Algorithm 1 Robust Compressed Gradient Descent
1: Input: Step size γ, Compressor Q(.), q > 1, β < 1. Also define,

C(x) =

{
{Q(x), ‖x‖q} ∀x ∈ Rd Option I
Q(x) ∀x ∈ Rd Option II

2: Initialize: Initial iterate w0

3: for t = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wt

for i ∈ [m] do in parallel
5: i-th worker machine:

• (Non-Byzantine) computes ∇Fi(wt); sends C(∇Fi(wt)) to the central
machine

• (Byzantine) generates ? (arbitrary), and sends C(?) to the central machine

end for
6: Central Machine:

• Sort the local gradient norms in a non decreasing order

• Return the indices of the first 1− β fraction of elements as Ut.

• Update model parameter: wt+1 = wt − γ
|Ut|
∑

i∈Ut Q(∇Fi(wt))

7: end for

Definition 4.4 (δ-Approximate Compressor). An operator Q(.) : Rd → Rd is defined

as δ-approximate compressor on a set S ⊆ Rd if, ∀x ∈ S,

‖Q(x)− x‖2 ≤ (1− δ)‖x‖2,

where δ ∈ (0, 1] is the compression factor.

Furthermore, a randomized operator Q(.) is δ-approximate compressor on a set S ⊆ Rd

if,

E
(
‖Q(x)− x‖2

)
≤ (1− δ)‖x‖2
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holds for all x ∈ S, where the expectation is taken with respect to the randomness

of Q(.). For the clarity of exposition, we consider the deterministic form of the

compressor (as in Definition 4.4). However, the results can be easily extended for

randomized Q(.).

Notice that δ = 1 implies Q(x) = x (no compression). We list a few examples of

δ-approximate compressors (including a few from [71]) here:

1. topk operator, which selects k coordinates with largest absolute value; for

1 ≤ k ≤ d, (Q(x))i = (x)π(i) if i ≤ k, and 0 otherwise, where π is a permutation

of [d] with (|x|)π(i) ≥ (|x|)π(i+1) for i ∈ [d − 1]. This is a k/d-approximate

compressor.

2. k-PCA that uses top k eigenvectors to approximate a matrix X ([125]).

3. Quantized SGD (QSGD) [6], where Q(xi) = ‖x‖ · sign(xi) · ξi(x), where sign(xi)

is the coordinate-wise sign vector, and ξi(x) is defined as following: let 0 ≤ l ≤ s,

be an integer such that |xi|/‖x‖ ∈ [l/s, (l+1)/s]. Then, ξi = l/s with probability

1− |xi|
c‖x‖
√
d

+ l and (l+ 1)/s otherwise. [6] shows that it is a 1−min(d/s2,
√
d/s)-

approximate compressor.

4. Quantized SGD with `1 norm [71],Q(x) = ‖x‖1
d

sign(x), which is ‖x‖
2
1

d‖x‖2 -approximate

compressor. In this paper, we call this compression scheme as `1-QSGD.

Apart from these examples, several randomized compressors are also discussed

in [113]. Also, the signSGD compressor, Q(x) = sign(x), where sign(x) is the

(coordinate-wise) sign operator, was proposed in [11, 12]. Here the local machines

send a d-dimensional vector containing coordinate-wise sign of the gradients.

4.3 Robust Compressed Gradient Descent

In this section, we describe a communication-efficient and robust distributed

gradient descent algorithm for δ-approximate compressors. The optimization algorithm
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we use is formally given in Algorithm 1. Note that the algorithm uses a compression

scheme Q(.) to reduce communication cost and a norm based thresholding to remove

Byzantine worker nodes. The idea behing norm based thresholding is quite intuitive.

Note that, if the Byzantine worker machines try to diverge the learning algorithm by

increasing the norm of the local gradients; Algorithm 1 can identify them as outliers.

Furthermore, when the Byzantine machines behave like inliers, they can not diverge

the learning algorithm since they are only a few (α < 1/2) in number. It turns out

that this simple approach indeed works.

As seen in Algorithm 1, robust compressed gradient descent operates under two

different setting, namely Option I and Option II. Option I and II are analyzed in

Sections 4.4 and 4.5 respectively. For Option I, we use a δ-approximate compressor

along with the norm information. In particular, the worker machines send the pair

denoted by C(x) = {Q(x), ‖x‖q, } where we have q ≥ 1, to the center machine. C(x)

is comprised of a scalar (norm of x) and a compressed vector Q(x). For compressors

such as QSGD ([6]) and `1-QSGD ([71]), the quantity Q(.) has the norm information

and hence sending the norm separately is not required.

As seen in Option I of Algorithm 4, worker node i compresses the local gradient

∇Fi(.) sends C(∇Fi(.)) to the central machine. Adversary nodes can send arbitrary

C(?) to the central machine. The central machine aggregates the gradients, takes a

gradient step and broadcasts the updated model for next iteration.

For Option I, we restrict to the setting where the Byzantine worker machines can

send arbitrary values to the input of the compression algorithm, but they adhere to

the compression algorithm. In particular, Byzantine workers can provide arbitrary

values, ? to the input of the compression algorithm, Q(.) but they correctly implement

the same compression algorithm, i.e., computes Q(?).

We now explain how Algorithm 1 tackles the Byzantine worker machines. The

central machine receives the compressed gradients comprising a scalar ( ||x||q, q ≥ 1)
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and a quantized vector (Q(x)) and outputs a set of indices U with |U| = (1− β)m.

Here we employ a simple thresholding scheme on the (local) gradient norm.

Note that, if the Byzantine worker machines try to diverge the learning algorithm

by increasing the norm of the local gradients; Algorithm 1 can identify them as outliers.

Furthermore, when the Byzantine machines behave like inliers, they can not diverge

the learning algorithm since α < 1/2. In the subsequent sections, we show theoretical

justification of this argument.

With Option II, we remove this restriction on Byzantine machines at the cost

of slightly weakening the convergence guarantees. This is explained in Section 4.5.

With Option II, the i-th local machine sends C = {Q(∇Fi(wt)), ‖Q(∇Fi(wt))‖q}

to the central machine, where q ≥ 1. Effectively, the i-th local machine just sends

Q(∇Fi(wt)) since its norm can be computed at the central machine. Byzantine

workers just send arbitrary (?) vector instead of compressed local gradient. Note that

the Byzantine workers here do not adhere to any compression rule.

The Byzantine resilience scheme with Option II is similar to Option I except the

fact that the central machine sorts the worker machines according to the norm of the

compressed gradients rather than the norm of the gradients.

4.4 Distributed Learning with Restricted Adversaries

In this section, we analyze the performance of Algorithm 1 with Option I. We restrict

to an adversarial model in which Byzantine workers can provide arbitrary values to the

input of the compression algorithm, but they adhere to the compression rule. Though

this adversarial model is restricted, we argue that it is well-suited for applications

wherein compression happens outside of worker machines. For example, Apache

MXNet, a deep learning framework designed to be distributed on cloud infrastructures,

uses NVIDIA Collective Communication Library (NCCL) that employs gradient

compression (see [1]). Also, in a Federated Learning setup the compression can be part
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of the communication protocol. Furthermore, this can happen when worker machines

are divided into groups, and each group is associated with a compression unit. As an

example, cores in a multi-core processor ([85]) acting as a group of worker machines

with the compression carried out by a separate processor, or servers co-located on a

rack ([31]) acting as a group with the compression carried out by the top-of-the-rack

switch.

4.4.1 Main Results

We analyze Algorithm 1 (with Option I) and obtain the rate of the convergence

under non-convex loss functions. We start with the following assumption.

Assumption 4.1. For all z, the partial derivative of the loss function f(., z) with

respect to the k-th coordinate (denoted as ∂kf(., z)) is Lk Lipschitz with respect to the

first argument for each k ∈ [d], and let L̂ =
√∑d

i=1 L
2
k. The population loss function

F (.) is LF smooth.

We also make the following assumption on the tail behavior of the partial derivative

of the loss function.

Assumption 4.2. (Sub-exponential gradients) For all k ∈ [d] and z, the quantity

∂kf(w, z)) is v sub-exponential for all w ∈ W.

The assumption implies that the moments of the partial derivatives are bounded.

We like to emphasize that the sub-exponential assumption on gradients is fairly

common ([135, 115, 132]). For instance, [135, Proposotion 2] gives a concrete example

of coordinate-wise sub-exponential gradients in the context of a regression problem.

Furthermore, in [136], the gradients are assumed to be sub-gaussian, which is stronger

than Assumption 4.2.
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To simplify notation and for the clarity of exposition, we define the following three

quantities which will be used throughout the paper.

ε1 = v
√
d
(

max
{d
n

log(1 + 2nDL̂d),

√
d

n
log(1 + 2nDL̂d)

})
+

1

n
, (4.2)

ε2 = v
√
d

(
max

{ d

(1− α)mn
log(1 + 2(1− α)mnDL̂d),√

d

(1− α)mn
log(1 + 2(1− α)mnDL̂d)

})
, (4.3)

ε = 2

(
1 +

1

λ0

)[(
1− α
1− β

)2

ε22 +

(√
1− δ + α + β

1− β

)2

ε21

]
. (4.4)

where λ0 is a positive constant. For intuition, one can think of ε1 = Õ( d√
n
) and

ε2 = Õ( d√
mn

) as small problem dependent quantities. Assuming β = cα for a universal

constant c > 1, we have

ε = Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
. (4.5)

Assumption 4.3. (Size of parameter space W) Suppose that ‖∇F (w)‖ ≤M for all

w ∈ W. We assume that W contains the `2 ball {w : ‖w − w0‖ ≤ c[(2 − c0
2

)M +

√
ε]F (w0)−F (w∗)

ε
}, where c0 is a constant, δ is the compression factor, w0 is the initial

parameter vector and ε is defined in equation (4.4).

We use the above assumption to ensure that the iterates of Algorithm 1 stays in

W . We emphasize that this is a standard assumption on the size of W to control the

iterates for non-convex loss function. Note that, similar assumptions have been used

in prior works [135, Assumption 5], [136]. We point out that Assumption 4.3 is used

for simplicity and is not a hard requirement. We show (in the proof of Theorem 4.4)

that the iterates of Algorithm 1 stay in a bounded set around the initial iterate w0.

Also, note that the dependence of M in the final statistical rate (implicit, via diameter

D) is logarithmic (weak dependence), as will be seen in Theorem 4.4.
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First, we make the state the following fact. LetM and B denote the set of non-

Byzantine and Byzantine worker machines. Furthermore, Ut and Tt denote untrimmed

and trimmed worker machines. So evidently,

|M|+ |B| = |Ut|+ |Tt| = m.

We provide the following rate of convergence to a critical point of the (non-convex)

population loss function F (.). In the following result, we show that for non-Byzantine

worker machine i, the local gradient∇Fi(wt) is concentrated around the global gradient

∇F (wt).

Lemma 4.1. For any w ∈ W, we have

max
i∈M
‖∇Fi(w)−∇F (w)‖ ≤ ε1

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
, where ε1 is defined in equation (4.2).

Proof. Proof of Lemma 4.1: For a fixed i ∈ M, we first analyze the quantity

‖∇Fi(wt)−∇F (wt)‖. Notice that i is non-Byzantine. Recall that machine i has n

independent data points. We use the sub-exponential concentration to control this

term. Let us rewrite the concentration inequality.

Univariate sub-exponential concentration: Suppose Y is univariate random variable

with EY = µ and y1, . . . , yn are i.i.d draws of Y . Also, Y is v sub-exponential. From

sub-exponential concentration (Hoeffding’s inequality), we obtain

Pr

(
| 1
n

n∑
i=1

yi − µ| > t

)
≤ 2 exp{−nmin(

t

v
,
t2

v2
)}.
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We directly use this to the k-th partial derivative of Fi. Let ∂kf(wt, z
i,j) be the

partial derivative of the loss function with respect to k-th coordinate on i-th machine

with j-th data point. From Assumption 4.2, we obtain

Pr

(
| 1
n

n∑
j=1

∂kf(wt, z
i,j)− ∂kF (wt)| ≥ t

)
≤ 2 exp{−nmin

(
t

v
,
t2

v2

)
}.

Since ∇Fi(wt) = 1
n

∑n
j=1∇f(wt, z

i,j), denoting ∇F (k)
i (wt) as the k-th coordinate

of ∇Fi(wt), we have

|∇F (k)
i (wt)− ∂kF (wt)| ≤ t

with probability at least 1− 2 exp{−nmin( t
v
, t

2

v2 )}.

This result holds for a particular wt. To extend this for all w ∈ W , we exploit the

covering net argument and the Lipschitz continuity of the partial derivative of the

loss function (Assumption 4.1). Let {w1, . . . ,wN} be a δ covering of W . Since W has

diameter D, from Vershynin, we obtain N ≤ (1 + D
δ

)d. Hence with probability at least

1− 2Nd exp{−nmin

(
t

v
,
t2

v2

)
},

we have

|∇F (k)
i (w)− ∂kF (w)| ≤ t

for all w ∈ {w1, . . . ,wN} and k ∈ [d]. This implies

‖∇Fi(wt)−∇F (wt)‖ ≤ t
√
d,

with probability greater than or equal to 1− 2Nd exp{−nmin( t
v
, t

2

v2 )}.
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We now reason about w ∈ W \ {w1, . . . ,wN} via Lipschitzness (Assumption 4.1).

From the definition of δ cover, for any w ∈ W, there exists w`, an element of the

cover such that ‖w −w`‖ ≤ δ. Hence, we obtain

|∇F (k)
i (w)− ∂kF (w)| ≤ t+ 2Lkδ

for all w ∈ W and consequently

‖∇Fi(wt)−∇F (wt)‖ ≤
√
d t+ 2δL̂

with probability at least 1− 2Nd exp{−nmin( t
v
, t

2

v2 )}, where L̂ =
√∑d

k=1 L
2
k.

Choosing δ = 1

2nL̂
and

t = vmax{d
n

log(1 + 2nL̂d),

√
d

n
log(1 + 2nL̂d)},

we obtain

‖∇Fi(wt)−∇F (wt)‖ ≤ v
√
d

(
max{d

n
log(1 + 2nL̂d),

√
d

n
log(1 + 2nL̂d)}

)
+

1

n

= ε1, (4.6)

with probability greater than 1− d

(1+nL̂D)d
. Taking union bound on all non-Byzantine

machines yields the lemma.

Since the iterations {wt}Tt=1 ∈ W , we have the above lemma for all the iterates of

our algorithm. Furthermore, we have the following Lemma which implies that the

average of local gradients ∇Fi(wt) over non-Byzantine worker machines is close to its

expectation ∇F (wt).
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Lemma 4.2. For any w ∈ W, we have

‖ 1

|M|
∑
i∈M

∇Fi(w)−∇F (w)‖ ≤ ε2.

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
− 2d

(1+(1−α)mnL̂D)d
, where ε2 is defined in equa-

tion (4.3).

Proof. Proof of Lemma 4.2

We need to upper bound the following quantity:

‖ 1

|M|
∑
i∈M

(∇Fi(wt)−∇F (wt))‖

We now use similar argument (sub-exponential concentration) like Lemma 4.1.

The only difference is that in this case, we also consider averaging over worker nodes.

We obtain the following:

‖ 1

|M|
∑
i∈M

(∇Fi(wt)−∇F (wt))‖ ≤ ε2

where

ε2 = v
√
d

(
max{ d

(1− α)mn
log(1 + 2(1− α)mnL̂d),

√
d

(1− α)mn
log(1 + 2(1− α)mnL̂d)}

)
,

with probability 1− 2d

(1+(1−α)mnL̂D)d
.
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Lemma 4.3. For any λ > 0, we have,

‖∆‖2 ≤ (1 + λ)

(√
1− δ + 2α

1− β

)2

‖∇F (wt)‖2 + ε̃(λ)

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, where

ε̃(λ) = 2(1 +
1

λ
)

[(√
1− δ + α + β

1− β

)2

ε21 +

(
1− α
1− β

)2

ε22

]
.

with ε1 and ε2 as defined in equation (4.2) and (4.3) respectively.

Proof. Proof of Lemma 4.3: Reall the definition of ∆. Using triangle inequality, we

obtain

‖∆‖ ≤ ‖ 1

|Ut|
∑
i∈Ut

Q(∇Fi(wt))−
1

|Ut|
∑
i∈Ut

∇Fi(wt)‖︸ ︷︷ ︸
T1

+ ‖ 1

|Ut|
∑
i∈Ut

∇Fi(wt)−∇F (wt)‖︸ ︷︷ ︸
T2

We first control T1. Using the compression scheme (Definition 4.4), we obtain

T1 =‖ 1

|Ut|
∑
i∈Ut

Q(∇Fi(wt))−
1

|Ut|
∑
i∈Ut

∇Fi(wt)‖ ≤
√

1− δ
|Ut|

∑
i∈Ut

‖∇Fi(wt)‖

≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)‖ −
∑

i∈M∩Tt

‖∇Fi(wt)‖+
∑

i∈B∩Ut

‖∇Fi(wt)‖

]

≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)‖+
∑

i∈B∩Ut

‖∇Fi(wt)‖

]

Since β ≥ α, we ensure thatM∩ Tt 6= ∅. We have,

T1 ≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)‖+ αmmax
i∈M
‖∇Fi(wt)‖

]

≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)−∇F (wt)‖+
∑
i∈M

‖∇F (wt)‖

]
︸ ︷︷ ︸

T3

92



+
αm
√

1− δ
|Ut|

max
i∈M

[‖∇Fi(wt)−∇F (wt)‖+ ‖∇F (wt)‖]︸ ︷︷ ︸
T4

We now upper-bound T3. We have

T3 ≤
√

1− δ|M|
|Ut|

max
i∈M
‖∇Fi(wt)−∇F (wt)‖+

√
1− δ|M|
|Ut|

‖∇F (wt)‖

≤
√

1− δ(1− α)

(1− β)
max
i∈M
‖∇Fi(wt)−∇F (wt)‖+

√
1− δ(1− α)

(1− β)
‖∇F (wt)‖

≤
√

1− δ(1− α)

(1− β)
ε1 +

√
1− δ(1− α)

(1− β)
‖∇F (wt)‖

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
, where we use Lemma 4.1. Similarly, for T4,

we have

T4 ≤
√

1− δα
1− β

ε1 +

√
1− δα
1− β

‖∇F (wt)‖.

We now control the terms in T2. We obtain the following:

T2 ≤
1

|Ut|
‖
∑
i∈Ut

∇Fi(wt)−∇F (wt)‖

≤ 1

|Ut|
‖
∑
i∈M

(∇Fi(wt)−∇F (wt))−
∑

i∈M∩Tt

(∇Fi(wt)−∇F (wt)) +
∑
i∈B∩Tt

(∇Fi(wt)−∇F (wt))‖

≤ 1

|Ut|
‖
∑
i∈M

(∇Fi(wt)−∇F (wt))‖+
1

|Ut|
‖
∑

i∈M∩Tt

(∇Fi(wt)−∇F (wt))‖

+
1

|Ut|
‖
∑
i∈B∩Tt

(∇Fi(wt)−∇F (wt))‖.

Using Lemma 4.2, we have

1

|Ut|
‖
∑
i∈M

(∇Fi(wt)−∇F (wt))‖ ≤
1− α
1− β

ε2.
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with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
− 2d

(1+(1−α)mnL̂D)d
. Also, we obtain

1

|Ut|
‖
∑

i∈M∩Tt

(∇Fi(wt)−∇F (wt))‖ ≤
β

1− α
max
i∈M
‖∇Fi(wt)−∇F (wt)‖ ≤

β

1− α
ε1,

with probability at least 1 − 2(1−α)md

(1+nL̂D)d
, where the last inequality is derived from

Lemma 4.1. Finally, for the Byzantine term, we have

1

|Ut|
‖
∑
i∈B∩Tt

(∇Fi(wt)−∇F (wt))‖ ≤
α

1− β
max
i∈B∩Tt

‖∇Fi(wt)‖+
α

1− β
‖∇F (wt)‖

≤ α

1− β
max
i∈M
‖∇Fi(wt)‖+

α

1− β
‖∇F (wt)‖

≤ α

1− β
max
i∈M
‖∇Fi(wt)−∇F (wt)‖+

2α

1− β
‖∇F (wt)‖

≤ α

1− β
ε1 +

2α

1− β
‖∇F (wt)‖,

with high probability, where the last inequality follows from Lemma 4.1.

Combining all the terms of T1 and T2, we obtain,

‖∆‖ ≤
√

1− δ + 2α

1− β
‖∇F (wt)‖+

√
1− δ + α + β

1− β
ε1 +

1− α
1− β

ε2.

Now, using Young’s inequality, for any λ > 0, we obtain

‖∆‖2 ≤ (1 + λ)

(√
1− δ + 2α

1− β

)2

‖∇F (wt)‖2 + ε̃(λ)

where

ε̃(λ) = 2(1 +
1

λ
)

[(√
1− δ + α + β

1− β

)2

ε21 +

(
1− α
1− β

)2
]
ε22.
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Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold, and α ≤ β < 1/2.

For sufficiently small constant c, we choose the step size γ = c
LF

. Then, running

Algorithm 1 for T = C3
LF (F (w0)−F (w∗))

ε
iterations yields

min
t=0,...,T

‖∇F (wt)‖2 ≤ C ε,

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, provided the

compression factor satisfies δ > δ0 + 4α− 9α2 + 4α3, where δ0 =
(

1− (1−β)2

1+λ0

)
and λ0

is a (sufficiently small) positive constant.

Proof. Proof of Theorem 4.4

Let g(wt) = 1
|Ut|
∑

i∈Ut Q(∇Fi(wt)) and ∆ = g(wt)−∇F (wt). We Lemma 4.3 to

control of ‖∆‖2.

We first show that with Assumption 4.3 and with the choice of step size γ, we

always stay in W without projection. Recall that g(wt) = 1
|Ut|
∑

i∈Ut Q(∇Fi(wt)) and

∆ = g(wt)−∇F (wt). We have

‖wt+1 −w∗‖ ≤ ‖wt −w∗‖+ γ(‖∇F (wt)‖+ ‖g(wt)−∇F (wt)‖)

≤ ‖wt −w∗‖+
c

LF
(‖∇F (wt)‖+ ‖∆‖)

We use Lemma 4.3 with λ = λ0 for a sufficiently small positive constant λ0. Define

δ0 =
(

1− (1−β)2

1+λ0

)
. A little algebra shows that provided δ > δ0 + 4α− 9α2 + 4α3, we

obtain

‖∆‖2 ≤ (1− c0)‖∇F (wt)‖2 + ε

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, where c0 is a

positive constant and ε is defined in equation (4.4). Substituting, we obtain

‖wt+1 −w∗‖ ≤ ‖wt −w∗‖+
c1

LF

(
(1 +

√
1− c0)‖∇F (wt)‖+

√
ε
)
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≤ ‖wt −w∗‖+
c1

LF

(
(2− c0

2
)‖∇F (wt)‖+

√
ε
)
.

where we use the fact that
√

1− c0 ≤ 1− c0/2. Now, running T = C LF (F (w0)−F (w∗))
ε

iterations, we see that Assumption 4.3 ensures that the iterations of Algorithm 1 is

always in W . Hence, let us now analyze the algorithm without the projection step.

Using the smoothness of F (.), we have

F (wt+1) ≤ F (wt) + 〈∇F (wt),wt+1 −wt〉+
LF
2
‖wt+1 −wt‖2.

Using the iteration of Algorithm 1, we obtain

F (wt+1) ≤ F (wt)− γ〈∇F (wt),∇F (wt) + ∆〉+
γ2LF

2
‖∇F (wt) + ∆‖2

≤ F (wt)− γ‖∇F (wt)‖2 − γ〈∇F (wt),∆〉

+
γ2LF

2
‖∇F (wt)‖2 +

γ2LF
2
‖∆‖2 + γ2LF 〈∇F (wt),∆〉

≤ F (wt)− (γ − γ2LF
2

)‖∇F (wt)‖2

+ (γ + γ2LF )

(
ρ

2
‖∇F (wt)‖2 +

1

2ρ
‖∆‖2

)
+
γ2LF

2
‖∆‖2,

where ρ > 0 and the last inequality follows from Young’s inequality. Substituting

ρ = 1, we obtain

(γ/2− γ2LF )‖∇F (wt)‖2 ≤ F (wt)− F (wt+1) + (γ/2 + γ2LF )‖∆‖2.

We now use Lemma 4.3 to obtain

(
γ

2
− γ2LF )‖∇F (wt)‖2 ≤ F (wt)− F (wt+1)

+ (γ/2 + γ2LF )

(
(1 + λ)

(√
1− δ + 2α

1− β

)2

‖∇F (wt)‖2 + ε̃(λ)

)
.
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with high probability. Upon further simplification, we have

(
γ

2
− γ

2
(1 + λ)

(√
1− δ + 2α

1− β

)2

− (1 + λ)

(√
1− δ + 2α

1− β

)2

γ2LF − γ2LF

)
‖∇F (wt)‖2

≤ F (wt)− F (wt+1) + (γ/2 + γ2LF )ε̃(λ).

We now substitute γ = c
LF

, for a small enough constant c, so that we can ignore the

contributions of the terms with quadratic dependence on γ. We substitute λ = λ0 for

a sufficiently small positive constant λ0. Provided δ > δ0 + 4α − 9α2 + 4α3, where

δ0 =
(

1− (1−β)2

1+λ0

)2

, we have

(
γ

2
− γ

2
(1 + λ)

(√
1− δ + 2α

1− β

)2

− (1 + λ)

(√
1− δ + 2α

1− β

)2

γ2LF − γ2LF

)
=

c1

LF
,

where c1 is a constant. With this choice, we obtain

1

T + 1

T∑
t=0

‖∇F (wt)‖2 ≤ C1
LF (F (w0)− F (w∗))

T + 1
+ C2ε

where the first term is obtained from a telescopic sum and ε is defined in equation (4.4).

Finally, we obtain

min
t=0,...,T

‖∇F (wt)‖2 ≤ C1
LF (F (w0)− F (w∗))

T + 1
+ C2ε

with probability greater than or equal to 1 − c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, proving

Theorem 4.4.

A few remarks are in order. In the following remarks, we fix the dimension d, and

discuss the dependence of ε on (α, δ, n,m).
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Remark 4.1. (Rate of Convergence) Algorithm 1 with T iterations yields

min
t=0,.,T

‖∇F (wt)‖2 ≤ C1LF (F (w0)− F (w∗))

T + 1
+ C2ε

with high probability. We see that Algorithm 1 converges at a rate of O(1/T ), and

finally plateaus at an error floor of ε. Note that the rate of convergence is same as

[135]. Hence, even with compression, the (order-wise) convergence rate is unaffected.

Remark 4.2. We observe, from the definition of ε that the price for compression

is Õ(1−δ
n

).

Remark 4.3. Substituting δ = 1 (no compression) in ε, we get ε = Õ(α
2

n
+ 1

mn
),

which matches the (statistical) rate of [135]. A simple norm based thresholding

operation is computationally simple and efficient in the high dimensional settings

compared to the coordinate wise median and trimmed mean to achieve robustness and

obtain the the same statistical error and iteration complexity as [135]

Remark 4.4. When the compression factor δ is large enough, satisfying δ ≥ 1−α2,

we obtain ε = Õ(α
2

n
+ 1

mn
). In this regime, the iteration complexity and the final

statistical error of Algorithm 1 is order-wise identical to the setting with no compression

[135]. We emphasize here that a reasonable high δ is often observed in practical

applications like training of neural nets [71, Figure 2].

Remark 4.5. (Optimality) For a distributed mean estimation problem, Observation

1 in [135] implies that any algorithm will yield an (statistical) error of Ω(α
2

n
+ d

mn
).

Hence, in the regime where δ ≥ 1− α2, our error-rate is optimal.

Remark 4.6. For the convergence of Algorithm 1, we require δ > δ0+4α−9α2+4α3,

implying that our analysis will not work if δ is very close to 0. Note that a very small

δ does not give good accuracy in practical applications [71, Figure 2]. Also, note

that, from the definition of δ0, we can choose λ0 sufficiently small at the expense of
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increasing the multiplicative constant in ε by a factor of 1/λ0. Since the error-rate

considers asymptotic in m and n, increasing a constant factor is insignificant. A

sufficiently small λ0 implies δ0 = O(2β), and hence we require δ > 4α + 2β (ignoring

the higher order dependence).

Remark 4.7. The requirement δ > 4α+ 2β can be seen as a trade-off between the

amount of compression and the fraction of adversaries in the system. As α increases,

the amount of (tolerable) compression decreases and vice versa.

4.5 Distributed Optimization with Arbitrary Adversaries

In this section we remove the assumption of restricted adversary (as in Section 4.4)

and make the learning algorithm robust to the adversarial effects of both the com-

putation and compression unit. In particular, here we consider Algorithm 1 with

Option II. Hence, the Byzantine machines do not need to adhere to the mandated

compression algorithm.

In Option II, the worker machines send Q(∇Fi(wt)) to the center machine. The

center machine computes its norm, and discards the top β fraction of the worker

machines having largest norm. Note that it is crucial that the center machine computes

the norm of Q(∇Fi(wt)), instead of asking the worker machine to send it (similar

to Option I). Otherwise, a Byzantine machine having a large ‖Q(x)‖q can (wrongly)

report a small value of ‖Q(x)‖q, gets selected in the trimming phase and influences

(or can potentially diverge) the optimization algorithm. Hence, the center needs to

compute ‖Q(x)‖q to remove such issues.

Although this framework is more general in terms of Byzantine attacks, however,

in this setting, the statistical error-rate of our proposed algorithm is slightly weaker

than that of Theorem 4.4. Furthermore, the (δ, α) trade-off is stricter compared to

Theorem 4.4.
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4.5.1 Main Results

We continue to assume that the population loss function F (.) is smooth and

non-convex and analyze Algorithm 1 with Option II. We have the following result.

For the clarity of exposition, we define the following quantity which will be used in

the results of this section:

ε̃ = 2(1 +
1

λ0

)

((
(1 + β)

√
1− δ + α + β

1− β

)2

ε21 + (
1− α
1− β

)2ε22

)
.

Comparing ε̃ with ε, we observe that ε̃ > ε. Also, note that,

ε̃ = Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
, (4.7)

which suggests that ε̃ and ε are order-wise similar. We have the following assumption,

which parallels Assumption 4.3, with ε replaced by ε̃.

Assumption 4.4. (Size of parameter space W) Suppose that ‖∇F (w)‖ ≤M for all

w ∈ W. We assume that W contains the `2 ball {w : ‖w − w0‖ ≤ c[(2 − c0
2

)M +
√
ε̃]F (w0)−F (w∗)

ε̃
}, where c0 is a constant, δ is the compression factor and ε̃ is defined

in equation (4.7).

Lemma 4.5. For any λ > 0, we have,

‖∆̃‖2 ≤ ((1 + λ)

(
(1 + β)

√
1− δ + 2α

1− β

)2

||∇F (wt)||2 + ε̃(λ)

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, where

ε̃(λ) = 2(1 +
1

λ
)

((
(1 + β)

√
1− δ + α + β

1− β

)2

ε21 + (
1− α
1− β

)2ε22

)
.

with ε1 and ε2 as defined in equation (4.2) and (4.3) respectively.
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Proof. Proof of Lemma 4.5

Here we prove an upper bound on the norm of

∆̃ = g(wt)−∇F (wt)

where g(wt) = 1
|Ut|
∑

i∈Ut Q(∇Fi(wt)).

We have

||∆̃|| =|| 1

|Ut|
∑
i∈Ut

Q(∇Fi(wt))−∇F (wt)||

=
1

|Ut|
||
∑
i∈M

[Q(∇Fi(wt))−∇F (wt)]−
∑

i∈(M∩Tt)

[Q(∇Fi(wt))−∇F (wt)]

+
∑

i∈(B∩Ut)

[Q(∇Fi(wt))−∇F (wt)]||

≤ 1

|Ut|

(
||
∑
i∈M

Q(∇Fi(wt))−∇F (wt)||︸ ︷︷ ︸
T1

+ ||
∑

i∈(M∩Tt)

Q(∇Fi(wt))−∇F (wt)||︸ ︷︷ ︸
T2

+ ||
∑

i∈(B∩Ut)

Q(∇Fi(wt))−∇F (wt)||︸ ︷︷ ︸
T3

)

Now we bound each term separately. For the first term, we have

1

|Ut|
T1 =

1

|Ut|
||
∑
i∈M

Q(∇Fi(wt))−∇F (wt)||

=
1

|Ut|
||
∑
i∈M

Q(∇Fi(wt))−∇Fi(wt)||+
1

|Ut|
||
∑
i∈M

∇Fi(wt)−∇F (wt)||

≤ 1

|Ut|
∑
i∈M

(
||Q(∇Fi(wt))−∇Fi(wt)||

)
+

1− α
1− β

ε2

≤ 1

|Ut|
∑
i∈M

(√
1− δ||∇Fi(wt)||

)
+

1− α
1− β

ε2

≤
√

1− δ
|Ut|

∑
i∈M

(
||∇F (wt)||+ ||∇Fi(wt)−∇F (wt)||

)
+

1− α
1− β

ε2
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≤
√

1− δ(1− α)

1− β
||∇F (wt)||+

√
1− δ(1− α)

1− β
ε1 +

1− α
1− β

ε2

where we use the definition of a δ-approximate compressor, Lemma 4.1 and Lemma 4.2.

Similarly, we can bound T2 as

T2 ≤
∑

i∈(M∩Tt)

||Q(∇Fi(wt))−∇F (wt)||

≤ βmmax
i∈M
||Q(∇Fi(wt))−∇F (wt)||

≤ βmmax
i∈M

(√
1− δ||∇Fi(wt))||+ ||∇Fi(wt)−∇F (wt)||

)
≤ βmmax

i∈M

(√
1− δ||∇F (wt))||+ (1 +

√
1− δ)||∇Fi(wt)−∇F (wt)||

)

where we use the definition of δ-approximate compressor. Hence invoking Lemma 4.1,

we obtain

1

|Ut|
T2 ≤

β
√

1− δ
1− β

||∇F (wt))||+
β(1 +

√
1− δ)

1− β
ε1

Also, owing to the trimming with β > α, we have at least one good machine in the

set Tt for all t. Now each term in the set B ∩ Ut, we have

T3 =
∑

i∈(B∩Ut)

||Q(∇Fi(wt))−∇F (wt)||

≤ αm(max
i∈M
||Q(∇Fi(wt))||+ ||∇F (wt)||)

≤ αm(max
i∈M

√
1− δ||∇Fi(wt)||+ ||∇Fi(wt)||+ ||∇F (wt)||)

≤ αm

(
(1 +

√
1− δ)ε1 + (2 +

√
1− δ)||∇F (wt)||

)
1

|Ut|
T3 ≤

α(2 +
√

1− δ)
1− β

||∇F (wt)||+
α(1 +

√
1− δ)

1− β
ε1
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where we use Lemma 4.1. Putting T1, T2, T3 we get

||∆̃|| ≤
(√

1− δ(1− α)

1− β
+
β
√

1− δ
1− β

+
α(2 +

√
1− δ)

1− β

)
||∇F (wt)||

+

(√
1− δ(1− α)

1− β
+
β(1 +

√
1− δ)

1− β
+
α(1 +

√
1− δ)

1− β

)
ε1 +

1− α
1− β

ε2

=

(
(1 + β)

√
1− δ + 2α

1− β

)
||∇F (wt)||+

(
(1 + β)

√
1− δ + α + β

1− β

)
ε1 +

1− α
1− β

ε2

||∆̃||2 ≤ (1 + λ)

(
(1 + β)

√
1− δ + 2α

1− β

)2

||∇F (wt)||2 + ε̃(λ)

where ε̃(λ) = 2(1 + 1
λ
)

((
(1+β)

√
1−δ+α+β

1−β

)2

ε21 + (1−α
1−β )2ε22

)
. Hence, the lemma follows.

Theorem 4.6. Suppose Assumptions 4.1,4.2 and 4.4 hold, and α ≤ β < 1/2. For suf-

ficiently small constant c, we choose the step size γ = c
LF

. Then, running Algorithm 1

for T = C3
LF (F (w0)−F (w∗))

ε̃
iterations yields

min
t=0,...,T

‖∇F (wt)‖2 ≤ C ε̃,

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, provided the

compression factor satisfies δ > δ̃0 + 4α − 8α2 + 4α3, where δ̃0 =
(

1− (1−β)2

(1+β)2(1+λ0)

)
and λ0 is a (sufficiently small) positive constant.

Proof. Proof of Theorem 4.6 The proof of convergence for Theorem 4.6 follows the

same steps as Theorem 4.4. Recall that the quantity of interest is

∆̃ = g(wt)−∇F (wt).

The proof parallels the proof of 4.4, except the fact that we use Lemma 4.5

to upper bound ‖∆̃‖2. Correspondingly, a little algebra shows that we require
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δ > δ̃0 + 4α− 8α2 + 4α3, where δ̃0 =
(

1− (1−β)2

(1+β)2(1+λ0)

)
, where λ0 is a sufficiently small

positive constant. With the above requirement, the proof follows the same steps as

Theorem 4.4 and hence we omit the details here.

Remark 4.8. The above result and their consequences resemble that of Theo-

rem 4.4. Since ε̃ > ε, the statistical error-rate in Theorem 4.6 is strictly worse than

that of Theorem 4.4 (although order-wise they are same).

Remark 4.9. Note that the definition of δ0 is different than in Theorem 4.4. For

a sufficiently small λ0, we see δ̃0 = O(4β), which implies we require δ > 4β + 4α

for the convergence of Theorem 4.6. Note that this is a slightly strict requirement

compared to Theorem 4.4. In particular, for a given δ, Algorithm 1 with Option II can

tolerate less number of Byzantine machines compared to Option I.

Remark 4.10. The result in Theorem 4.6 is applicable for arbitrary adversaries,

whereas Theorem 4.4 relies on the adversary being restrictive. Hence, we can view

the limitation of Theorem 4.6 (such as worse statistical error-rate and stricter (δ, α)

trade-off) as a price of accommodating arbitrary adversaries.

4.6 Byzantine Robust Distributed Learning with Error Feed-

back

We now investigate the role of error feedback [71] in distributed learning with

Byzantine worker machines.

In order to address the issues of convergence for sign based algorithms (like

signSGD), [71] proposes a class of optimization algorithms that uses error feedback.

In this setting, the worker machine locally stores the error between the actual local

gradient and its compressed counterpart. Using this as feedback, the worker machine

adds this error term to the compressed gradient in the subsequent iteration. Intuitively,
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Algorithm 2 Distributed Compressed Gradient Descent with Error Feedback
1: Input: Step size γ, Compressor Q(.), parameter β(> α).
2: Initialize: Initial iterate w0, ei(0) = 0 ∀ i ∈ [m]
3: for t = 0, 1, . . . , T − 1 do
4: Central machine: sends wt to all worker

for i ∈ [m] do in parallel
5: i-th non-Byzantine worker machine:

• computes pi(wt) = γ∇Fi(wt) + ei(t)

• sends Q(pi(wt)) to the central machine

• computes ei(t+ 1) = pi(wt)−Q(pi(wt))

6: Byzantine worker machine:

• sends ? to the central machine.

7: At Central machine:

• sorts the worker machines in non-decreasing order according to
‖Q(pi(wt))‖.

• returns the indices of the first 1− β fraction of elements as Ut.

• wt+1 = wt − γ
|Ut|
∑

i∈Ut Q(pi(wt))

8: end for

this accounts for correcting the the direction of the local gradient. The error-feedback

has its roots in some of the classical communication system like “delta-sigma” modulator

and adaptive modulator([60]).

We analyze the distributed error feedback algorithm in the presence of Byzantine

machines. The algorithm is presented in Algorithm 2. We observe that here the

central machine sorts the worker machines according to the norm of the compressed

local gradients, and ignore the largest β fraction.

Note that, similar to Section 4.5, we handle arbitrary adversaries. In the subsequent

section, we show (both theoretically and experimentally) that the statistical error rate

of Algorithm 2 is smaller than Algorithm 1.

105



4.6.1 Main Results

In this section we analyze Algorithm 2 and obtain the rate of the convergence

under non-convex smooth loss functions. Throughout the section, we select γ as the

step size and assume that Algorithm 2 is run for T iterations. We start with the

following assumption.

Assumption 4.5. For all non-Byzantine worker machine i, the local loss functions

Fi(.) satisfy ‖∇Fi(x)‖2 ≤ σ2, where x ∈ {wj}Tj=0, and {w0, . . . ,wT} are the iterates

of Algorithm 2.

Note that since Fi(.) can be written as loss over data points of machine i, we

observe that the bounded gradient condition is equivalent to the bounded second

moment condition for SGD, and have featured in several previous works, see, e.g.,

[69], [91]. Here, we are using all the data points and (hence no randomness over

the choice of data points) perform gradient descent instead of SGD. Also, note that

Assumption 4.5 is weaker than the bounded second moment condition since we do not

require ‖∇Fi(x)‖2 to be bounded for all x; just when x ∈ {wj}Tj=0.

We also require the following assumption on the size of the parameter space W,

which parallels Assumption 4.3 and 4.4.

Assumption 4.6. (Size of parameter space W) Suppose that ‖∇F (w)‖ ≤M for all

w ∈ W. We assume that W contains the `2 ball {w : ‖w −w0‖ ≤ γr∗T}, where

r∗ = ε2 +M +
6β(1 +

√
1− δ)

(1− β)

(
ε1 +M +

√
3(1− δ

)
δσ

)
+

√
12(1− δ

)
δσ,

and (ε1, ε2) are defined in equations (4.2) and (4.3) respectively.

Similar to Assumption 4.3 and 4.4, we use the above assumption to ensure that

the iterates of Algorithm 2 stays in W, and we emphasize that this is a standard

assumption to control the iterates for non-convex loss function (see [135, 136]).
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To simplify notation and for the clarity of exposition, we define the following

quantities which will be used in the main results of this section.

∆1 =
9(1 +

√
1− δ)2

2c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

50

c
ε22, (4.8)

∆2 =
L2

2

3(1− δ)σ2

cδ
+

2Lε22
c

+

(
1

2
+ L

)
9(1 +

√
1− δ)2

c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
,

(4.9)

∆3 = (
L2

100
+ 25L2)

3(1− δ)σ2

cδ
, (4.10)

where c is a universal constant.

We show the following rate of convergence to a critical point of the population loss

function F (.).

Theorem 4.7. Suppose Assumptions 4.1, 4.2, 4.5 and 4.6 hold, and α ≤ β < 1/2.

Then, running Algorithm 1 for T iterations with step size γ yields

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

cγ(T + 1)
+ ∆1 + γ∆2 + γ2∆3,

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, provided the

compression factor satisfies (1+
√

1−δ)2

(1−β)2 [α2 + β2 + (β − α)2] < 0.107. Here ∆1,∆2 and

∆3 are defined in equations (4.8),(4.9) and (4.10) respectively.

Proof. Proof of Theorem 4.7
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We first define an auxiliary sequence defined as:

w̃t = wt −
1

|M|
∑
i∈M

ei(t)

Hence, we obtain

w̃t+1 = wt+1 −
1

|M|
∑
i∈M

ei(t+ 1).

For notational simplicity, let us drop the subscript t from Ut and Tt and denote

them as U and T .

Since (we will ensure that the iterates remain in the parameter space and hence

we can ignore the projection step),

wt+1 = wt −
1

|U|
∑
i∈U

pi(wt),

we get

w̃t+1 = wt −
1

|U|
∑
i∈U

Q(pi(wt))−
1

|M|
∑
i∈M

ei(t+ 1)

= wt −
1

|U|

(∑
i∈M

Q(pi(wt)) +
∑
i∈B∩U

Q(pi(wt))−
∑

i∈M∩T

Q(pi(wt))

)
− 1

|M|
∑
i∈M

ei(t+ 1)

= wt −
(

1− α
1− β

)
1

|M|
∑
i∈M

Q(pi(wt))−
1

|M|
∑
i∈M

ei(t+ 1)− 1

|U|
∑
i∈B∩U

Q(pi(wt))

+
1

|U|
∑

i∈M∩T

Q(pi(wt))

Since Q(pi(wt)) + ei(t+ 1) = pi(wt) for all i ∈M, we obtain

(
1− α
1− β

)
1

|M|
∑
i∈M

Q(pi(wt)) +
1

|M|
∑
i∈M

ei(t+ 1) =
1

|M|
∑
i∈M

pi(wt) +
β − α
1− β

1

|M|
∑
i∈M

Q(pi(wt))
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Let us denote T1 = 1
|U|
∑

i∈B∩U Q(pi(wt)), T2 = 1
|U|
∑

i∈M∩T Q(pi(wt)) and T3 =

β−α
1−β

1
|M|
∑

i∈MQ(pi(wt)). With this, we obtain

w̃t+1 = wt −
1

|M|
pi(wt)− T1 + T2 − T3

= w̃t +
1

|M|
∑
i∈M

ei(t)−
1

|M|
∑
i∈M

pi(wt)− T̃

= w̃t − γ
1

|M|
∑
i∈M

∇Fi(wt)− T̃

where T̃ = T1 − T2 + T3. Observe that the auxiliary sequence looks similar to a

distributed gradient step with a presence of T̃ . For the convergence analysis, we will

use this relation along with an upper bound on ‖T̃‖.

Using this auxiliary sequence, we first ensure that the iterates of our algorithm

remains close to one another. To that end, we have

wt+1 −wt = w̃t+1 − w̃t +
1

|M|
ei(t+ 1)− 1

|M|
ei(t)

= −γ 1

|M|
∑
i∈M

∇Fi(wt)− T̃ +
1

|M|
ei(t+ 1)− 1

|M|
ei(t).

Hence, we obtain

‖wt+1 −wt‖

≤ ‖γ 1

|M|
∑
i∈M

∇Fi(wt)‖+ ‖T̃‖+ ‖ 1

|M|
ei(t+ 1)‖+ ‖ 1

|M|
ei(t)‖

≤ γ‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖+ γ‖∇F (wt)‖+ ‖T̃‖+ ‖ 1

|M|
ei(t+ 1)‖+ ‖ 1

|M|
ei(t)‖

≤ γε2 + γ‖∇F (wt)‖+ ‖T̃‖+ ‖ 1

|M|
ei(t+ 1)‖+ ‖ 1

|M|
ei(t)‖.

Now, using Lemma 4.8 and Lemma 4.9 in conjunction with Assumption 4.3 ensures

the iterates of Algorithm 2 stays in the parameter space W .
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We assume that the global loss function F (.) is LF smooth. We get

F (w̃t+1) ≤ F (w̃t) + 〈∇F (w̃t), w̃t+1 − w̃t〉+
LF
2
‖w̃t+1 − w̃t‖2.

Now, we use the above recursive equation

w̃t+1 = w̃t − γ
1

|M|
∑
i∈M

∇Fi(wt)− T̃ .

Substituting, we obtain

F (w̃t+1)

≤ F (w̃t)− γ〈∇F (w̃t),
1

|M|
∑
i∈M

∇Fi(wt)〉 − 〈∇F (w̃t), T̃ 〉+
LF
2
‖ γ

|M|
∑
i∈M

∇Fi(wt) + T̃‖2

≤ F (w̃t)− γ〈∇F (w̃t),
1

|M|
∑
i∈M

∇Fi(wt)〉 − 〈∇F (w̃t), T̃ 〉+ LFγ
2‖ 1

|M|
∑
i∈M

∇Fi(wt)‖2 + LF‖T̃‖2

(4.11)

In the subsequent calculation, we use the following definition of smoothness:

‖∇F (y1)−∇F (y2)‖ ≤ LF‖y1 − y2‖

for all y1 and y2 ∈ Rd.

Rewriting the right hand side (R.H.S) of equation (4.11), we obtain

R.H.S = F (w̃t)− γ〈∇F (w̃t),∇F (wt)〉︸ ︷︷ ︸
Term−I

+ γ〈∇F (w̃t),∇F (wt)−
1

|M|
∑
i∈M

∇Fi(wt)〉︸ ︷︷ ︸
Term−II

+ 〈∇F (wt),−T̃ 〉+ 〈∇F (w̃t)−∇F (wt),−T̃ 〉︸ ︷︷ ︸
Term−III

+ 2LFγ
2‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖2 + 2LFγ
2‖∇F (wt)‖2 + LF‖T̃‖2

︸ ︷︷ ︸
Term−IV

.

We now control the 4 terms separately. We start with Term-I.
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Control of Term-I: We obtain

Term-I = F (w̃t)− γ〈∇F (wt),∇F (wt)〉 − γ〈∇F (w̃t)−∇F (wt),∇F (wt)〉

≤ F (w̃t)− γ‖∇F (wt)‖2 + 25γ‖∇F (w̃t)−∇F (wt)‖2 +
γ

100
‖∇F (wt)‖2,

where we use Young’s inequality (〈a, b〉 ≤ ρ
2
‖a‖2 + 1

2ρ
‖b‖2 with ρ = 50) in the last

inequality. Using the smoothness of F (.), we obtain

Term-I ≤ F (w̃t)− γ‖∇F (wt)‖2 +
γ

100
‖∇F (wt)‖2 + 25γL2

F‖
1

|M|
∑
i∈M

ei(t)‖2.

(4.12)

Control of Term-II: Similarly, for Term-II, we have

Term-II = γ〈∇F (w̃t),∇F (wt)−
1

|M|
∑
i∈M

∇Fi(wt)〉 ≤ 50γε22 +
γ

200
‖∇F (w̃t)‖2

≤ 50γε22 +
γ

100
‖∇F (wt)‖2 +

γL2
F

100
‖ 1

|M|
∑
i∈M

ei(t)‖2. (4.13)

Control of Term-III: We obtain

Term-III = 〈∇F (wt),−T̃ 〉+ 〈∇F (w̃t)−∇F (wt),−T̃ 〉

≤ γ

2
‖∇F (wt)‖2 +

1

2γ
‖T̃‖2 +

L2
F

2
‖ 1

|M|
∑
i∈M

ei(t)‖2 +
1

2
‖T̃‖2. (4.14)

Control of Term-IV:

Term-IV = 2LFγ
2‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖2 + 2LFγ
2‖∇F (wt)‖2 + LF‖T̃‖2

≤ 2LFγ
2ε22 + 2LFγ

2‖∇F (wt)‖2 + LF‖T̃‖2 (4.15)
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Combining all 4 terms, we obtain

F (w̃t+1) ≤ F (w̃t)−
(γ

2
− γ

50
− 2LFγ

2
)
‖∇F (wt)‖2 +

(
25γL2

F +
γL2

F

100
+
L2
F

2

)
‖ 1

|M|
∑
i∈M

ei(t)‖2

+ 50γε22 + 2LFγ
2ε22 +

(
1

2γ
+

1

2
+ LF

)
‖T̃‖2 (4.16)

We now control the error sequence and ‖T̃‖2. These will be separate lemmas, but

here we write is as a whole.

Control of error sequence:

Lemma 4.8. For all i ∈M, we have

‖ei(t)‖2 ≤ 3(1− δ)
δ

γ2σ2

for all t ≥ 0.

Proof. For machine i ∈M, we have

‖ei(t+ 1)‖2 = ‖Q(pi(wt))− pi(wt)‖2 ≤ (1− δ)‖pi(wt)‖2 = (1− δ)‖γ∇Fi(wt) + ei(t)‖2

Using technique similar to the proof of [71, Lemma 3] and using ‖∇Fi(wt)‖2 ≤ σ2,

we obtain

‖ei(t+ 1)‖2 ≤ 2(1− δ)(1 + 1/η)

δ
γ2σ2

where η > 0. Substituting η = 2 implies

‖ei(t+ 1)‖2 ≤ 3(1− δ)
δ

γ2σ2 (4.17)
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for all i ∈M. This also implies

max
i∈M
‖ei(t+ 1)‖2 ≤ 3(1− δ)

δ
γ2σ2.

Control of ‖T̃‖2:

Lemma 4.9. We obtain

‖T̃‖2 ≤ 9(1 +
√

1− δ)2γ2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
.

Proof. We have

‖T̃‖ = ‖T1 − T2 + T3‖ ≤ ‖T1‖+ ‖T2‖+ ‖T3‖.

We control these 3 terms separately. We obtain

‖T1‖ = ‖ 1

|U|
∑
i∈B∩U

Q(pi(wt))‖ ≤
1

(1− β)m

∑
i∈B∩U

‖Q(pi(wt))‖.

Since the worker machines are sorted according to ‖Q(pi(wt))‖ (the central machine

only gets to see Q(pi(wt)), and so the most natural metric to sort is ‖Q(pi(wt))‖),

we obtain

‖T1‖ ≤
αm

(1− β)m
max
i∈M
‖Q(pi(wt))‖

≤ (1 +
√

1− δ) αm

(1− β)m
max
i∈M
‖pi(wt)‖

≤ (1 +
√

1− δ) αm

(1− β)m
max
i∈M
‖γ∇Fi(wt) + ei(t)‖
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≤ (1 +
√

1− δ) α

(1− β)
γmax
i∈M
‖∇Fi(wt)−∇F (wt)‖+ (1 +

√
1− δ) α

(1− β)
γ‖∇F (wt)‖

+ (1 +
√

1− δ) α

(1− β)
max
i∈M
‖ei(t)‖

≤ (1 +
√

1− δ) αγε1
(1− β)

+ (1 +
√

1− δ) αγ

(1− β)
‖∇F (wt)‖

+ (1 +
√

1− δ) αγσ

(1− β)

√
3(1− δ)

δ
.

Hence,

‖T1‖2 ≤ 3
(1 +

√
1− δ)2

(1− β)2
α2γ2

(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.

Similarly, we obtain,

‖T2‖2 ≤ 3
(1 +

√
1− δ)2

(1− β)2
β2γ2

(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.

For T3, we have

‖T3‖ =
β − α
1− β

‖ 1

|M|
∑
i∈M

Q(pi(wt))‖ ≤
β − α
1− β

1

|M|
∑
i∈M

(1 +
√

1− δ)‖pi(wt)‖

≤ (1 +
√

1− δ)β − α
1− β

max
i∈M
‖pi(wt)‖

Using the previous calculation, we obtain

‖T3‖ ≤ (1 +
√

1− δ)(β − α)γε1
(1− β)

+ (1 +
√

1− δ)(β − α)γ

(1− β)
‖∇F (wt)‖

+ (1 +
√

1− δ)(β − α)γσ

(1− β)

√
3(1− δ)

δ
,

and as a result,

‖T3‖2 ≤ 3
(1 +

√
1− δ)2

(1− β)2
(β − α)2γ2

(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.
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Combining the above 3 terms, we obtain

‖T̃‖2 ≤ 3‖T1‖2 + 3‖T2‖2 + 3‖T3‖2

≤ 9(1 +
√

1− δ)2γ2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.

Back to the convergence of F (.): We use the above bound on ‖T̃‖2 and Lemma 4.8

to conclude the proof of the main convergence result. Recall equation (4.16):

F (w̃t+1) ≤ F (w̃t)−
(γ

2
− γ

50
− 2LFγ

2
)
‖∇F (wt)‖2 +

(
25γL2

F +
γL2

F

100
+
L2
F

2

)
‖ 1

|M|
∑
i∈M

ei(t)‖2

+ 50γε22 + 2LFγ
2ε22 +

(
1

2γ
+

1

2
+ LF

)
‖T̃‖2

First, let us compute the term associated with the error sequence. Note that (from

Cauchy-Schwartz inequality)

‖ 1

|M|
∑
i∈M

ei(t)‖2 ≤ 1

|M|
∑
i∈M

‖ei(t)‖2,

and from equation (4.17), we obtain

‖ 1

|M|
∑
i∈M

ei(t)‖2 ≤ 3(1− δ)
δ

γ2σ2,

and so the error term is upper bounded by

(
γ2L2

F

2
+
γ3L2

F

100
+ 25γ3L2

F

)
3(1− δ)σ2

δ
.

We now substitute the expression for ‖T̃‖2. We obtain

(
1

2γ
+

1

2
+ LF

)
‖T̃‖2 =

1

2γ
‖T̃‖2 +

(
1

2
+ LF

)
‖T̃‖2.
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The first term in the above equation is

1

2γ
‖T̃‖2 ≤ 9γ(1 +

√
1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
≤ 9γ(1 +

√
1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

]
‖∇F (wt)‖2

+
9γ(1 +

√
1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
,

and the second term is

(
1

2
+ LF

)
‖T̃‖2

≤
(

1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
≤
(

1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

]
‖∇F (wt)‖2

+

(
1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)

Collecting all the above terms, the coefficient of −γ‖∇F (wt)‖2 is given by

1

2
− 1

50
− 2LFγ −

9(1 +
√

1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

]
− (

1

2
+ LF )

9γ(1 +
√

1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

]
.

Provided we select a sufficiently small γ, a little algebra shows that if

9(1 +
√

1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

]
<

(
1

2
− 1

50

)
,

the coefficient of ‖∇F (wt)‖2 becomes −cγ, where c > 0 is a universal constant.

Considering the other terms and rewriting equation (4.16), we obtain

F (w̃t+1) ≤ F (w̃t)− cγ‖∇F (wt)‖2 +

(
γ2L2

F

2
+
γ3L2

F

100
+ 25γ3L2

F

)
3(1− δ)σ2

δ
+ 50γε22
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+ 2LFγ
2ε22 +

9γ(1 +
√

1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

(
1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
.

Continuing, we get

1

T + 1

T∑
t=0

‖∇F (wt)‖2

≤ 1

cγ(T + 1)

T∑
t=0

(F (w̃t)− F (w̃t+1)) +

(
γL2

F

2
+
γ2L2

F

100
+ 25γ2L2

F

)
3(1− δ)σ2

cδ
+

50

c
ε22

+
2LFγε

2
2

c
+

9(1 +
√

1− δ)2

2c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

(
1

2
+ LF

)
9γ(1 +

√
1− δ)2

c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
.

Using the telescoping sum, we obtain

min
t=0,...,T

‖∇F (wt)‖2

≤ F (w0)− F ∗

cγ(T + 1)
+

[
9(1 +

√
1− δ)2

2c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

50

c
ε22

]
+ γ

[
L2
F

2

3(1− δ)σ2

cδ
+

2LF ε
2
2

c
+

(
1

2
+ LF

)
9(1 +

√
1− δ)2

c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)]
+ γ2

[
(
L2
F

100
+ 25L2

F )
3(1− δ)σ2

cδ

]

Simplifying the above expression, we write

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

cγ(T + 1)
+ ∆1 + γ∆2 + γ2∆3,

where the definition of ∆1,∆2 and ∆3 are immediate from the above expression.
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Remark 4.11. (Choice of Step Size γ) Substituting γ = 1√
T+1

, we obtain

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

c
√
T + 1

+ ∆1 +
∆2√
T + 1

+
∆3

T + 1
,

with high probability. Hence, we observe that the quantity associated with ∆3 goes

down at a considerably faster rate (O(1/T )) than the other terms and hence can be

ignored, when T is large.

Remark 4.12. Note that when no Byzantine worker machines are present, i.e.,

α = β = 0, we obtain

∆1 =
50

c
ε22, ∆2 =

L2

2

3(1− δ)σ2

cδ
+

2Lε22
c

, ∆3 = (
L2

100
+ 25L2)

3(1− δ)σ2

cδ
.

Additionally, if δ = Θ(1) (this is quite common in applications like training of

neural nets, as mentioned earlier), we obtain ∆2 = C(L2σ2 + Lε22), and ∆3 = C1L
2.

Substituting ε2 = O( d√
mn

) and for a fixed d, the upper bound in the above theorem is

order-wise identical to that of standard SGD in a population loss minimization problem

under similar setting [18],[59],[71, Remark 4].

Remark 4.13. (No compression setting) In the setting, where δ = 1 (no compres-

sion), we obtain

∆1 = O
[
d2

(
α2

n
+

1

mn

)]
,

and

∆2 = O
[
d2L

(
α2

n
+

1

mn

)]
,

and ∆3 = 0. The statistical rate (obtained by making T sufficiently large) of the

problem is ∆1, and this rate matches exactly to that of [135]. Hence, we could recover
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(a) Number of Byzantine
nodes=10

(b) Number of Byzantine
nodes=20

Figure 4.1: Comparison of Robust Compressed Gradient Descent with and without
thresholding scheme in a regression problem. The plots show better convergence with
thersholding.

(a) Number of Byzantine
nodes=10

(b) Number of Byzantine
nodes=20

Figure 4.2: Comparison of Robust Compressed Gradient Descent with majority vote
based signSGD [13] in regression Problem. The plots show better convergence with
tthresholding in comparison to the majority vote based robestness of [13]

the optimal rate without compression. Furthermore, this rate is optimal in (α,m, n)

as shown in [135].

4.7 Experiments

In this section we validate the correctness of our proposed algorithms for linear

regression problem and training ReLU network. In all the experiments, we choose the

following compression scheme: given any x ∈ Rd, we report C(x) = {‖x‖1
d
, sign(x)}

where sign(x) serves as the quantized vector and ‖x‖1
d

is the scaling factor. All the

reported results are averaged over 20 different runs.
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First we consider a least square regression problem w∗ = arg minw ‖Aw−b‖2. For

the regression problem we generate matrix A ∈ RN×d, vector w∗ ∈ Rd by sampling

each item independently from standard normal distribution and set b = Aw∗.

Here we choose N = 4000 and consider d = 1000. We partition the data set equally

into m = 200 servers. We randomly choose αm (= 10, 20) workers to be Byzantine and

apply norm based thresholding operation with parameter βm (= 12, 22) respectively.

We simulate the Byzantine workers by adding i.i.dN (0, 10Id) entries to the gradient.

In our experiments the gradient is the most pertinent information of the the worker

server. So we choose to add noise to the gradient to make it a Byzantine worker.

However, later on, we consider several kinds of attack models. We choose ‖wt −w∗‖

as the error metric for this problem.

Effectiveness of thresholding: We compare Algorithm 1 with compressed gradient

descent (with vanilla aggregation). Our method is equipped with Byzantine tolerance

steps and the vanilla compressed gradient just computes the average of the compressed

gradient sent by the workers. From Figure 4.1 it is evident that the the application of

norm based thresholding scheme provides better convergence result compared to the

compressed gradient method without it.

Comparison with signSGD with majority vote: Next, in Figure 4.2, we show

the comparison of our method with [13] in the regression setup described above. Our

method shows a better trend in convergence.

Error-feedback with thresholding scheme: We demonstrate the effectiveness

of Byzantine resilience with error-feedback scheme as described in Algorithm 2. We

compare our scheme with Algorithm 1 (which does not use error feedback) in Figure 4.3.

It is evident that with error-feedback, better convergence is achieved.
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(a) Number of Byzantine
nodes=10

(b) Number of Byzantine
nodes=20

Figure 4.3: Comparison of norm based thresholding with and without error feedback.
The plots show that error feedback based scheme offers better convergence.

(a) (b)

Figure 4.4: Training (cross entropy) loss for MNIST image. Comparison with (a)
Uncompressed Trimmed mean [135] (b) majority based signSGD of [13]. In plot (a)
show that Robust Gradient descent matches the convergence of the uncompressed
trimmed mean [135]. Plot (b) show a faster convergence compared to the algorithm
of [13].

Feed-forward Neural Net with ReLU activation: Next, we show the effec-

tiveness of our method in training a fully connected feed forward neural net. We

implement the neural net in pytorch and use the digit recognition dataset MNIST

([80]). We partition 60, 000 training data into 200 different worker nodes. The neural

net is equipped with 1000 node hidden layer with ReLU activation function and we

choose cross-entropy-loss as the loss function. We simulate the Byzantine workers

by adding i.i.d N (0, 10Id) entries to the gradient. In Figure 4.4 we compare our

robust compressed gradeint descent scheme with the trimmed mean scheme of [135]

and majority vote based signSGD scheme of [13]. Compared to the majority vote

based scheme, our scheme converges faster. Further, our method shows as good
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as performance of trimmed mean despite the fact the robust scheme of [135] is an

uncompressed scheme and uses a more complicated aggregation rules.

(a) Deterministic shift (b) Random Labeling

Figure 4.5: Training (cross entropy) loss for MNIST image. Different types of attack (a)
labels with deterministic shift (9− label) (b) random labels. Plots show theresholding
scheme with different type of Byzantine attacks achieve similar convergence as ‘no
Byzantine’ setup.

Different Types of Attacks: In the previous paragraph we compared our scheme

with existing scheme with additive Gaussian noise as a form of Byzantine attack.

We also show convergence results with the following type of attacks, which are quite

common ([135]) in neural net training with digit recognition dataset [80]. (a) Random

label: the Byzantine worker machines randomly replaces the labels of the data, and (b)

Deterministic Shift: Byzantine workers in a deterministic manner replace the labels

y with 9− y (0 becomes 9 , 9 becomes 0). In Figure 4.5 we show the convergence with

different numbers of Byzantine workers.

Large Number of Byzantine Workers: In Figures 4.6 and 4.7, we show the

convergence results that holds beyond the theoretical limit (as shown in Theorem 4.4

and 4.6) of the number of Byzantine servers in the regression problem and neural net

training. In Figure 4.6, for the regression problem, the Byzantine attack is additive

Gaussian noise as described before and our algorithm is robust up to 40%(α = .4) of

the workers being Byzantine. While training of the feed-forward neural network, we
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apply a deterministic shift as the Byzantine attack, and the algorithm converges even

for 40%(α = .4) Byzantine workers.

Another ‘natural’ Byzantine attack would be when a Byzantine worker sends −εg

where 0 ≤ ε ≤ 1 and g is the local gradient making the algorithm ‘ascent’ type.

We choose ε = 0.9 and show convergence for the regression problem for up to 40%

Byzantine workers, and for the neural network training for up to 33% Byzantine

workers in Figure 4.7.

(a) Regression Problem (b) Training loss for ReLU net

Figure 4.6: Convergence for (a) regression problem (b) training (cross entropy) loss for
MNIST image. Plots show convergence beyond the theoretical bound on the number
of Byzantine machine.

(a) Regression Problem (b) Training loss for ReLU net

Figure 4.7: Convergence for (a) regression problem (b) training (cross entropy) loss
for MNIST image. Plots show convergence with an negative Byzantine attack of −ε
times the local gradient with high number of Byzantine machines for ε = 0.9.

4.8 Conclusion and Future Direction

In this chapter, we address the problem of robust distributed optimization where

the worker machines send the compressed gradient to the central machine. We propose
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a first order optimization algorithm, and consider the settings of restricted as well as

arbitrary Byzantine machines. Moreover, we consider the setup where error feedback

is used to accelerate the learning process.

As a future work, it would be interesting to study the variance reduced type

algorithms in this setting. In [61], the authors have studied the variance reduced

gradient descent in the compressed setting. Applying similar technique with Byzantine

resilience can be nice extension of the present work. Also in the Federated setup, data

heterogeneity and data privacy are two very important aspect that we do not consider

in this chapter. In this chapter, we consider that each coordinate of the gradient is

distributed sub-exponentially as they are bounded. But these assumption can be

further relaxed and extended with gradient similarity type condition (see [69]). Here

worker machines send compressed gradient to the central machine, it would also be

interesting to employ differential privacy in addition to compression (in Chapter 3, we

achieved this).
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CHAPTER 5

COMMUNICATION EFFICIENT DISTRIBUTED
APPROXIMATE NEWTON METHOD

In this chapter, we propose and analyze a communication-efficient Newton-type

algorithm by employing compression. The most crucial and challenging part of this

work is in discerning the scope of compression in the second order optimization

method. We use DINGO [32] as the baseline second order algorithm and make it

communication-efficient by employing δ-approximate compressors. As mentioned,

we handle one-round and two-round compression (settings 1 and 2 as described in

Chapter 1) both theoretically and experimentally. We show that with proper choice

of the step-size and hyper-parameters of the algorithm, we can achieve the same rate

of convergence as DINGO. We prove that the gradient norm decreases exponentially

over iterations of the algorithm. We also validate our results for regularized logistic

regression for binary classification on real datasets[22]. Also, we emphasize here that

when δ = 1 (no compression), we recover the same convergence rate of DINGO[32].

Furthermore, in the regime where the compression factor δ is constant (Θ(1)), with a

careful choice of learning rate, our rate of convergence matches (order-wise) to that

of DINGO. So we get compression for free in this parameter regime. Note that, as

illustrated in [71], δ = Θ(1) is usually observed in most practical applications.

Related Work

Distributed Second Order Optimization In the past few years, several dis-

tributed second order algorithms such as DANE [108], INEXACTDANE and AIDE
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[99], DISCO [140] and GIANT [127] have been proposed and analyzed. These algo-

rithms requires convexity of the objective function (in addition to 2nd order oracle

access. Very recently, [102] and [32] alleviate these disadvantages. In [57], a nu-

merical linear algebra based sketching method has been developed to compute the

approximate Hessian. In this work, we deal with non-convex objective and emphasize

communication efficiency.

Gradient Compression In the works [118, 125, 7, 131, 6, 12], communication

efficiency is achieved by coordinate-wise quantization of gradients and in [49], vector

quantization of gradients has been studied. Recently, gradient sparsification where

only top-k component of the d-dimensional gradient vector is communicated, have been

proposed in [62, 8, 3, 113]. In [71], the authors exploit the ‘error in compression’ as

feedback to improve convergence of first order optimization. Very recently, Byzantine

resilient communication efficient method have been analyzed in [13, 53]. Note that

all the compression techniques discussed here are only applicable for first order

optimization.

5.1 Background and Problem Statement

Our objective is to solve the following problem

min
w∈Rd

f(w) = min
w∈Rd

1

m

m∑
i=1

fi(w), (5.1)

in a distributed environment with m worker machines, where each machine has

local access to the ith loss function fi. We assume that the worker machines can

communicate to the central machine, but can not interact among themselves. This is a

commonly used distributed setup particularly in applications like Federated Learning,

large scale neural net training etc. We assume that ith worker machine has n i.i.d

data points {xi,j}nj=1, and hence fi(w) = 1
n

∑n
j=1 l(w; xi,j), where l(w; xi,j) is the
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loss associated with jth data point xi,j. Classically, we use the second order Newton

method for convex optimization, and the update is given by,

wt+1 = wt + αtpt where pt = −[∇2f(wt)]
−1∇f(wt) (5.2)

where αt is the step size. Here we provide a communication efficient Newton type

algorithm in distributed setup. We use the recently proposed and popular second

order distributed optimization algorithm called DINGO [32].

Notation The Moore-Penrose Inverse of any matrix H is denoted by H†. For

vectors x,y ∈ Rd by [x,y] we denote the line {(1− t)x + ty|0 ≤ t ≤ 1}. Also for the

purpose of our algorithm we use the following definitions:

gi,t ≡ ∇fi(wt) Hi,t ≡ ∇2fi(wt)

gt ≡ ∇f(wt) Ht ≡ ∇2f(wt),

H̃i,t ≡

Hi,t

φI

 ∈ R2d×d g̃i,t ≡

gi,t

0

 ∈ R2d, (5.3)

where φ > 0 and 0 ∈ Rd is the all zero vector.

We conclude this section with the set of assumptions required for the analysis

presented in the subsequent sections.

Assumption 5.1 (Twice Differentiablity). For all i ∈ [m], the local loss functions fi

are twice differentiable.

Assumption 5.2 (Moral Smoothness). For all iteration t, there exists a constant

L > 0 such that, for all w ∈ [wt,wt + pt], where pt is the update direction we have

‖∇2f(w)∇f(w)−∇2f(wt)∇f(wt)‖ ≤ L‖w −wt‖.
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Note that this is a weaker assumption than the Lipschitz-ness of both gradient

and Hessian, typically used in related literature [102, 32]. The assumption requires

the gradient and Hessian to be Lipschitz continuous on the piece-wise linear path of

the update direction. In [32, 102], more detailed discussion on this can be found. As

shown in [32], we have the following useful lemma.

Lemma 5.1. Let x, z ∈ Rd, β ∈ (0,∞), L ∈ [0,∞) and f : Rd → R be differentiable

and suppose y ∈ [x, z]. If ‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖β, then,

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
L

1 + β
‖y − x‖1+β.

Following the Assumptions 5.1, 5.2, Lemma 5.1 with β = 1 and using the fact

∇(1
2
‖∇f(w)‖2) = ∇2f(w)∇f(w), we obtain

‖∇f(w)‖2 ≤ ‖∇f(wt)‖2 + 〈w −wt,∇2f(wt)∇f(wt)〉

+ L‖w −wt‖2, (5.4)

for all w ∈ [wt,wt + pt] and all iteration t.

Assumption 5.3. For all i ∈ [m] there exists constants γi ∈ (0,∞) such that

‖H†i,t‖ ≤ γi.

Assumption 5.4. For all i ∈ [m] there exists constants τi ∈ (0,∞) such that ‖Hi,t‖ ≤

τi.

Assumptions 5.3,5.4 characterize the spectrum of the Hessian and its pseudo-inverse.

Assumption 5.4 implies that each local Hessian has largest singular value uniformly

bounded for all iterates. Also, Assumption 5.3 deals with the smallest singular value

of the Hessian. If the function is strongly convex, then the smallest singular value

of the Hessian is always positive. But in more general sense, the Hessian is always
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positive definite in its own range space [102]. In the following assumption, we state

the more general form of the Assumption 5.3.

Assumption 5.5. There exists an constant β ∈ (0,∞) such that for all iteration t

we have ‖Htp‖ ≥ β‖p‖ where p is in the range space of Ht i,e p ∈ R(Ht).

Also an assumption similar to below appear in [32].

Assumption 5.6. There exists a constant ηi such that ‖(H̃T
i,t)
†Q(Htgt)‖ ≥ ηi‖gt‖.

Observe that the assumption is dependent on the compression Q. In Lemma 5.3,

we justify this assumption by providing a proper value to ηi.

The next assumption is basically a restatement of Pythagoras theorem, the proof

of which can be found in [102].

Assumption 5.7. There exists a constant ν ∈ (0, 1) such that

‖(U⊥w)T∇f(w)‖2 ≤ 1− ν
ν
‖(UT

w∇f(w)‖2,

for all w ∈ Rd, where U and U⊥ are the orthonormal basis for the range space of

Hessian and its orthogonal complement.

Using Assumption 5.7, we infer that ‖∇f(w)‖2 ≤ 1
ν
‖(UT

w∇f(w)‖2 for all w ∈ Rd.

Lemma 5.2. If Q is a δ-compressor on set S ∈ Rd as defined in definition 4.4 then

‖Q(x)‖ ≥ (1−
√

1− δ)‖x‖2 (5.5)

for all x ∈ S and δ ∈ [0, 1].
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Proof. For a δ-compressor Q, we have

‖Q(x)− x‖ ≥ |‖Q(x)‖ − ‖x‖| ≥ ‖Q(x)‖ − ‖x‖

and we also have

‖Q(x)− x‖ ≥ |‖x‖ − ‖Q(x)‖| ≥ ‖Q(x)‖+ ‖x‖

So

‖Q(x)‖ ≥ ‖x‖ − ‖Q(x)− x‖

≥ ‖x‖ −
√

1− δ‖x‖ (Using the definition 4.4)

= (1−
√

1− δ)‖x‖

Lemma 5.3. Under the Assumptions 5.4, 5.5 and 5.7, Assumption 5.6 holds with

ηi = β(1−
√

1− δ)( ν

τ 2
i + φ2

)1/2,

where φ is described in 5.3 and δ is the compression factor.

Proof. Proof of lemma 5.3: In this proof of lemma 5.3 we are going to validate the

assumption 5.6. The positive definite matrix H̃T
i,tH̃i,t has eigenvalue at most τ 2

i + φ2.

So we have

‖(H̃T
i,t)
†Q(Htgt)‖2 = Q(Htgt)

T (H̃T
i,tH̃i,t)

−1Q(Htgt) ≥
1

τ 2
i + φ2

‖Q(Htgt)‖2
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Now we can bound the ‖Q(Htgt)‖ the following way

‖Q(Htgt)‖ ≥ (1−
√

1− δ)‖Htgt‖ by equation 5.5

Now assume that U and U⊥ are the ortho-normal basis and the orthogonal complement

for gt. Now we can say

‖Ht(U
TU + (U⊥)TU⊥)gt‖ ≥ ‖HtU

TUgt‖

≥ β‖UTUgt‖ Using assumption 5.5

≥ β
√
ν‖gt‖ Using assumption 5.7

Finally we have

‖(H̃T
i,t)
†Q(Htgt)‖ ≥ β(1−

√
1− δ)( ν

τ 2
i + φ2

)1/2‖gt‖

5.2 One Round Compression

In this section, we propose and analyze an algorithm for the communication

efficient second order optimization. It is formally written in Algorithm 3. The

algorithm works mainly on the estimation of the gradient in the first round and

the estimation of the update direction on the next. In this section, we assume

that the worker machines do not compress the local gradients in the first round,

i.e., Q1(x) = x for all x, in Algorithm 3. So, the central machine computes the

full gradient gt = 1
m

∑m
i=1 gi,t, after receiving the local gradients. Next the central

machine broadcasts the gradient gt and each worker machine computes the following

(compressed) vectors Q(Hi,tgt),Q(H†i,tgt),Q(H̃†i,tgt). Update direction pt and step-

size α are computed based on these vectors. The iterated update wt+1 = wt + αpt
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is then performed based on the three cases (Algorithm 3). The constant G̃ in the

algorithm is θ‖gt‖2. We now give results on the three cases of the algorithm. For

shorthand, we define γ = 1
m

∑m
i=1 γi and τ = 1

m

∑m
i=1 τi, which are used in the results

of this and subsequent sections.

Case 1 If

〈 1

m

m∑
i=1

Q(H†i,tgt),Q(Htgt)〉 ≥ θ‖gt‖2 (5.6)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t = −Q(H†i,tgt) and set α ≤ 1

Lγ(1+
√

1−δ)2 [ θ(1−ρ)
γ
−

(1− δ +
√

1− δ)τ ].

Theorem 5.4. Under the Assumptions 5.1, 5.2, 5.3 and 5.4, if we run Algorithm 3

we have

‖gt+1‖2 ≤ (1− 2ραθ)‖gt‖2. (5.7)

Proof. Proof of Theorem 5.4 Following from the equation 5.4 and with update

wt+1 = wt + αpt we have

‖gt+1‖2 ≤ ‖gt‖2 + 2α〈pt,Htgt〉+ Lα2‖pt‖2 (5.8)

First we are going to compute the bound on pt where pt = − 1
m

∑m
i=1Q(H̃†i,tg̃t)

‖pt‖ = ‖ 1

m

m∑
i=1

Q(H†i,tgt)‖

≤ 1

m

m∑
i=1

(1 +
√

1− δ)‖H†i,tgt‖ ( Definition of compressor)

≤ 1

m

m∑
i=1

(1 +
√

1− δ)γi‖gt‖ Form assumption 5.3

= (1 +
√

1− δ)γ‖gt‖ (
1

m

m∑
i=1

γi = γ)
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Now we control the cross product term

〈pt,Htgt〉 = 〈pt,
1

m

m∑
i=1

Q(Hi,tgt)〉︸ ︷︷ ︸
Term1

+ 〈pt,
1

m

m∑
i=1

Hi,tgt −
1

m

m∑
i=1

Q(Hi,tgt)〉︸ ︷︷ ︸
Term2

(5.9)

Now the Term 1 can be bounded by the condition 5.6

〈pt,
1

m

m∑
i=1

Q(Hi,tgt)〉 = 〈− 1

m

m∑
i=1

Q(H̃†i,tg̃t),
1

m

m∑
i=1

Q(Hi,tgt)〉 ≤ −θ‖gt‖2

We bound the Term 2

〈pt,
1

m

m∑
i=1

Hi,tgt −
1

m

m∑
i=1

Q(Hi,tgt)〉

≤ ‖pt‖‖
1

m

m∑
i=1

Hi,tgt −Q(Hi,tgt)‖

≤ ‖pt‖(
1

m

m∑
i=1

√
1− δ‖Hi,tgt‖) (δ − compressor)

≤ ‖pt‖(
1

m

m∑
i=1

√
1− δτi‖gt‖) (Assumption 5.4)

≤ (
1

m

m∑
i=1

(1 +
√

1− δ)γi)(
1

m

m∑
i=1

√
1− δτi)‖gt‖2 (Assumption 5.3)

≤ (1− δ +
√

1− δ)γτ‖gt‖2 (
1

m

m∑
i=1

τi = τ)

Now we use the bound of Term 1 and Term 2 and put it in equation 5.9

〈pt,Htgt〉 ≤ (−θ + (1− δ +
√

1− δ)γτ)‖gt‖2

Collecting all the terms and plugging in equation 5.8, we have

‖gt+1‖2 ≤ ‖gt‖2 + 2α(−θ + (1− δ +
√

1− δ)γτ)‖gt‖2 + Lα2γ2(1 +
√

1− δ)2‖gt‖2
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≤ ‖gt‖2 + 2α(−θ + (1− δ +
√

1− δ)γτ +
Lαγ2

2
(1 +

√
1− δ)2)‖gt‖2

≤ (1− 2αρθ)‖gt‖2

where θ(1− ρ) = (1− δ +
√

1− δ)γτ + Lαγ2

2
(1 +

√
1− δ)2. Simplifying it we get

α =
1

Lγ(1 +
√

1− δ)2
[
θ(1− ρ)

γ
− (1− δ +

√
1− δ)τ ]

Remark 5.1. Note that we achieve an exponential convergence even for non-

convex functions. When δ is a constant, our algorithm enjoys the same order of

convergence with compression as in [71]. So, we get the compression for free.

Remark 5.2. Case 1 is often satisfied if we choose the value of the hyper-parameter

θ ∼ γτ and a constant δ. Experimentally we find that it to be the most frequent case.

Case 2 If

〈 1

m

m∑
i=1

Q(H̃†i,tg̃t),Q(Htgt)〉 ≥ θ‖gt‖2 (5.10)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t = −Q(H̃†i,tg̃t) and set α ≤ 2φ2

L((1+
√

1−δ)2 [θ(1−

ρ)− (1− δ +
√

1− δ) τ
φ
]. Here, (from the construction) we assume

‖H̃†i,t‖ ≤ 1/φ. (5.11)

Theorem 5.5. Under the Assumptions 5.1,5.2, 5.4 and condition (5.11), if we run

Algorithm 3 we have

‖gt+1‖2 ≤ (1− 2ραθ)‖gt‖2. (5.12)
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Proof. Proof of Theorem 5.5 Similarly to the proof of 5.4, we bound the term pt for

the case 2 where pt = − 1
m

∑m
i=1Q(H̃†i,tg̃t).

‖pt‖ = ‖ 1

m

m∑
i=1

Q(H̃†i,tg̃t)‖

≤ 1

m

m∑
i=1

(1 +
√

1− δ)‖H̃†i,tg̃t‖ (δ- Compressor)

≤ 1

m

m∑
i=1

(1 +
√

1− δ) 1

φ
‖gt‖ (From equation 5.11)

= (1 +
√

1− δ) 1

φ
‖gt‖

Now we control the dot product term

〈pt,Htgt〉 = 〈pt,
1

m

m∑
i=1

Q(Hi,tgt)〉︸ ︷︷ ︸
Term1

+ 〈pt,
1

m

m∑
i=1

Hi,tgt −
1

m

m∑
i=1

Q(Hi,tgt)〉︸ ︷︷ ︸
Term2

(5.13)

Now the Term 1 can be bounded by the condition 5.10

〈pt,
1

m

m∑
i=1

Q(Hi,tgt)〉 = 〈− 1

m

m∑
i=1

Q(H̃†i,tg̃t),
1

m

m∑
i=1

Q(Hi,tgt)〉 ≤ −θ‖gt‖2

We bound the Term 2

〈pt,
1

m

m∑
i=1

Hi,tgt −
1

m

m∑
i=1

Q(Hi,tgt)〉

≤ ‖pt‖‖
1

m

m∑
i=1

Hi,tgt −
1

m

m∑
i=1

Q(Hi,tgt)‖

≤ ‖pt‖(
1

m

m∑
i=1

√
1− δτi‖gt‖) (δ- Compressor)

≤ ((1 +
√

1− δ) 1

φ
)(

1

m

m∑
i=1

√
1− δτi)‖gt‖2

= (1− δ +
√

1− δ)τ
φ
‖gt‖2 (

1

m

m∑
i=1

τi = τ)
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So we have the following bound for equation 5.13

〈pt,Htgt〉 = (−θ + (1− δ +
√

1− δ)τ
φ

)‖gt‖2

Collecting all the terms and plugging in equation 5.8, we have

‖gt+1‖2 ≤ ‖gt‖2 + 2α(−θ + (1− δ +
√

1− δ)τ
φ

)‖gt‖2 + Lα2((1 +
√

1− δ) 1

φ
)2‖gt‖2

= ‖gt‖2 + 2α(−θ + (1− δ +
√

1− δ)τ
φ

+ Lα((1 +
√

1− δ)2 1

2φ2
))‖gt‖2

≤ (1− 2αρθ)‖gt‖2

here θ(1− ρ) = (1− δ +
√

1− δ) τ
φ

+ Lα((1 +
√

1− δ)2 1
2φ2 ). We get the following

α =
2φ2

L((1 +
√

1− δ)2
[θ(1− ρ)− (1− δ +

√
1− δ)τ

φ
]

Remark 5.3. We resort to case 2 if the condition for case 1 is not satisfied. We

observe the similar exponential convergence. The convergence rate here depends on

the choice of φ which is the spectral upper bound of H̃†. In our experiments, we did

not encounter this case.

Case 3 When the conditions for case 1 and case 2 are not satisfied, the central

machine broadcasts Q(Htgt) and solve the following optimization problem locally:

argminp‖H̃i,tp + g̃t‖2

such that 〈p,Q(Htgt)〉 ≤ −θ‖gt‖2. (5.14)
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Proposition 5.6. The solution to the optimization problem (5.14) is

p̂i,t = −H̃†i,tg̃t − λi,t(H̃T
i,tH̃i,t)

−1Q(Htĝt)

where λi,t =
θ‖ĝt‖2 − (Q(Htĝt))

T H̃†i,tg̃t

(Q(Htĝt))T (H̃T
i,tH̃i,t)−1Q(Htĝt)

.

In Algorithm 3, we use pi,t (to get the direction pt), which is defined as: pi,t =

Q(p̂i,t) and set α ≤ 2
L(1+

√
1−δ)2c2

(θ(1−ρ)−(2
√

1− δcτ )), where c ≡ 1
m

∑m
i=1( 1

φ
(2+ θ

ηi
)).

Theorem 5.7. Suppose Assumptions 5.1,5.6 and Lemma 5.3 hold. Then, Algorithm

3 yields

‖gt+1‖2 ≤ (1− 2ραθ)‖gt‖2. (5.15)

Proof. Proof of Theorem 5.7 The update here is pt = 1
m

∑m
i=1 pi,t where

pi,t = −Q(H̃†i,tg̃t − λi,t(H̃T
i,tH̃i,t)

−1Q(Htgt)) where λi,t =
θ‖gt‖2 − (Q(Htgt))

T H̃†i,tg̃t

(Q(Htgt))T (H̃T
i,tH̃i,t)−1Q(Htgt)

(5.16)

First we bound pt

‖pt‖ = ‖ 1

m

m∑
i=1

pi,t‖

≤ 1

m

m∑
i=1

‖pi,t‖

≤ (1 +
√

1 + δ)
1

m

m∑
i=1

‖H̃†i,tg̃t − λi,t(H̃T
i,tH̃i,t)

−1Q(Htgt)‖

≤ (1 +
√

1 + δ)
1

m

m∑
i=1

(‖H̃†i,tg̃t‖+ ‖λi,t(H̃T
i,tH̃i,t)

−1Q(Htgt)‖)
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Now we use the fact that (Q(Htgt))
T (H̃T

i,tH̃i,t)
−1Q(Htgt) = ‖(H̃T

i,t)
†Q(Htgt)‖2 and

bound the following term

‖λi,t(H̃T
i,tH̃i,t)

−1Q(Htgt)‖

= ‖
θ‖gt‖2 − (Q(Htgt))

T H̃†i,tg̃t

(Q(Htgt))T (H̃T
i,tH̃i,t)−1Q(Htgt)

‖‖(H̃T
i,tH̃i,t)

−1Q(Htgt)‖

= ‖
θ‖gt‖2 − (Q(Htgt))

T H̃†i,tg̃t

‖(H̃T
i,t)
†Q(Htgt)‖2

‖‖(H̃†i,t(H̃T )i,t)
†Q(Htgt)‖

≤ ‖
θ‖gt‖2 − (Q(Htgt))

T H̃†i,tg̃t

‖(H̃T
i,t)
†Q(Htgt)‖

‖
‖(H̃†i,t‖‖(H̃T )i,t)

†Q(Htgt)‖
‖(H̃T

i,t)
†Q(Htgt)‖

≤ 1

φ
(

θ‖gt‖2

‖(H̃T
i,t)
†Q(Htgt)‖

+
‖(Q(Htgt))

T H̃†i,tg̃t‖
‖(H̃T

i,t)
†Q(Htgt)‖

)

≤ 1

φ
(
θ

ηi
‖gt‖+

‖g̃t‖‖H̃T
i,t)
†Q(Htgt)‖‖

‖H̃T
i,t)
†Q(Htgt)‖‖

)

≤ 1

φ
(1 +

θ

ηi
)‖gt‖

Also we can say that

‖H̃†i,tg̃t‖ ≤
1

φ
‖gt‖

Finally we can bound

‖pt‖ ≤ (1 +
√

1 + δ)
1

m

m∑
i=1

(
1

φ
(2 +

θ

ηi
))‖gt‖ = c(1 +

√
1− δ)‖gt‖

where c = 1
m

∑m
i=1( 1

φ
(2 + θ

ηi
))

Now we take care of the cross product term. Assume that p̂i,t is the uncompressed

vector of the pi,t , i,e pi,t = Q(p̂i,t) and p̂t = 1
m

∑m
i=1 p̂i,t
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〈pt,Htgt〉

= 〈pt − p̂t,Htgt〉+ 〈p̂t,Htgt〉

= 〈pt − p̂t,Htgt〉+ 〈p̂t,Htgt −Q(Htgt)〉+ 〈p̂t,Q(Htgt)〉

≤ ‖p̂t − pt‖‖Htgt‖+ ‖p̂t‖‖Htgt −Q(Htgt)‖ − θ‖gt‖2

= ‖ 1

m

m∑
i=1

(p̂i,t − pi,t)‖‖
1

m

m∑
i=1

Hi,tgt‖+ ‖ 1

m

m∑
i=1

p̂i,t‖‖
1

m

m∑
i=1

(Hi,tgt −Q(Hi,tgt)‖ − θ‖gt‖2

≤ 2(
√

1− δ)c( 1

m

m∑
i=1

τi)‖gt‖2 − θ‖gt‖2

= (−θ + 2(
√

1− δ)cτ)‖gt‖2

Collecting all the terms and plugging in equation 5.8, we have

‖gt+1‖2 ≤ ‖gt‖2 + 2α(−θ + 2(
√

1− δ)cτ)‖gt‖2 + Lα2c2(1 +
√

1− δ)2‖gt‖2

= (1− 2αρθ)‖gt‖2

where θ(1− ρ) = (2
√

1− δ)cτ) + 1
2
Lα(1 +

√
1− δ)2c2 , we get bound on α

α =
2

L(1 +
√

1− δ)2c2
(θ(1− ρ)− (2

√
1− δcτ))

Remark 5.4. Note that, although we retain the same exponential rate of con-

vergence, case 3 is not ideal both in terms of convergence rate and communication

as it requires one more round of communication between the central and the worker

machines. Fortunately, this case occurs rarely in practical situation (as we observe

experimentally in Section 6.5).
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Algorithm 3

1: Input: Initial iterate w0 ∈ Rd , gradient tolerance ξ > 0, Maximum iteration T ,
parameter ρ ∈ [0, 1], parameter θ > 0 and regularization parameter φ > 0 and
Compressors Q,Q1

2: for t = 0, 1, . . . , T − 1 do
3: All worker i ∈ [m] locally compute and compress Q1(gi,t) and communicate it

to the central server
4: Central machine compute full gradient ĝt = 1

m

∑m
i=1Q1(gi,t)

5: if ‖ĝt‖ < ξ then
6: return wt

7: else
8: The central machine broadcasts ĝt and in parallel each worker computes using

compression scheme Q(Hi,tĝt),Q(H†i,tĝt),Q(H̃†i,tĝt)

9: Central machine computes Q(Htĝt) = 1
m

∑m
i=1Q(Hi,tĝt),Q(H†i,tĝt),

1
m

∑m
i=1Q(H†i,tĝt) and 1

m

∑m
i=1Q(H̃†i,tg̃t)

10: if (Case 1) 〈 1
m

∑m
i=1Q(H†i,tĝt),Q(Htĝt)〉 ≥ G̃ then

11: pt = 1
m

∑m
i=1 pi,t with pi,t = −Q(H†i,tĝt)

12: else if (Case 2) 〈 1
m

∑m
i=1Q(H̃†i,tg̃t),Q(Htĝt)〉 ≥ G̃ then

13: pt = 1
m

∑m
i=1 pi,t with pi,t = −Q(H̃†i,tg̃t)

14: else
15: The central machine broadcasts Q(Htĝt) and all the worker solve in parallel

pi,t = Q(−H̃†i,tg̃t − λi,t(H̃T
i,tH̃i,t)

−1Q(Htĝt))

where λi,t =
θ‖ĝt‖2 − (Q(Htĝt))

T H̃†i,tg̃t

(Q(Htĝt))T (H̃T
i,tH̃i,t)−1Q(Htĝt)

16: Compress and send pi,t. The central machine computes pt = 1
m

∑m
i=1 pi,t.

17: end if
18: The central machine sets the value of α according to text and updates

wt+1 = wt + αpt
19: end if
20: end for

So far, we let the worker machines send uncompressed local gradients and only

compress the second round. Hence, with one round compression we do not gain savings

in communication order-wise. In the subsequent section, we remove this issue by

employing compression in both gradient and Hessian based computation.
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5.3 Two Round Compression

Here, we use compression in both rounds of communication with the central

machine. In particular, the worker machines use a δ-approximate compressor to

compress the gradient. Hence, each worker machine sends Q1(gi,t) to the central

machine (Algorithm 3). The central machine then computes ĝt = 1
m

∑m
i=1Q1(gi,t) and

broadcasts it. Next, the updates are done similar to the one round compression. Here,

for simplicity we choose the same compression factor δ for both rounds, i.e., Q1 = Q.

Also, we choose G̃ = θ 1
m

∑m
i=1 ‖Q(gi,t)‖2. Similar to Section 5.2, we analyze case by

case basis.

Case 1 If

〈 1

m

m∑
i=1

Q(H†i,tĝt),Q(Htĝt)〉 ≥ θ
1

m

m∑
i=1

‖Q(gi,t)‖2 (5.17)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t = −Q(H†i,tĝt) and set

α ≤ 2

αLγ2(1 +
√

1− δ)2
× (θ(1− ρ)−

√
1− δ(1 +

√
1− δ)γτ(

1−
√

2− δ
1−
√

1− δ
))

Theorem 5.8. Under Assumptions 5.1,5.2,5.3 and 5.4, if we run Algorithm 3, we

obtain

‖gt+1‖2 ≤ (1− 2ραθ(1−
√

1− δ)2)‖gt‖2. (5.18)

Proof. Proof of Theorem 5.8 Here the update is

pt = − 1

m

m∑
i=1

Q(H†i,tĝt)
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where gt = 1
m

∑m
i=1Q(gi,t). The update is done under the condition

〈 1

m

m∑
i=1

Q(H†i,tĝt),
1

m

m∑
i=1

Q(Hi,tĝt)〉 ≥ θ
1

m

m∑
i=1

‖Q(gi,t)‖2

For the purpose of the convergence analysis we make the following calculation

1

m

m∑
i=1

‖Q(gi,t)‖2 ≥ (1−
√

1− δ)2 1

m

m∑
i=1

‖gi,t‖2

≥ (1−
√

1− δ)2‖ 1

m

m∑
i=1

gi,t‖2

= (1−
√

1− δ)2‖gt‖2

Now we bound the update

‖pt‖ = ‖ 1

m

m∑
i=1

Q(H†i,tĝt)‖ (Equation 5.5)

≤ 1

m

m∑
i=1

(1 +
√

1− δ)‖H†i,tĝt‖ (δ − Compressor)

≤ 1

m

m∑
i=1

(1 +
√

1− δ)γi‖ĝt‖ (Assumption 5.3)

≤ (1 +
√

1− δ)γ‖ĝt‖ (5.19)

The cross product term is

〈pt,Htgt〉 = 〈pt,Htgt −Q(Htĝt)〉+ 〈pt,Q(Htĝt)〉

≤ 〈pt,Htgt −Q(Htĝt)〉 − θ
1

m

m∑
i=1

‖Q(gi,t)‖2

Now we bound the first term as follows

〈pt,Htgt −Q(Htĝt)〉 ≤ ‖pt‖‖Htgt −Q(Htĝt)‖
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= ‖pt‖‖Htgt −Htĝt + Htĝt −Q(Htĝt)‖

≤ ‖pt‖(‖Htgt −Htĝt‖+ ‖Htĝt −Q(Htĝt)‖)

≤ ‖pt‖(‖Ht‖‖gt − ĝt‖+
√

1− δ‖Ht‖‖ĝt‖)

≤
√

1− δ(1 +
√

1− δ)γτ(‖ĝt‖
1

m

m∑
i=1

‖gi,t‖+ ‖ĝt‖2)

We further bound

‖ĝt‖
1

m

m∑
i=1

‖gi,t‖ ≤ (
1

m

m∑
i=1

‖Q(gi,t)‖)(
1

1−
√

1− δ
1

m

m∑
i=1

‖Q(gi,t)‖)

≤ 1

1−
√

1− δ
1

m

m∑
i=1

‖Q(gi,t)‖2

Also

‖ĝt‖2 ≤ 1

m

m∑
i=1

‖Q(gi,t)‖2

Assume G̃ = 1
m

∑m
i=1 ‖Q(gi,t)‖2,

〈pt,Htgt −Q(Htĝt)〉 ≤
√

1− δ(1 +
√

1− δ)γτ(
1−
√

2− δ
1−
√

1− δ
)G̃

Collecting all we have and

‖gt+1‖2 ≤ ‖gt‖2 + 2α(−θG̃+
√

1− δ(1 +
√

1− δ)γτ(
1−
√

2− δ
1−
√

1− δ
)G̃) + α2Lγ2(1 +

√
1− δ)2G̃

= ‖gt‖2 − 2αθG̃+ 2α(
√

1− δ(1 +
√

1− δ)γτ(
1−
√

2− δ
1−
√

1− δ
)G̃+

αLγ2

2
(1 +

√
1− δ)2G̃)

≤ ‖gt‖2 − 2αθρG̃

≤ (1− 2αθρ(1−
√

1− δ)2)‖gt‖2
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Remark 5.5. Compared to the case 1 of one round compression (Theorem 5.4),

the convergence rate here suffers due to the compressed gradient information. But the

exponential decay still retains. For compression factor δ = Θ(1) (constant), we do not

lose order-wise performance compared to DINGO.

Remark 5.6. Remarkably, the communication cost here is extremely low as com-

pared the one round compression (as we see in experiments as well). Here both rounds

of communication from workers to the central machine are compressed.

Case 2 If

〈 1

m

m∑
i=1

Q(H̃†i,tg̃t),Q(Htĝt)〉 ≥ θ
1

m

m∑
i=1

‖Q(gi,t)‖2 (5.20)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t = −Q(H̃†i,tg̃t) and set

α ≤ 2φ2

αL(1 +
√

1− δ)2
× (θ(1− ρ)−

√
1− δ(1 +

√
1− δ)τ

φ
(
1−
√

2− δ
1−
√

1− δ
)).

Theorem 5.9. Under the assumption 5.1,5.2, 5.4 and equation (5.11), if we run

Algorithm, 3 we obtain

‖gt+1‖2 ≤ (1− 2ραθ(1−
√

1− δ)2)‖gt‖2. (5.21)

Proof. Proof of Theorem 5.9

Here the update is

pt =
1

m

m∑
i=1

−Q(H̃†i,tg̃t)

The update is done under the condition

〈 1

m

m∑
i=1

Q(H̃†i,tg̃t),Q(Htĝt)〉 ≥ θ
1

m

m∑
i=1

‖Q(gi,t)‖2
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First we bound the update term

‖pt‖ = ‖ 1

m

m∑
i=1

Q(H̃†i,tg̃t)‖

≤ 1

m

(∑
i=1

1 +
√

1− δ)‖H̃†i,tg̃t‖

≤ (1 +
√

1− δ) 1

φ
‖ĝt‖

Now we take care of the cross-product term with G̃ = 1
m

∑m
i=1 ‖Q(gi,t)‖2

〈pt,Htgt〉 = 〈pt,Htgt −Q(Htĝt)〉+ 〈pt,Q(Htĝt)〉

≤ 〈pt,Htgt −Q(Htĝt)〉 − θG̃

Along with the previous calculation we can calculate

〈pt,Htgt −Q(Htĝt)〉 ≤
√

1− δ(1 +
√

1− δ)τ
φ
‖ĝt‖(‖ĝt‖

1

m

m∑
i=1

‖gi,t‖+ ‖ĝt‖2)

≤
√

1− δ(1 +
√

1− δ)τ
φ

(
1−
√

2− δ
1−
√

1− δ
)G̃

Collecting all the terms we get

‖gt+1‖2 ≤ ‖gt‖2 + 2α(−θG̃+
√

1− δ(1 +
√

1− δ)τ
φ

(
1−
√

2− δ
1−
√

1− δ
)G̃) + α2L

1

φ2
(1 +

√
1− δ)2G̃

= ‖gt‖2 − 2αθG̃+ 2α(
√

1− δ(1 +
√

1− δ)τ
φ

(
1−
√

2− δ
1−
√

1− δ
)G̃+

αL

2φ2
(1 +

√
1− δ)2G̃)

≤ ‖gt‖2 − 2αθρG̃

≤ (1− 2αθρ(1−
√

1− δ)2)‖gt‖2

With the condition

θ(1− ρ) ≥
√

1− δ(1 +
√

1− δ)τ
φ

(
1−
√

2− δ
1−
√

1− δ
) +

αL

2φ2
(1 +

√
1− δ)2)
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We have value of α

α ≤ 2φ2

αL(1 +
√

1− δ)2
(θ(1− ρ)−

√
1− δ(1 +

√
1− δ)τ

φ
(
1−
√

2− δ
1−
√

1− δ
))

Remark 5.7. Similar to the situation of one round compression, we do not

encounter this case in simulation (Section 6.5). The study and analysis of this case is

mainly of theoretical importance.

Case 3 Note that, since we consider compressed gradient along with compression

local Hessian gradient product, acquiring the required theoretical guarantee seems

quite challenging. Hence we fall back to the one round compression scenario. The

local gradients are communicated without any compression and the follow the update

rule of Case 3 of one round compression. The convergence result of Theorem 5.7 holds

here too.

Remark 5.8. In Section 6.5, we implement this setting in experiments and observe

that this case never happens. Hence, case 3 in not a practical deterrent to the

convergence of Algorithm 3 with two round compression.

5.4 Experimental Result

In this section we provide experimental validation of Algorithm 3. For compression

we choose the following scheme: for any given vector x ∈ Rd the compressor outputs

Q(x) = ‖x‖1
d

sign(x) where sign(x) is the quantized vector and ‖x‖1
d

is the scaling factor.

We consider regularized logistic regression for binary classification defined as

min
w∈Rd

1

n
log(1 + exp(−yixTi w)) +

1

2n
‖w‖2 (5.22)
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(a) a5a (b) w1a

(c) mushroom

Figure 5.1: Comparison of the convergence of DINGO and one and two round
compression methods in terms of ‖gt‖ (gradient norm) of regularized logistic regression
for binary classification data.

where {xi}ni=1 ∈ Rd are data and {yi}ni=1 ∈ {−1,+1} are the corresponding labels.

We choose a5a (number of training data, n = 6414 , dimension d = 123), mushroom

(training data, n = 8124, dimension d = 112) and w1a (training data n = 2477, dimen-

sion d = 300), binary classification datasets from UCI repository [22] . We simulate

the distributed set up by partitioning the data into 10 different worker machines. In

Figure 5.1, we plot the norm of gradient (‖gt‖) to validate the optimization method

described in the theoretical analysis. We choose θ = 0.01 as defined in Algorithm 3.

With this choice of the hyper-parameter, we find that for all the algorithms only case

1 occurs in all the iterations.

Figure 5.1 shows that even with compression, Algorithm 3 converges. We observe

that with a decrease in communication cost, the convergence gets slower. DINGO,

which has no compression (δ = 1) shows the fastest convergence and two round
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compression (with least communication cost) shows the slowest rate. One round

compression is in between them in terms of communication and convergence rate.

We also compare the performance of Algorithm 3 (two round compression) with

the compressed first order algorithm of [53] with identical learning rates. A threshold

of 0.02 on the gradient norm is set as stopping criterion. For the mushroom data [22],

we observe that Algorithm 3 communicates a total of 576 bits per machine, whereas

[53, Algorithm 1] requires 1008 bits. Hence, a total savings of 432×m (m: number

of machines) or a savings of 43% in bits is achieved. However, for Algorithm 3, the

computation complexity at local machines are more than that of first order algorithm.

This can be seen as a complexity communication trade-off.

5.5 Conclusion and Future Direction

In this chapter, we address the problem of communication efficiency in distributed

second order optimization methods. We consider two different setups with compression

in one and two round of the update. A more interesting and challenging idea would

be to do one round of communication per iteration and applying compression on the

update. An obvious idea is to just use the local gradient and Hessian to compute

the update. For any iteration t, in the i-th worker machine, the local gradient and

Hessian are denoted by gi,t and Hi,t respectively. All the worker machines can solve

the problem

arg min
p̂i,t
‖H̃i,tp̂i,t + g̃i,t‖ (5.23)

such that 〈p̂i,t,Hi,tgi,t〉 ≤ −θ‖gi,t‖2 (5.24)

For the purpose analysis, we would need a bound on Hi,tgi,t as it is used in the worker

machine instead of Htgt (global Hessian and gradient product). Such bound is too

strong. In general, Hessian and gradient dissimilarity bound is used separately but
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the bound on product is not used. A study on such condition for convergence analysis

is an interesting idea. Furthermore, Byzantine resilience on top of compression ( later

we study in Chapter 6 under more relaxed condition) in the non-convex setting would

be a good extension of this work.
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CHAPTER 6

DISTRIBUTED NEWTON CAN COMMUNICATE LESS
AND RESIST BYZANTINE WORKERS

In this chapter, we propose COMRADE, a distributed approximate Newton-type

algorithm that communicates less and is resilient to Byzantine workers. Specifically,

we consider a distributed setup with m worker machines and one center machine. The

goal is to minimize a regularized convex loss f : Rd → R, which is additive over the

available data points. Furthermore, we assume that α fraction of the worker machines

are Byzantine, where α ∈ [0, 1/2). We assume that Byzantine workers can send any

arbitrary values to the center machine. In addition, they may completely know the

learning algorithm and are allowed to collude with each other.

In our proposed algorithm, the worker machines communicate only once per it-

eration with the center machine. This is in sharp contrast with the state-of-the-art

distributed second order algorithms (like GIANT [127], DINGO [32], Determinantal

Averaging [37]), which sequentially estimates functions of local gradients and Hessians

and communicate them with the center machine. In this way, they end up commu-

nicating twice per iteration with the center machine. We show that this sequential

estimation is redundant. Instead, in COMRADE, the worker machines only send

a d dimensional vector, the product of the inverse of local Hessian and the local

gradient. Via sketching arguments, we show that the empirical mean of the product

of local Hessian inverse and local gradient is close to the global Hessian inverse and

gradient product, and thus just sending the above-mentioned product is sufficient

to ensure convergence. Hence, in this way, we save O(d) bits of communication per

iteration. Furthermore, in Section 6.4, we argue that, in order to cut down further
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communication, the worker machines can even compress the local Hessian inverse and

gradient product. Specifically, we use a (generic) δ-approximate compressor ([71]) for

this, and for Byzantine resilience, COMRADE employs a simple thresholding policy

on the norms of the local Hessian inverse and local gradient product.Since the norm

of the Hessian-inverse and gradient product determines the amount of movement for

Newton-type algorithms, this norm corresponds to a natural metric for identifying

and filtering out Byzantine workers.

Our Contributions: We propose a communication efficient Newton-type algorithm

that is robust to Byzantine worker machines. Our proposed algorithm, COMRADE

takes as input the local Hessian inverse and gradient product (or a compressed version

of it) from the worker machines, and performs a simple thresholding operation on

the norm of the said vector to discard β > α fraction of workers having largest norm

values. We prove the linear-quadratic rate of convergence of our proposed algorithm

for strongly convex loss functions. In particular, suppose there are m worker machines,

each containing s data points; and let ∆t = wt −w∗, where wt is the t-th iterate of

COMRADE, and w∗ is the optimal model we want to estimate. In Theorem 2, we

show that

‖∆t+1‖ ≤ max{Ψ(1)
t ‖∆t‖,Ψ(2)

t ‖∆t‖2}+ (Ψ
(3)
t + α)

√
1

s
,

where {Ψ(i)
t }3

i=1 are quantities dependent on several problem parameters. Notice that

the above implies a quadratic rate of convergence when ‖∆t‖ ≥ Ψ
(1)
t /Ψ

(2)
t . Subse-

quently, when ‖∆t‖ becomes sufficiently small, the above condition is violated and the

convergence slows down to a linear rate. The error-floor, which is O(1/
√
s) comes from

the Byzantine resilience subroutine in conjunction with the simultaneous estimation

of Hessian and gradient. Furthermore, in Section 6.4, we consider worker machines

compressing the local Hessian inverse and gradient product via a δ-approximate com-
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pressor [71], and show that the (order-wise) rate of convergence remain unchanged,

and the compression factor, δ affects the constants only.

We experimentally validate our proposed algorithm, COMRADE, with several

benchmark data-sets. We consider several types of Byzantine attacks and observe that

COMRADE is robust against Byzantine worker machines, yielding better classification

accuracy compared to the existing state-of-the-art second order algorithms.

A major technical challenge of this paper is to approximate local gradient and

Hessian simultaneously in the presence of Byzantine workers. We use sketching, similar

to [127], along with the norm based Byzantine resilience technique. Using incoherence

(defined shortly) of the local Hessian along with concentration results originating from

uniform sampling, we obtain the simultaneous gradient and Hessian approximation.

Furthermore, ensuring at least one non-Byzantine machine gets trimmed at every

iteration of COMRADE, we control the influence of Byzantine workers.

Related Work: Second order Optimization: Second order optimization has received

a lot of attention in the recent years in the distributed setting owing to its attractive

convergence speed. The fundamentals of second order optimization is laid out in [109],

and an extension with better convergence rates is presented in [99]. Recently, in GIANT

[127] algorithm, each worker machine computes an approximate Newton direction in

each iteration and the center machine averages them to obtain a globally improved

approximate Newton direction. Furthermore, DINGO [32] generalizes second order

optimization beyond convex functions by extending the Newton-MR [102] algorithm in

a distributed setting. Very recently, [37] proposes Determinantal averaging to correct

the inversion bias of the second order optimization. A slightly different line of work

([126], [57], [95]) uses Hessian sketching to solve a large-scale distributed learning

problems.

Byzantine Robust Optimization: In the seminal work of [?], a generic framework

of one shot median based robust learning has been proposed and analyzed in the
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distributed setting. The issue of Byzantine failure is tackled by grouping the servers

in batches and computing the median of batched servers in [27] (the median of means

algorithm). Later in [135, 136], co-ordinate wise median, trimmed mean and iterative

filtering based algorithm have been proposed and optimal statistical error rate is

obtained. Also, [92, 33] consider adversaries may steer convergence to bad local

minimizers for non-convex optimization problems. Byzantine resilience with gradient

quantization has been addressed in the recent works of [13, 54].

Organization: In Section 6.2, we first analyze COMRADE with one round of com-

munication per iteration. We assume α = 0, and focus on the communication efficiency

aspect only. Subsequently, in Section 7.4, we make α 6= 0, thereby addressing commu-

nication efficiency and Byzantine resilience simultaneously. Further, in Section 6.4

we augment a compression scheme along with the setting of Section 7.4. Finally, in

Section 6.5, we validate our theoretical findings with experiments.

Notation: For a matrix X, we denote ‖X‖2 denotes the operator norm, σmax(X)

and σmin(X) denote the maximum and minimum singular value. Throughout the

paper, we use C,C1, c, c1 to denote positive universal constants, whose value changes

with instances.

6.1 Problem Formulation

We begin with the standard statistical learning framework for empirical risk

minimization, where the objective is to minimize the following loss function:

f(w) =
1

n

n∑
j=1

`j(w
Txj) +

λ

2
‖w‖2, (6.1)

where, the loss functions `j : R→ R, j ∈ [n] are convex, twice differentiable and smooth.

Moreover, x1,x2, . . . ,xn ∈ Rd denote the input feature vectors and y1, y2, . . . , yn ∈ R
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denote the corresponding responses. Furthermore, we assume that the function f is

strongly convex, implying the existence of a unique minimizer of (6.1). We denote this

minimizer by w∗. Note that the response {yj}nj=1 is captured by the corresponding

loss function {`j}nj=1. Some examples of `j are

logistic loss: `j(zj) = log(1− exp(−zjyj)), squared loss: `j(zj) =
1

2
(zj − yj)2

We consider the framework of distributed optimization with m worker machines,

where the feature vectors and the loss functions (x1, `1), . . . , (xn, `n) are partitioned

homogeneously among them. Furthermore, we assume that α fraction of the worker

machines are Byzantine for some α < 1
2
. The Byzantine machines, by nature, may

send any arbitrary values to the center machine. Moreover, they can even collude

with each other and plan malicious attacks with complete information of the learning

algorithm.

6.2 COMRADE Can Communicate Less

We first present the Newton-type learning algorithm, namely COMRADE without

any Byzantine workers, i.e., α = 0. It is formally given in Algorithm 4 (with β = 0).

In each iteration of our algorithm, every worker machine computes the local Hessian

and local gradient and sends the local second order update (which is the product of

the inverse of the local Hessian and local gradient) to the center machine. The center

machine aggregates the updates from the worker machines by averaging them and

updates the model parameter w. Later the center machine broadcast the parameter

w to all the worker machines.

In any iteration t, a standard Newton algorithm requires the computation of exact

Hessian (Ht) and gradient (gt) of the loss function which can be written as
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gt =
1

n

n∑
i=1

`′j(w
>
t xi)xi + λwt, Ht =

1

n

n∑
i=1

`
′′

j (w
>
t xi)xix

>
i + λI. (6.2)

In a distributed set up, the exact Hessian (Ht) and gradient (gt) can be computed in

parallel in the following manner. In each iteration, the center machine ‘broadcasts’

the model parameter wt to the worker machines and each worker machine computes

its own local gradient and Hessian. Then the center machine can compute the exact

gradient and exact Hessian by averaging the the local gradient vectors and local Hessian

matrices. But for each worker machine the per iteration communication complexity

is O(d) for the gradient computation and O(d2) for the Hessian computation. Using

Algorithm 4, we reduce the communication cost to only O(d) per iteration, which is

the same as the first order methods.

Each worker machine possess s samples drawn uniformly from {(x1, `1), (x2, `2), . . . , (xn, `n)}.

By Si, we denote the indices of the samples held by worker machine i. At any iteration

t, the worker machine computes the local Hessian Hi,t and local gradient gi,t as

gi,t =
1

s

∑
i∈Si

`′j(w
>
t xi)xi + λwt, Hi,t =

1

s

∑
i∈Si

`
′′

j (w
>
t xi)xix

>
i + λI. (6.3)

It is evident from the uniform sampling that E[gi,t] = gt and E[Hi,t] = Ht. The

update direction from the worker machine is defined as p̂i,t = (Hi,t)
−1gi,t. Each worker

machine requires O(sd2) operations to compute the Hessian matrix Hi,t and O(d3)

operations to invert the matrix. In practice, the computational cost can be reduced by

employing conjugate gradient method. The center machine computes the parameter

update direction p̂t = 1
m

∑m
i=1 p̂i,t.

We show that given large enough sample in each worker machine (s is large) and

with incoherent data points (the information is spread out and not concentrated to
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Algorithm 4 COMmunication-efficient and Robust Approximate Distributed nEwton
(COMRADE)
1: Input: Step size γ, parameter β ≥ 0
2: Initialize: Initial iterate w0 ∈ Rd

3: for t = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wt

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine: Computes local gradient gi,t and local Hessian Hi,t; sends
p̂i,t = (Hi,t)

−1gi,t to the central machine,

• Byzantine: Generates ? (arbitrary), and sends it to the center machine

end for
6: Center Machine:

• Sort the worker machines in a non decreasing order according to norm of
updates {p̂i,t}mi=1 from the local machines

• Return the indices of the first 1− β fraction of machines as Ut,

• Approximate Newton Update direction : p̂t = 1
|Ut|
∑

i∈Ut p̂i,t

• Update model parameter: wt+1 = wt − γp̂t.

7: end for

a small number of sample data points), the local Hessian Hi,t is close to the global

Hessian Ht in spectral norm, and the local gradient gi,t is close to the global gradient

gt. Subsequently, we prove that the empirical average of the local updates acts as a

good proxy for the global Newton update and achieves good convergence guarantee.

6.2.1 Theoretical Guarantee

Matrix Sketching: Here we briefly discuss the matrix sketching that is broadly

used in the context of randomized linear algebra. For any matrix A ∈ Rn×d the

sketched matrix Z ∈ Rs×d is defined as STA where S ∈ Rn×s is the sketching matrix

(typically s < n). Based on the scope and basis of the application, the sketched matrix

is constructed by taking linear combination of the rows of matrix which is known as

random projection or by sampling and scaling a subset of the rows of the matrix which
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is known as random sampling. The sketching is done to get a smaller representation

of the original matrix to reduce computational cost.

Here we consider a uniform row sampling scheme. The matrix Z is formed by

sampling and scaling rows of the matrix A. Each row of the matrix A is sampled

with probability p = 1
n
and scaled by multiplying with 1√

sp
.

P
(

zi =
aj√
sp

)
= p,

where zi is the i-th row matrix Z and aj is the j th row of the matrix A. Consequently

the sketching matrix S has one non-zero entry in each column.

We define the matrix A>t = [a>1 , . . . , a
>
n ] ∈ Rd×n where aj =

√
`′′j (w

>xj) xj. So

the exact Hessian in equation (6.2) is Ht = 1
n
A>t At + λI. Assume that Si is the set of

features that are held by the ith worker machine. So the local Hessian is

Hi,t =
1

s

∑
j∈Si

`′′j (w
>xj)xjx

>
j + λI =

1

s
A>i,tAi,t + λI,

where Ai,t ∈ Rs×d and the row of the matrix Ai,t is indexed by Si. Also we define Bt =

[b1, . . . ,bn] ∈ Rd×n where bi = `′i(w
>xi)xi. So the exact gradient in equation (6.2) is

gt = 1
n
Bt1 + λwt and the local gradient is

gi,t =
1

s

∑
i∈Si

`′j(w
>
t xi)xi + λwt =

1

s
Bi,t1 + λwt,

where Bi,t is the matrix with column indexed by Si. If {Si}mi=1 are the sketching

matrices then the local Hessian and gradient can be expressed as

Hi,t = A>t SiS
>
i A>t + λI gi,t =

1

n
BSiS

>
i 1 + λw. (6.4)

With the help of sketching idea later we show that the local hessian and gradient are

close to the exact hessian and gradient.
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The Quadratic function For the purpose of analysis we define an auxiliary

quadratic function

φ(p) =
1

2
p>Htp− g>t p =

1

2
p>(A>t At + λI)p− g>t p. (6.5)

The optimal solution to the above function is

p∗ = arg minφ(p) = H−1
t gt = (A>t At + λI)−1gt,

which is also the optimal direction of the global Newton update. In this work we

consider the local and global (approximate ) Newton direction to be

p̂i,t = (A>SiS
>
i A + λI)−1gi,t, p̂t =

1

m

m∑
i=1

p̂i,t.

respectively. And it can be easily verified that each local update p̂i,t is optimal solution

to the following quadratic function

φ̂i,t(p) =
1

2
p>(A>SiS

>
i A + λI)p− g>i p. (6.6)

In our convergence analysis we show that value of the quadratic function in (6.5) with

value p̂t is close to the optimal value.

Singular Value Decomposition (SVD) For any matrix A ∈ Rn×d with rank

r, the singular value decomposition is defined as A = UΣV> where U,V are n× r

and d× r column orthogonal matrices respectively and Σ is a r × r diagonal matrix

with diagonal entries {σ1, . . . σr}. If A is a symmetric positive semi-definite matrix

then U = V.

We define the matrix A>t = [a>1 , . . . , a
>
n ] ∈ Rd×n where aj =

√
`′′j (w

>xj) xj. So

the exact Hessian in equation (6.2) is Ht = 1
n
A>t At + λI. Also we define Bt =
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[b1, . . . ,bn] ∈ Rd×n where bi = `′i(w
Txi)xi. So the exact gradient in equation (6.2) is

gt = 1
n
Bt1 + λwt

Definition 6.1 (Coherence of a Matrix). Let A ∈ Rn×d be any matrix with u ∈ Rn×d

being its orthonormal basis (the left singular vectors). The row coherence of the matrix

A is defined as µ(A) = n
d

maxi ‖ui‖2 ∈
[
1, n

d

]
, where ui is the ith row of u.

Remark 6.1. If the coherence of At is small, it can be shown that the Hessian

matrix can be approximated well via selecting a subset of rows. Note that this is a

fairly common to use coherence condition as an approximation tool (see [38, 39, 88])

In the following, we assume that the Hessian matrix is L-Lipschitz (see definition

below), which is a standard assumption for the analysis of the second order method

for general smooth loss function (as seen in [127],[37]).

Assumption 6.1. The Hessian matrix of the loss function f is L-Lipschitz continuous

i.e. ‖∇2f(w)−∇2f(w′)‖2 ≤ L ‖w −w′‖.

In the following theorem, we provide the convergence rate of COMRADE (with

α = β = 0) in the terms of ∆t = wt −w∗. Also, we define κt = σmax(Ht)/σmin(Ht)

as the condition number of Ht, and hence κt ≥ 1.

Theorem 6.1. Let µ ∈
[
1, n

d

]
be the coherence of At . Suppose γ = 1 and s ≥

3µd
η2 log md

ρ
for some η, ρ ∈ (0, 1). Under Assumption 6.1 , with probability exceeding

1− ρ, we obtain

‖∆t+1‖ ≤ max{

√
κt(

ζ2

1− ζ2
)‖∆t‖,

L

σmin(Ht)
‖∆t‖2}+

2ε√
σmin(Ht)

,

where ζ = ν( η√
m

+ η2

1−η ), ν = σmax(A>A)
σmax(A>A)+nλ

≤ 1, and

ε =
1

1− η
1√

σmin(Ht)
(1 +

√
2 ln(

m

ρ
))

√
1

s
max
i
‖bi‖. (6.7)
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Lemma 6.2 (McDiarmid’s Inequality). Let X = X1, . . . , Xm be m independent

random variables taking values from some set A, and assume that f : Am → R satisfies

the following condition (bounded differences ):

sup
x1,...,xm,x̂i

|f(xi, . . . , xi, . . . , xm)− f(xi, . . . , x̂i, . . . , xm)| ≤ ci,

for all i ∈ {1, . . . ,m}. Then for any ε > 0 we have

P [f(X1, . . . , Xm)− E[f(X1, . . . , Xm)] ≥ ε] ≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
.

The property described in the following Lemma 6.3 is a very useful result for

uniform row sampling sketching matrix.

Lemma 6.3 (Lemma 8 [127]). Let η, δ ∈ (0, 1) be a fixed parameter and r = rank(At)

and U ∈ Rn×r be the orthonormal bases of the matrix At. Let {Si}mi=1 be sketching

matrices and S = 1√
m

[S1, . . .Sm] ∈ Rn×ms. With probability 1− δ the following holds

∥∥U>SiS
>
i U− I

∥∥
2
≤ η ∀i ∈ [m] and

∥∥U>SS>U− I
∥∥

2
≤ η√

m
.

Lemma 6.4. Let S ∈ Rn×s be any uniform sampling sketching matrix, then for any

matrix B = [b1, . . . ,bn] ∈ Rd×n with probability 1− δ for any δ > 0 we have,

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

1

δ
))

√
1

s
max
i
‖bi‖,

where 1 is all ones vector.

Proof. The vector B1 is the sum of column of the matrix B and BSS>1 is the sum of

uniformly sampled and scaled column of the matrix B where the scaling factor is 1√
sp

with p = 1
n
. If (i1, . . . , is) is the set of sampled indices then BSS>1 =

∑
k∈(i1,...,is)

1
sp

bk.
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Define the function f(i1, . . . , is) = ‖ 1
n
BSS>1− 1

n
B1‖. Now consider a sampled set

(i1, . . . , ij′ , . . . , is) with only one item (column) replaced then the bounded difference

is

∆ = |f(i1, . . . , ij, . . . , is)− f(i1, . . . , ij′ , . . . , is)|

= | 1
n
‖ 1

sp
bi′j −

1

sp
bij‖| ≤

2

s
max
i
‖bi‖.

Now we have the expectation

E[‖ 1

n
BSS>1− 1

n
B1‖2] ≤ n

sn2

n∑
i=1

‖bi‖2 =
1

s
max
i
‖bi‖2

⇒ E[‖ 1

n
BSS>1− 1

n
B1‖] ≤

√
1

s
max
i
‖bi‖.

Using McDiarmid inequality (Lemma 6.2) we have

P [

∥∥∥∥∥ 1

n
BSS>1− 1

n
B1‖ ≥

√
1

s
max
i
‖bi‖+ t

]
≤ exp

(
− 2t2

s∆2

)
.

Equating the probability with δ we have

exp(− 2t2

s∆2
) = δ

⇒t = ∆

√
s

2
ln(

1

δ
) = max

i
‖bi‖

√
2

s
ln(

1

δ
).

Finally we have with probability 1− δ

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

1

δ
))

√
1

s
max
i
‖bi‖.
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Remark 6.2. For m sketching matrix {Si}mi=1, the bound in the Lemma 6.4 is

‖ 1

n
BSiS

>
i 1− 1

n
B1‖ ≤ (1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖,

with probability 1 − δ for any δ > 0 for all i ∈ {1, 2, . . . ,m}. In the case that each

worker machine holds data based on the uniform sketching matrix the local gradient

is close to the exact gradient. Thus the local second order update acts as a good

approximate to the exact Newton update.

Now we consider the update rule of GIANT [127] where the update is done in two

rounds in each iteration. In the first round each worker machine computes and send

the local gradient and the center machine computes the exact gradient gt in iteration

t. Next the center machine broadcasts the exact gradient and each worker machine

computes the local Hessian and send p̃i,t = (Hi,t)
−1gt to the center machine and the

center machine computes the approximate Newton direction p̃t = 1
m

∑m
i=1 p̃i,t. Now

based on this we restate the following lemma (Lemma 6 [127]).

Lemma 6.5. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 6.3. Let φt

be defined in (6.5) and p̃t be the update. It holds that

min
p
φt(p) ≤ φt(p̃t) ≤ (1− ζ2) min

p
φt(p),

where ζ = ν( η√
m

+ η2

1−η ) and ν = σmax(A>A)
σmax(A>A)+nλ

≤ 1.

Now we prove similar guarantee for the update according to COMRADE in Algo-

rithm 4.
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Lemma 6.6. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 6.3. Let φt

be defined in (6.5) and p̂t be defined in Algorithm 4(β = 0)

min
p
φt(p) ≤ φt(p̂t) ≤ ε2 + (1− ζ2) min

p
φt(p),

where ε = 1
1−η

1√
σmin(Ht)

(1 +
√

2 ln(m
δ

))
√

1
s

maxi ‖bi‖ and ζ = ν( η√
m

+ η2

1−η ) and

ν = σmax(A>A)
σmax(A>A)+nλ

.

Proof. First consider the quadratic function (6.5)

φt(p̂t)− φt(p∗) =
1

2
‖H

1
2
t (p̂t − p∗)‖2

≤ (‖H
1
2
t (p̂t − p̃t)‖2︸ ︷︷ ︸
Term1

+ ‖H
1
2
t (p̃t − p∗)‖)2︸ ︷︷ ︸

Term2

, (6.8)

where p̃t = 1
m

∑m
i=1(Hi,t)

−1gt. First we bound the Term 2 of (6.8) using the quadratic

function and Lemma 6.5

1

2

∥∥∥H 1
2
t (p̃t − p∗)

∥∥∥)2 ≤ ζ2
∥∥∥H 1

2
t p∗
∥∥∥2

(Using Lemma 6.5 )

= −ζ2φt(p
∗). (6.9)

The step in equation (6.9) is from the definition of the function φt and p∗. It can be

shown that

φt(p
∗) = −

∥∥∥H 1
2
t p∗
∥∥∥2

.

Now we bound the Term 1 in (6.8). By Lemma 6.3, we have (1 − η)A>t At �

A>t SiS
>
i At � (1 + η)A>t At. Following we have (1− η)Ht � Hi,t � (1 + η)Ht. Thus

there exists matrix ξi satisfying

H
1
2
t H−1

i,t H
1
2
t = I + ξi and − η

1 + η
� ξi �

η

1− η
,
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So we have,

∥∥∥H 1
2
t H−1

i,t H
1
2
t

∥∥∥ ≤ 1 +
η

1− η
=

1

1− η
. (6.10)

Now we have

∥∥∥H 1
2
t (p̂t − p̃t)

∥∥∥ =

∥∥∥∥∥H 1
2
t

1

m

m∑
i=1

(p̂i,t − p̃i,t)

∥∥∥∥∥
≤ 1

m

m∑
i=1

∥∥∥H 1
2
t (p̂i,t − p̃i,t)

∥∥∥
=

1

m

m∑
i=1

∥∥∥H 1
2
t H−1

i,t (gi,t − gt)
∥∥∥

=
1

m

m∑
i=1

∥∥∥H 1
2
t H−1

i,t H
1
2
t H

− 1
2

t (gi,t − gt)
∥∥∥

≤ 1

m

m∑
i=1

∥∥∥H 1
2
t H−1

i,t H
1
2
t

∥∥∥∥∥∥H− 1
2

t (gi,t − gt)
∥∥∥

≤ 1

1− η
1

m

m∑
i=1

∥∥∥H− 1
2

t (gi,t − gt)
∥∥∥ ( Using (6.10))

≤ 1

1− η
1√

σmin(Ht)

1

m

m∑
i=1

‖(gi,t − gt)‖ . (6.11)

Now we bound ‖(gi,t − gt)‖ using Lemma 6.4,

‖(gi,t − gt)‖ = ‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖.

Plugging it into equation (6.11) we get,

∥∥∥H 1
2
t (p̂t − p̃t)

∥∥∥ ≤ 1

1− η
1√

σmin(Ht)

1

m

m∑
i=1

‖(gi,t − gt)‖

≤ 1

1− η
1√

σmin(Ht)
(1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖. (6.12)
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Now collecting the terms of (6.12) and (6.9) and plugging them into (6.8) we have

φt(p̂t)− φt(p∗) ≤ ε2 − ζ2φt(p
∗)

⇒ φt(p̂t) ≤ ε2 + (1− ζ2)φt(p
∗),

where ε is as defined in (6.7).

Lemma 6.7. Let ζ ∈ (0, 1), ε be any fixed parameter. And p̂t satisfies φt(p̂t) ≤ ε2 +

(1−ζ2) minp φt(p). Under the Assumption 6.1(Hessian L-Lipschitz) and ∆t = wt−w∗

satisfies

∆>t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +
ζ2

1− ζ2
∆>t Ht∆t + 2ε2.

Proof. We have wt+1 = wt − p̂t,∆t = wt − w∗ and ∆t+1 = wt+1 − w∗. Also

p̂t = wt −wt+1 = ∆t −∆t+1. From the definition of φ we have,

φt(p̂t) =
1

2
(∆t −∆t+1)>Ht(∆t −∆t+1)− (∆t −∆t+1)) gt,

(1− ζ2)φt(
1

(1− ζ2)
∆t) =

1

2(1− ζ2)
∆>t Ht∆t −∆>t gt.

From the above two equation we have

φt(p̂t)− (1− ζ2)φt(
1

(1− ζ2)
∆t)

=
1

2
∆>t+1Ht∆t+1 −

1

2
∆>t Ht∆t+1 +

1

2
∆>t+1gt −

ζ2

2(1− ζ2)
∆>t Ht∆t.

From Lemma 6.6 the following holds

φt(p̂t) ≤ ε2 + (1− ζ2) min
p
φt(p)

≤ ε2 + (1− ζ2)φt(
1

(1− ζ2)
∆t).
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So we have

1

2
∆>t+1Ht∆t+1 −∆>t Ht∆t+1 + ∆>t+1gt −

ζ2

2(1− ζ2)
∆>t Ht∆t ≤ ε2. (6.13)

Consider gt = g(wt)

g(wt) = g(w∗) +

(∫ 1

0

∇2f(w∗ + z(wt −w∗))dz

)
(wt −w∗)

=

(∫ 1

0

∇2f(w∗ + z(wt −w∗))dz

)
∆t (as g(w∗) = 0).

Now we bound the following

‖Ht∆t − g(wt)‖ ≤ ‖∆t‖
∥∥∥∥∫ 1

0

[∇2f(wt)−∇2f(w∗ + z(wt −w∗))]dz

∥∥∥∥
≤ ‖∆t‖

∫ 1

0

∥∥[∇2f(wt)−∇2f(w∗ + z(wt −w∗))]
∥∥ dz (By Jensen’s Inequality)

≤ ‖∆t‖
∫ 1

0

(1− z)L ‖wt −w∗‖ dz (by L-Lipschitz assumption)

=
L

2
‖∆t‖2 .

Plugging it into (6.13) we have

∆>t+1Ht∆t+1 ≤ 2∆>t+1 (Ht∆t − gt) +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ 2 ‖∆t+1‖ ‖Ht∆t − gt‖+
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ L ‖∆t+1‖ ‖∆t‖2 +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2.
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Proof. Proof of Theorem 6.1 From the Lemma 6.7 with probability 1− δ

∆>t+1Ht∆t+1 ≤ L ‖∆t+1‖ ‖∆t‖2 +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ L‖∆t+1‖‖∆t‖2 + (
ζ2

1− ζ2
σmax(Ht))‖∆t‖2 + 2ε2.

So we have,

‖∆t+1‖ ≤ max{

√
σmax(Ht)

σmin(Ht)
(

ζ2

1− ζ2
)‖∆t‖,

L

σmin(Ht)
‖∆t‖2}+

2ε√
σmin(Ht)

.

Remark 6.3. It is well known that a distributed Newton method has linear-

quadratic convergence rate. In Theorem 6.1 the quadratic term comes from the

standard analysis of Newton method. The linear term (which is small) arises owing to

Hessian approximation. It gets smaller with better Hessian approximation (smaller η),

and thus the above rate becomes quadratic one. The small error floor arises due to the

gradient approximation in the worker machines, which is essential for the one round

of communication per iteration. The error floor is ∝ 1√
s
where s is the number of

samples in each worker machine. So for a sufficiently large s, the error floor becomes

negligible.

Remark 6.4. The sample size in each worker machine is dependent on the coher-

ence of the matrix At and the dimension d of the problem. Theoretically, the analysis

is feasible for the case of s ≥ d (since we work with H−1
i,t ). However, when s < d,

one can replace the inverse by a pseudo-inverse (modulo some changes in convergence

rate).
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6.3 COMRADE Can Resist Byzantine Workers

In this section, we analyze COMRADE with Byzantine workers. We assume that

α(< 1/2) fraction of worker machines are Byzantine. We define the set of Byzantine

worker machines by B and the set of the good (non-Byzantine) machines by M.

COMRADE employs a ‘norm based thresholding’ scheme on the local Hessian inverse

and gradient product to tackle the Byzantine workers.

In the t-th iteration, the center machine outputs a set Ut with |Ut| = (1 − β)m,

consisting the indices of the worker machines with smallest norm. Hence, we ‘trim’

the worker machines that may try to diverge the learning algorithm. We denote the

set of trimmed machines as Tt. Moreover, we take β > α to ensure at least one good

machine falls in Tt. This condition helps us to control the Byzantine worker machines.

Finally, the update is given by p̂t = 1
|Ut|
∑

i∈Ut p̂i,t. We define:

ε2byz = [3(
1− α
1− β

)2 + 4κt(
α

1− β
)2]ε2, (6.14)

ζ2
byz = 2(

1− α
1− β

)2(
ν

1− η
)2 + ν2(

1− α
1− β

)2(
η√

(1− α)m
+

η2

1− η
)2 + 4κt(

α

1− β
)2[2 + (

ν

1− η
)2].

(6.15)

ε is defined in (6.7), ν = σmax(ATA)
σmax(ATA)+nλ

and κt is the condition number of the exact

Hessian Ht.

Theorem 6.8. Let µ ∈
[
1, n

d

]
be the coherence of At . Suppose γ = 1 and s ≥

3µd
η2 log md

ρ
for some η, ρ ∈ (0, 1). For 0 ≤ α < β < 1/2 , under Assumption 6.1 , with

probability exceeding 1− ρ, Algorithm 4 yields

‖∆t+1‖ ≤ max{

√
κt(

ζ2
byz

1− ζ2
byz

)‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

2εbyz√
σmin(Ht)

,

where ζbyz and εbyz are defined in equations (6.14) and (6.15) respectively.
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Lemma 6.9. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 6.3. Let φt

be defined in (6.5) and p̂t be defined in Algorithm 4. It holds that

min
p
φt(p) ≤ φt(p̂t) ≤ ε2byz + (1− ζ2

byz)φ(p∗),

where εbyz and ζbyz is defined in (6.14) and (6.15) respectively.

Proof. In the following analysis we omit the subscript ’t’. From the definition of the

quadratic function (6.5) we know that

φ(p̂)− φ(p∗) =
1

2
‖H

1
2 (p̂− p∗)‖2.

Now we consider

1

2
‖H

1
2 (p̂− p∗)‖2

=
1

2
‖H

1
2 (

1

|U|
∑
i∈U

p̂i − p∗)‖2

=
1

2
‖H

1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)−
∑

i∈(M∩T )

(p̂i − p∗) +
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ ‖H
1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)‖2

︸ ︷︷ ︸
Term1

+ 2‖H
1
2

1

|U|
∑

i∈(M∩T )

(p̂i − p∗)‖2

︸ ︷︷ ︸
Term2

+ 2‖H
1
2

1

|U|
∑

i∈(U∩B)

(p̂i − p∗))‖2

︸ ︷︷ ︸
Term3

.

Now we bound each term separately and use the result of the Lemma 6.6 to bound

each term.

Term1 = ‖H
1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)‖2

= (
1− α
1− β

)2‖H
1
2

1

|M|
(
∑
i∈M

(p̂i − p∗)‖2

≤ (
1− α
1− β

)2[ε2 + ζ2
M‖H

1
2 p∗‖2],

where ζM = ν( η√
|M|

+ η2

1−η ) = ν( η√
(1−α)m

+ η2

1−η ).
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Similarly the Term 2 can be bonded as it is a bound on good machines

Term2 = 2‖H
1
2

1

|U|
∑

i∈(M∩T )

(p̂i − p∗)‖2

= 2(
1− α
1− β

)2‖H
1
2

1

|M ∩ T |
∑

i∈(M∩T )

(p̂i − p∗)‖2

≤ 2(
1− α
1− β

)2[ε2 + ζ2
M∩T ‖H

1
2 p∗‖2],

where ζM∩T = ν( η√
|M∩T |

+ η2

1−η ) ≤ ν( η√
(1−β)m

+ η2

1−η ).

For the Term 3 we know that β > α so all the untrimmed worker norm is bounded

by a good machine as at least one good machine gets trimmed.

Term3 = 2‖H
1
2

1

|U|
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2‖ 1

|U ∩ B|
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2 1

|U ∩ B|
∑

i∈(U∩B)

‖(p̂i − p∗))‖2

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 1

|U ∩ B|
∑

i∈(U∩B)

(‖p̂i‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖p̂i‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖p̂i − p∗‖2 + 2‖p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2 max
i∈M

(‖H
1
2 (p̂i − p∗)‖2 + 2‖H

1
2 p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2(ε2 + (2 + ζ2
1 )‖H

1
2 p∗‖2)

≤ 4κ(
α

1− β
)2(ε2 + (2 + ζ2

1 )‖H
1
2 p∗‖2),

where ζ1 = ν(η + η2

1−η ) = ν
1−η and κ = σmax(H)

σmin(H)
.
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Combining all the bounds on Term1 , Term2 and Term3 we have

1

2
‖H

1
2 (p̂− p∗)‖2 ≤ ε2byz + ζ2

byz‖H
1
2 p∗‖2,

where

ε2byz =

(
3

(
1− α
1− β

)2

+ 4κ

(
α

1− β

)2
)
ε2,

ζ2
byz = 2

(
1− α
1− β

)2

ζ2
M∩T +

(
1− α
1− β

)2

ζ2
M + 4κ

(
α

1− β

)2

(2 + ζ2
1 ).

Finally we have

φ(p̂)− φ(p∗) ≤ ε2byz − ζ2
byzφ(p∗)

⇒ φ(p̂) ≤ ε2byz + (1− ζ2
byz)φ(p∗).

Lemma 6.10. Let ζbyz ∈ (0, 1), εbyz be any fixed parameter. And p̂t satisfies φt(p̂t) ≤

ε2byz + (1 − ζ2
byz) minp φt(p). Under the Assumption 6.1(Hessian L-Lipschitz) and

∆t = wt −w∗ satisfies

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

ζ2
byz

1− ζ2
byz

∆T
t Ht∆t + 2ε2byz.

Proof. We choose ζ = ζbyz and ε = εbyz from the Lemma 6.9 and follow the proof of

Lemma 6.7 to obtain the desired bound.

Proof of Theorem 6.8

Proof. We get the desired bound by developing from the result of the Lemma 6.10

and following the proof of Theorem 6.1

171



The remarks of Section 6.2 is also applicable here. On top of that, we have the

following remarks:

Remark 6.5. Compared to the convergence rate of Theorem 6.1, the rate here

remains order-wise same even with Byzantine robustness. The coefficient of the

quadratic term remains unchanged but the linear rate and the error floor suffers a

little bit (by a small constant factor).

Remark 6.6. Note that for Theorem 6.8 to hold, we require α ∼ 1/
√
κt for all

t. In cases where κt is large, this can impose a stricter condition on α. However, we

conjecture that this dependence can be improved via applying a more intricate (and

perhaps computation heavy) Byzantine resilience algorithm. In this work, we kept the

Byzantine resilience scheme simple at the expense of this condition on α.

6.4 COMRADE Can Communicate Even Less and Resist Byzan-

tine Workers

In Section 6.2 we analyze COMRADE with an additional feature. We let the

worker machines further reduce the communication cost by applying a generic class of

δ-approximate compressor [71] on the parameter update of Algorithm 4.

Worker machine i computes the product of local Hessian inverse inverse and local

gradient and then apply ρ-approximate compressor to obtain Q(H−1
i,t gi,t); and finally

sends this compressed vector to the center. The Byzantine resilience subroutine

remains the same–except, instead of sorting with respect to ‖H−1
i,t gi,t‖, the center

machine now sorts according to ‖Q(H−1
i,t gi,t)‖. The center machine aggregates the

compressed updates by averaging Q(p̂) = 1
|Ut|
∑

i∈Ut Q(p̂i,t), and take the next step as

wt+1 = wt − γQ(p̂).

Recall the definition of ε from (6.7). We also use the following notation : ζ2
M =

ν( η√
(1−α)m

+ η2

1−η ), ζ1 = ν
1−η and ν = σmax(ATA)

σmax(ATA)+nλ
. Furthermore, we define the

following:
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ε2comp,byz = [3(
1− α
1− β

)2 + 4κt(
α

1− β
)2](1 + κ(1− ρ))ε2 (6.16)

ζ2
comp,byz = 2(

1− α
1− β

)2(ζ2
1 + κt(1− ρ)((1 + ζ2

1 )) + (
1− α
1− β

)2(ζ2
M + κt(1− ρ)((1 + ζ2

1 ))

+ 4κt(
α

1− β
)2(2 + (ζ2

1 + κt(1− ρ)((1 + ζ2
1 ))) (6.17)

Theorem 6.11. Let µ ∈
[
1, n

d

]
be the coherence of At . Let γ = 1 and s ≥ 3µd

η2 log md
δ

for some η, δ ∈ (0, 1). For 0 ≤ α < β < 1/2, under Assumption 6.1 and with Q being

the ρ-approximate compressor, with probability exceeding 1− δ, we obtain

‖∆t+1‖ ≤ max{

√
κt(

ζ2
comp,byz

1− ζ2
comp,byz

)‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

εcomp,byz√
σmin(Ht)

where εcomp,byz and ζcomp,byz are given in equations (6.16) and (6.17) respectively.

Lemma 6.12. Let {Si}mi=1 ∈ Rn×s be sketching matrices satisfies the Lemma 6.3. Let

φt be defined in (6.5) and p̂t be defined in Algorithm 4. It holds that

min
p
φt(p) ≤ φt(p̂t) ≤ ε2byz + (1− α2

byz)φ(p∗)

where

Proof. In the following analysis we omit the subscript ’t’. From the definition of the

quadratic function (6.5) we know that

φ(Q(p̂))− φ(p∗) =
1

2
‖H

1
2 (Q(p̂)− p∗)‖2

≤ ‖H
1
2 (Q(p̂)− p̂)‖2︸ ︷︷ ︸

Term1

+ ‖H
1
2 (p̂− p∗)‖2︸ ︷︷ ︸
Term2
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First we bound the Term 1.

‖H
1
2 (Q(p̂)− p̂)‖2 ≤ σmax(Ht)(1− ρ)‖p̂‖2

≤ σmax(Ht)(1− ρ)[‖p̂− p∗‖2 + ‖p∗‖2]

≤ σmax(Ht)

σmin(Ht)
(1− ρ)[‖H

1
2 (p̂− p∗)‖2 + ‖H

1
2 p∗‖2]

= κ(1− ρ)[‖H
1
2 (p̂− p∗)‖2 + ‖H

1
2 p∗‖2]

Now plugging back the bound of Term 1, we get

φ(Q(p̂))− φ(p∗) ≤ κ(1− ρ)[‖H
1
2 (p̂− p∗)‖2 + ‖H

1
2 p∗‖2] + ‖H

1
2 (p̂− p∗)‖2

= (1 + κ(1− ρ))[‖H
1
2 (p̂− p∗)‖2] + κ(1− ρ)‖H

1
2 p∗‖2

Now we use Lemma 6.6 to bound the term |H 1
2 (p̂− p∗)‖2 and we get,

φ(Q(p̂))− φ(p∗) ≤ (1 + κ(1− ρ))(ε2 + α2‖H
1
2 p∗‖2) + κ(1− ρ)‖H

1
2 p∗‖2

= (1 + κ(1− ρ))ε2 + [(1 + κ(1− ρ))α2 + κ(1− ρ)]‖H
1
2 p∗‖2

⇒ φ(Q(p̂)) ≤ (1 + κ(1− ρ))ε2 + (1− [(1 + κ(1− ρ))α2 + κ(1− ρ)])φ(p∗)

= ε2b + (1− α2
b)φ(p∗)

where

ε2b = (1 + κ(1− ρ))ε2

α2
b = (1 + κ(1− ρ))α2 + κ(1− ρ)]
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Lemma 6.13. ∆t = wt −w∗ satisfies

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

α2
b

1− α2
b

∆T
t Ht∆t + 2ε2b

Theorem 6.14. Let µt ∈
[
1, n

d

]
be the coherence of At and m be the number of

partitions. For some η, δ ∈ (0, 1),with probability 1− δ

‖∆t+1‖ ≤ max{

√
σmax(Ht)

σmin(Ht)
(

α2
b

1− α2
b

‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

εb√
σmin(Ht)

Remark 6.7. With no compression (ρ = 1) we get back the convergence guarantee

of Theorem 6.8.

Remark 6.8. Note that even with compression, we retain the linear-quadratic rate

of convergence of COMRADE. The constants are affected by a ρ-dependent term.

6.5 Experimental Results

In this section we validate our algorithm, COMRADE in Byzantine and non-

Byzantine setup on synthetically generated and benchmark LIBSVM [22] data-set.

The experiments focus on the standard logistic regression problem. The logistic

regression objective is defined as 1
n

∑n
i=1 log

(
1 + exp(−yix>i w)

)
+ λ

2n
‖w‖2, where

w ∈ Rd is the parameter, {xi}ni=1 ∈ Rd are the feature data and {yi}ni=1 ∈ {0, 1}

are the corresponding labels. We use ‘mpi4py’ package in distributed computing

framework (swarm2) at the University of Massachusetts Amherst [119]. We choose

‘a9a’ (d = 123, n ≈ 32K), ‘w5a’ (d = 300, n ≈ 10k), ‘Epsilon’ (d = 2000, n = 0.4M)

and ‘covtype.binary’ (d = 54, n ≈ 0.5M) classification datasets and partition the

data in 20 different worker machines. In the experiments, we choose two types of

Byzantine attacks : (1). ‘flipped label’-attack where (for binary classification) the

Byzantine worker machines flip the labels of the data, thus making the model learn
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(a) w5a (b) a9a (c) Epsilon (d) covtype

(e) GIANT ‘flipped’ at-
tack

(f) GIANT ‘negative’ at-
tack

(g) Robust GIANT (h) Robust GIANT

Figure 6.1: (First row) Comparison of training accuracy between COM-
RADE(Algorithm 4) and GIANT [127] with (a) w5a (b) a9a (c) Epsilon (d) Covtype
dataset. (Second row) Training accuracy of (e) GIANT for ‘flipped label’ and (f)
‘negative update’ attack; and comparison of Robust GIANT and COMRADE with a9a
dataset for (g) ‘flipped label’ and (h) ‘negative update’ attack.

with wrong labels, and (2). ‘negative update attack’ where the Byzantine worker

machines compute the local update (p̂i) and communicate −c × p̂i with c ∈ (0, 1)

making the updates to be opposite of actual direction. We choose β = α + 2
m
.

In Figure 6.1(first row) we compare COMRADE in non-Byzantine setup (α = β = 0)

with the state-of the art algorithm GIANT [127]. It is evident from the plot that

despite the fact that COMRADE requires less communication, the algorithm is able to

achieve similar accuracy. Also, we show the ineffectiveness of GIANT in the presence

of Byzantine attacks. In Figure 6.2((e),(f)) we show the accuracy for flipped label and

negative update attacks. These plots are an indicator of the requirement of robustness

in the learning algorithm. So we device ‘Robust GIANT’, which is GIANT algorithm

with added ‘norm based thresholding’ for robustness. In particular, we trim the

worker machines based on the local gradient norm in the first round of communication

of GIANT. Subsequently, in the second round of communication, the non-trimmed
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(a) w5a (b) a9a (c) Epsilon (d) covtype

(e) w5a (f) a9a (g) Epsilon (h) covtype

(i) w5a ‘flipped’ (j) w5q ‘negative’ (k) a9a ‘flipped’ (l) a9a ‘negative’

Figure 6.2: (First row) Accuracy of COMRADE with 10%, 15%, 20% Byzantine workers
with ‘negative update’ attack for (a). w5a (b). a9a (c). covtype (d). Epsilon. (Second
row) COMRADE accuracy with 10%, 15%, 20% Byzantine workers with ‘flipped label’
attack for (e) w5a (f) a9a (g) covtype (h) Epsilon. (Third row) Accuracy of COMRADE
with ρ-approximate compressor (Section 6.4) with 10%, 15%, 20% Byzantine workers;
(i) ‘flipped label’ attack for w5a (j) ‘negative update’ attack for w5a. (k) ‘flipped label’
attack for a9a . (l) ‘negative update’ attack for a9a dataset.

worker machines send the updates (product of local Hessian inverse and the local

gradient) to the center machine. We compare COMRADE with ‘Robust GIANT’ in

Figure 6.1((g),(h)) with 10% Byzantine worker machines for ‘a9a’ dataset. It is evident

plot that COMRADE performs better than the ‘Robust GIANT’.

Next we show the accuracy of COMRADE with different numbers of Byzantine

worker machines. Here we choose c = 0.9. We show the accuracy for ’negetive update

’ attack in Figure 6.2(first row) and ’flipped label’ attack in Figure 6.2 (second row).

Furthermore, we show that COMRADE works even when ρ-approximate compressor is
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applied to the updates. In Figure 6.2(Third row) we plot the tranning accuracies.

For compression we apply the scheme known as QSGD [6].

6.6 Conclusion and Future Direction

In this chapter, we address the issue of the communication efficiency and Byzantine

resilience for second order optimization. In the previous chapter (Chapter 5), we have

already shown the use of compression for the second order method with DINGO as

the underlying optimization algorithm. In contrast to that, we improve the algorithm

GIANT in terms of communication cost with one round per iteration and eventually

using compression on the update. We achieve the Byzantine resilience with norm

based thresholding (also seen in Chapter 4).

As future work, the immediate interest would be to extend the ideas for general

convex and non-convex loss function. The norm based thresholding is a very general

purpose technique so the Byzantine resilience can be achieved. The challenge remain

in the update and the deviation and the dissimilarity bound of the Hessian and the

gradient. Due to the structure of the loss function is this chapter, the deviation bounds

between the local and global Hessian and gradients are computed with assumption of

incoherence in the data. For general loss function, dissimilarity assumption as seen in

[69] is required. With these type of assumptions, the problem of general loss function

and data heterogeneity of the data can be handled.

Even though the second order method has a faster convergence rate, it comes with

an added cost of computation of the Hessian and inverse of the Hessian. It would be

a interesting to compute the computation cost in terms of number of gradients and

Hessians that need to be computed in order to achieve certain level of convergence

guarantee.
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CHAPTER 7

ESCAPING SADDLE POINTS IN DISTRIBUTED
NEWTON’S METHOD WITH BYZANTINE RESILIENCE

In this chapter, we continue with the m worker machines and center machine setup

with α -fraction machines being Byzantine in nature. We consider the function f(.)

to be non-convex. Our goal is to design algorithms which can avoid saddle points and

find a local minima.

We consider a distributed variant of the cubic regularized Newton algorithm [94].

In this scheme, the center machine asks the workers to solve an auxiliary function

and return the result. It is worth mentioning that in most distributed optimization

paradigm, including Federated Learning, the workers posses sufficient compute power

to handle this partial transfer of compute load, and in most cases, this is desirable [76].

The center machine aggregates the solution of the worker machines and takes a descent

step. Note that, unlike gradient aggregation, the aggregation of the solutions of the

local optimization problems is a highly non-linear operation. Hence, it is quite non-

trivial to extend the centralized cubic regularized algorithm to a distributed one. The

solution to the cubic regularization even lacks a closed form solution unlike the second

order Hessian based update or the first order gradient based update. The analysis is

carried out by leveraging the first order and second order stationary conditions of the

auxiliary function solved in each worker machines.

A point x is said to satisfy the ε-second order stationary condition of the loss

function f(.) if,
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‖∇f(x)‖ ≤ ε λmin(∇2f(x)) ≥ −
√
ε.

∇f(x) denotes the gradient of the function and λmin(∇2f(x)) denotes the minimum

eigenvalue of the Hessian of the function. Hence, under the assumption (which

is standard in the literature, see [64, 135]) that all saddle points are strict (i.e.,

λmin(∇2f(xs)) < 0 for any saddle point xs), all second order stationary points (with

ε = 0) are local minima, and hence converging to a stationary point is equivalent to

converging to a local minima.

In addition to this, we use a simple norm-based thresholding approach to robustify

the distributed cubic-regularized Newton method previously described in Chapter 4

and 6. However, since the local optimization problem lacks a closed form solution, using

norm-based trimming is also technical challenging in this case. Handling the Byzantine

worker machines becomes a bit more complicated as those stationary conditions of

the good machines (non-Byzantine machine) do not hold for the Byzantine worker

machines.

7.1 Problem Formulation

We minimize a loss function of the form

f(x) =
1

m

m∑
i=1

fi(x), (7.1)

where the function f : Rd → R is twice differentiable and non-convex. In this work,

we consider distributed optimization framework with m worker machines and one

center machine where the worker machines communicate to the center machine. Each
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worker machine is associated with a local loss function fi. We assume that the data

distribution is non-iid across workers, which is standard in frameworks like FL. In

addition to this, we also consider the case where α fraction of the worker machines

are Byzantine for some α < 1
2
. The Byzantine machines can send arbitrary updates

to the central machine which can disrupt the learning. Furthermore, the Byzantine

machines can collude with each other, create fake local minima or attack maliciously

by gaining information about the learning algorithm and other workers.

7.1.1 Our Contributions

We propose a novel distributed and robust cubic regularized Newton algorithm,

that escapes saddle point efficiently. We prove that the algorithm convergence at a rate

of 1
T 2/3 , which is faster than the first order methods (which converge at 1/

√
T rate, see

[135]). Hence, the number of iterations (and hence the communication cost) required

to achieve a target accuracy is much fewer than the first order methods. Furthermore,

our algorithm plateaus at an error floor, which depends on the gradient and Hessian

dissimilarity parameters (see Assumption 7.3 and 7.4). It is worth pointing out that in

the presence of Byzantine workers, this error floor is unavoidable (see [135]). Moreover,

several related literature [136, 56, 55] obtains similar error floor.

We address the saddle point avoidance problem in the presence of Byzantine workers.

In particular, we use a simple norm-based thresholding scheme to resist Byzantine

workers. In previous works, techniques like coordinate-wise median, coordinate-wise

trimmed mean and spectral filtering are used to resist Byzantine workers.

In Section 7.5, we verify our theoretical findings via experiments. We use bench-

mark LIBSVM ([23]) datasets for logistic regression and non-convex robust regression

and show convergence results for both non-Byzantine and several different Byzantine

attacks. Specifically, we characterize the total iteration complexity (defined in Sec-
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tion 7.5) of our algorithm, and compare it with the first order methods. We observe

that the algorithm of [135] requires 25% more total iterations than ours.

7.2 Related Work

Saddle point avoidance algorithms In the recent years, there are handful first

order algorithms [83, 82, 40] that focus on the escaping saddle points and convergence

to local minima. The critical algorithmic aspect is running gradient based algorithm

and adding perturbation to the iterates when the gradient is small. ByzantinePGD

[135], PGD [64], Neon+GD[133], Neon2+GD [9] are examples of such algorithms.

For faster convergence rate, second order Hessian based algorithms are developed for

saddle point avoidance. The work of Nesterov and Polyak [94] first proposes the cubic

regularized Newton method and provides analysis for the second order stationary

condition. An algorithm called Adaptive Regularization with Cubics (ARC) was

developed by [20, 21] where cubic regularized Newton method with access to inexact

Hessian was studied. The inexactness of Hessians for the ARC algorithm is adaptive

over iterations. Cubic regularization with both the gradient and Hessian being inexact

was studied in [122]. In [73], a cubic regularized Newton with sub-sampled Hessian

and gradient was proposed, but for analysis, the batch size of the sample changes in

adaptive manner to provide guarantees for the inexactness of the Hessian and gradient.

In this work, we also take a similar approach as [73], but we relax the adaptive nature

of the sample size. Momentum based cubic regularized algorithm was studied in [129].

A variance reduced cubic regularized algorithm was proposed in [141, 128]. In terms

of solving the cubic sub-problem, [19] proposes a gradient based algorithm and [4]

provides a Hessian-vector product technique.

Byzantine resilience The effect of adversaries on convergence of non-convex opti-

mization was studied in [33, 92]. In the distributed learning context, [?] proposes one

shot median based robust learning. A median of mean based algorithm was proposed
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in [27] where the worker machines are grouped in batches and the Byzantine resilience

is achieved by computing the median of the grouped machines. Later [136] proposes

co-ordinate wise median, trimmed mean and iterative filtering based approaches.

Communication-efficient and Byzantine robust algorithms were developed in [13, 55].

A norm based thresholding approach for Byzantine resilience for distributed Newton

algorithm was also developed [56]. All these works provide only first order convergence

guarantee (small gradient). The work [135] is the only one that provides second order

guarantee (Hessian positive semi-definite) under Byzantine attack.

Algorithm 5 Byzantine Robust Distributed Cubic Regularized Newton Algorithm
1: Input: Step size ηk, parameter β ≥ 0, γ > 0,M > 0
2: Initialize: Initial iterate x0 ∈ Rd

3: for k = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts xk

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine: Computes local gradient gi,k and local Hessian Hi,k; locally
solves the problem described in equation (7.2) and sends si,k+1 to the central
machine,

• Byzantine: Generates ? (arbitrary), and sends it to the center machine

end for
6: Center Machine:

• Sort the worker machines in a non decreasing order according to norm of
updates {si,k+1}mi=1 from the local machines

• Return the indices of the first 1− β fraction of machines as Ut,
• Update parameter: xk+1 = xk + ηk

1
|Ut|
∑

i∈Ut si,k+1

7: end for

7.3 Distributed Cubic Regularized Newton

We first focus on the non-Byzantine setup (α = 0, β = 0 in Algorithm 5) of

distributed cubic regularized Newton algorithm. Byzantine resilience attribute of

Algorithm 5 is deferred to Section 7.4. Let the local data at the i-th machine is
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denoted by Si. Starting with initialization x0, the center machine broadcasts the

parameter to the worker machines. At k-th iteration, the i-th worker machine solves

a cubic-regularized auxiliary loss function based on its local data:

si,k+1 = arg min
s

gTi,ks +
γ

2
sTHi,ks +

M

6
γ2‖s‖3, (7.2)

where M > 0, γ > 0 are parameter and gi,t,Hi,t are the gradient and Hessian of the

local loss function fi computed on data (Si) stored in the worker machine.

gi,k = ∇fi(xk) =
1

|Si|
∑
zi∈Si

∇fi(xk, zi), Hi,k = ∇2fi(xk) =
1

|Si|
∑
zi∈Si

∇2fi(xk, zi).

After receiving the update si,k+1, the central machine updates the parameter in the

following way

sk+1 = sk +
ηk
m

m∑
i=1

si,k+1, (7.3)

where ηk is the step-size.

Remark 7.1. Note that, we introduce the parameter γ in the cubic regularized

sub-problem. The parameter γ emphasizes the effect of the second and third order

terms in the sub-problem. The choice of γ plays an important role in our analysis in

handling the non-linear update from different worker machines. Such non-linearity

vanishes if we choose γ = 0.

7.3.1 Some Useful Facts

For the purpose of analysis we use the following sets of inequalities.
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Fact 7.1. For a1, . . . , an we have the following inequality

‖

(
n∑
i=1

ai

)
‖3 ≤

(
n∑
i=1

‖ai‖

)3

≤ n2

n∑
i=1

‖ai‖3 (7.4)

‖

(
n∑
i=1

ai

)
‖2 ≤

(
n∑
i=1

‖ai‖

)2

≤ n

n∑
i=1

‖ai‖2 (7.5)

Fact 7.2. For a1, . . . , an > 0 and r < s

(
1

n

n∑
i=1

ari

)1/r

≤

(
1

n

n∑
i=1

asi

)1/s

(7.6)

Lemma 7.3 ([94]). Under Assumption 7.2, i.e., the Hessian of the function is

L2-Lipschitz continuous, for any x,y ∈ Rd, we have

‖∇f(x)−∇f(y)−∇2f(x)(y − x)‖ ≤ L2

2
‖y − x‖2 (7.7)∣∣∣∣f(y)− f(x)−∇f(x)T (y − x)− 1

2
(y − x)T∇2f(x)(y − x)

∣∣∣∣ ≤ L2

6
‖y − x‖2 (7.8)

Next, we establish the following Lemma that provides some nice properties of the

cubic sub-problem.

Lemma 7.4. Let M > 0, γ > 0,g ∈ Rd,H ∈ Rd×d, and

s = arg min
x

gTx +
γ

2
xTHx +

Mγ2

6
‖x‖3. (7.9)

The following holds

g + γHs +
Mγ2

2
‖s‖s = 0, (7.10)

H +
Mγ

2
‖s‖I � 0, (7.11)

gT s +
γ

2
sTHs ≤ −M

4
γ2‖s‖3. (7.12)

185



Proof. The equations (7.10) and (7.11) are from the first and second order optimal

condition. We proof (7.12), by using the conditions of (7.10) and (7.11).

gT s +
γ

2
γsTHs = −

(
γHs +

M

2
γ2‖s‖s

)T
s +

γ

2
γsTHs (7.13)

= −γsTHs− M

2
γ2‖s‖3 +

γ

2
γsTHs

≤ M

4
γ2‖s‖3 − M

2
γ2‖s‖3 (7.14)

= −M
4
γ2‖s‖3.

In (7.13), we substitute the expression g from the equation (7.10). In (7.14), we use

the fact that sTHs + Mγ
2
‖s‖3 > 0 from the equation (7.11).

7.3.2 Theoretical Guarantees

We have the following standard assumptions:

Assumption 7.1. The non-convex loss function f(.) is twice continuously-differentiable

and bounded below, i.e., f ∗ = infx∈Rd f(x) > −∞.

Assumption 7.2. The loss f(.) is L-Lipschitz continuous (∀x,y, |f(x)− f(y)| ≤

L‖x − y‖), has L1-Lipschitz gradients (‖∇f(x)−∇f(y)‖ ≤ L1‖x − y‖) and L2-

Lipschitz Hessian (‖∇2f(x)−∇2f(y)‖ ≤ L2‖x− y‖).

The above assumption states that the loss and the gradient and Hessian of the loss

do not drastically change in the local neighborhood. These assumptions are standard

in the analysis of the saddle point escape for cubic regularization (see [122, 73, 94, 19]).

In this work, we assume the data distribution across workers to be non-iid. However,

we assume that the local gradient and Hessian computed at worker machines (using

local data) satisfies the following gradient and Hessian dissimilarity conditions.

Assumption 7.3. (Gradient dissimilarity) For a given εg > 0 and for all k, i,

‖∇f(xk)− gi,k‖ ≤ εg. (7.15)
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Assumption 7.4. (Hessian dissimilarity) For a given εH > 0 and for all k, i,

‖∇2f(xk)−Hi,k‖ ≤ εH . (7.16)

Note that similar assumptions featured in previous literature. For example, in

[68, 46], the authors use similar kind of dissimilarity assumptions that are prevalent

in the Federated learning setup to highlight the non-iid or heterogeneity of the data

among users.

Assumption 7.5. (Bounded Space) We assume that the domain of the solution of

the sub-problem is bounded for all the workers and iterations.

max
i∈M,k

‖si,k‖ ≤ Γ

Remark 7.2. [Values of εg and εH in special cases] Compared to the Assumptions

7.3 and 7.4, the gradient and Hessian bound have been studied under more relaxed

condition. In [73, 122, 129], the authors consider gradient and Hessian with sub-

sampled data being drawn uniformly randomly from the data set. Due to the data being

drawn in iid manner, both the bound (εg, εH) parameters value diminish at the rate

∝ 1/
√
|S| where |S| is the size of the data sample in each worker machine. In [56],

the authors analyze the deviation in case of data partitioning where each worker node

sample data uniformly without replacement from a given data set.

Theorem 7.5. Under the Assumptions 7.1-7.5, and α = 0, after T iterations, the

sequence {xi}Ti=1 generated by the Algorithm 4 with β = 0, contains a point x̃ such

that

‖∇f(x̃)‖ ≤ Ψ1

T
2
3

+ εg λmin

(
∇2f(x̃)

)
≥ −Ψ2

T
1
3

− εH , (7.17)

where, λmin(.) denotes the minimum eigenvalue and
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Ψ1 =

(
L2

2
+
Mγ2

2η2
k

)
Ψ2,Ψ2 =

(
Mγ

2ηk
+ L2

)
Ψ,

λ =

(
M

4m
− L2

6

)

Ψ =

[
f(x0)− f ∗

λ
+

T−1∑
k=0

λΓ

λ

] 1
3

Proof. Proof of Theorem 7.5

First we state the results of Lemma 7.4 for each worker node in iteration k,

gi,k + γHi,ksi,k+1 +
M

2
γ2‖si,k+1‖si,k+1 = 0 (7.18)

γHi,k +
M

2
γ2‖si,k+1‖I � 0 (7.19)

gTi,ksi,k+1 +
γ

2
sTi,k+1Hi,ksi,k+1 ≤ −

M

4
γ2‖si,k+1‖3 (7.20)

At iteration k, we have,

f(xk+1)− f(xk)

≤∇f(xk)
T (xk+1 − xk) +

1

2
(xk+1 − xk)

T∇2f(xk)(xk+1 − xk) +
L2

6
‖xk+1 − xk‖3

≤ηk∇f(xk)
T sk+1 + η2

k

1

2
sTk+1∇2f(xk)sk+1 +

L2

6
‖ηksk+1‖3

=
ηk
m
∇f(xk)

T

(∑
i

si,k+1

)
+
η2
k

2

(
1

m

∑
i

si,k+1

)T

∇2f(xk)

(
1

m

∑
i

si,k+1

)
+
L2η

3
k

6
‖sk+1‖3

(7.21)

≤ηk
m

(∑
i

∇f(xk)
T si,k+1

)
+

η2
k

2m2

(∑
i

sTi,k+1∇2f(xk)si,k+1 +
∑
i 6=j

sTi,k+1∇2f(xk)sj,k+1

)

+
L2η

3
k

6m

∑
i

‖si,k+1‖3

≤ηk
m

∑
i

(
gTi,ksi,k+1 +

γ

2
sTi,k+1Hi,ksi,k+1

)
+
ηk
m

(∑
i

(∇f(xk)− gi,k+1)T si,k+1

)
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− ηkγ

2m

∑
i

sTi,k+1Hi,ksi,k+1

+
η2
k

2m2

(∑
i

sTi,k+1∇2f(xk)si,k+1 +
∑
i 6=j

sTi,k+1∇2f(xk)sj,k+1

)
+
L2η

3
k

6m

∑
i

‖si,k+1‖3

≤ηk
m

∑
i

−M
4
γ2‖si,k+1‖3 +

ηk
m

(∑
i

εg‖si,k+1‖

)
−
(
ηkγ

2m
− η2

k

2m2

)∑
i

sTi,k+1Hi,ksi,k+1

+
η2
k

2m2

[∑
i

sTi,k+1

(
∇2f(xk)−Hi,k

)
si,k+1 +

∑
i 6=j

sTi,k+1∇2f(xk)sj,k+1

]
+
L2η

3
k

6m

∑
i

‖si,k+1‖3

(7.22)

≤
(
−Mγ2ηk

4m
+
L2η

3
k

6m

)∑
i

‖si,k+1‖3 +
ηkεg
m

(∑
i

‖si,k+1‖

)
+

(
ηkγ

2m
− η2

k

2m2

)∑
i

M

2
γ‖si,k+1‖3

+
η2
k

2m2

[
εH
∑
i

‖si,k+1‖2 + L1

∑
i 6=j

‖si,k+1‖‖sj,k+1‖

]
(7.23)

=

(
−Mγ2ηk

4m2
+
L2η

3
k

6m

)∑
i

‖si,k+1‖3 +
ηkεg
m

(∑
i

‖si,k+1‖

)
︸ ︷︷ ︸

Term1

+
η2
k

2m2

[
εH
∑
i

‖si,k+1‖2 + L1

∑
i 6=j

‖si,k+1‖‖sj,k+1‖

]
︸ ︷︷ ︸

Term2

(7.24)

In (7.21), we apply the inequality (7.14) on ‖ 1
m

∑
i si,k+1‖3. In line (7.22), we use

the gradient approximation from the Assumption 7.3. In line (7.22), we apply the

fact that sTi,k+1Hi,ksi,k+1 + Mγ
2
‖si,k+1‖3 > 0 from the equation (7.19) and assume that

γ > ηk
m
. In line (7.23), we use the Assumption 7.4 and the fact that the Hessian of

the objective function is bounded as the gradient is L1-Lipschitz continuous.

Now we bound the Term 1 and Term 2 in equation (7.24).

Term 1 ≤ ηkεg
m

∑
i

‖si,k+1‖ ≤ ηkεgαΓ (7.25)

Now we focus on Term 2,
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Term 2 ≤ η2
k

2m2

[
εH
∑
i

‖si,k+1‖2 + L1

(
‖
∑
i

si,k+1‖2 −
∑
i

‖si,k+1‖2

)]

≤ η2
k

2m2
((m− 1)L1 + εH)

∑
i

‖si,k+1‖2 (7.26)

≤ η2
k

2m
((m− 1)L1 + εH)αΓ2 (7.27)

Combining the result of (7.25) and (7.27) in equation (7.24), we have

f(xk+1)− f(xk) ≤
[
−Mγ2ηk

4m2
+
L2η

3
k

6m

]∑
i

‖si,k+1‖3 +
η2
k

2m
((m− 1)L1 + εH)αΓ2 + ηkεgαΓ

≤− λ 1

m

∑
i

‖si,k+1‖3 + λΓ

Now we consider that λ =
(

Mγ
4ηkm

− L2

6

)
. We can assure λ > 0 by choosing

M ≥ 4ηkm
γ

L2

6
. And we have λΓ =

η2
k

2m
((m− 1)L1 + εH)αΓ2 + ηkεgαΓ.

Now we have

1

m

∑
i

‖ηksi,k+1‖3 ≤ 1

λ
[f(xk)− f(xk+1) + λΓ]

Now we consider the step k0, where k0 = arg min0≤k≤T−1 ‖xk+1−xk‖ = arg min0≤k≤T−1 ‖ηksk+1‖.

min
0≤k≤T

‖xk+1 − xk‖3 = min
0≤k≤T

‖ηksk+1‖3

≤ 1

m

m∑
i=1

‖ηk0si,k0+1‖3

≤ 1

T

T−1∑
k=0

1

m

m∑
i=1

‖ηksi,k+1‖3

≤ 1

T

T−1∑
k=0

1

λ
[f(xk)− f(xk+1) + λΓ]

=
1

T

[
f(x0)− f(xT )

λ
+ λΓ

]
≤ 1

T

[
f(x0)− f ∗

λ
+

T−1∑
k=0

λΓ

λ

]
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With the choice of ηk = c
T
and γ = c1

T
we have λΓ = O(1/T ) and λ = O(1). So the

sum is actually constant. Based on the calculation above, we have

‖xk0+1 − xk0‖ ≤

(
1

m

m∑
i=1

‖ηk0si,k0+1‖3

) 1
3

≤ 1

T
1
3

[
f(x0)− f ∗

λ
+

T−1∑
k=0

λΓ

λ

] 1
3

We choose Ψ =
[
f(x0)−f∗

λ
+
∑T−1

k=0
λΓ

λ

] 1
3 and have

‖xk0+1 − xk0‖ ≤

(
1

m

m∑
i=1

‖ηk0si,k0+1‖3

) 1
3

≤ Ψ

T
1
3

(7.28)

Now the gradient condition

‖∇f(xk+1)‖

=

∥∥∥∥∥∇f(xk+1)− 1

m

m∑
i=1

gi,k −
1

m

m∑
i=1

(γHi,k+1si,k+1 −
Mγ2

2
‖si,k+1‖si,k+1)

∥∥∥∥∥ (7.29)

≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

(gi,k −∇f(xk))

∥∥∥∥∥
+

∥∥∥∥∥∇2f(xk)(xk+1 − xk)− γ
1

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥
≤L2

2
‖ηksk+1‖2 +

∥∥∥∥∥ηkm
m∑
i=1

∇2f(xk)si,k+1 −
γ

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+
Mγ2

2m

∑
i

‖si,k+1‖2 + εg

(7.30)

≤
(
L2η

2
k

2m
+
Mγ2

2m

)∑
i

‖si,k+1‖2 +

∥∥∥∥∥ηkm
m∑
i=1

∇2f(xk)si,k+1 −
γ

m

m∑
i=1

∇2f(xk)si,k+1

∥∥∥∥∥
+

∥∥∥∥∥ γm
m∑
i=1

∇2f(xk)si,k+1 −
γ

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+ εg

≤
(
L2η

2
k

2m
+
Mγ2

2m

)∑
i

‖si,k+1‖2 +
(ηk − γ)L1

m

∑
i

‖si,k+1‖+
γεH
m

∑
i

‖si,k+1‖+ εg

(7.31)
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≤
(
L2η

2
k

2
+
Mγ2

2

)
1

m

∑
i

‖si,k+1‖2 + (ηkL1 − γ(L1 − εH))
1

m

∑
i

‖si,k+1‖+ εg

(7.32)

We choose γ > ηk
L1

L1−εH
. So we have

‖∇f(xk+1)‖ ≤
(
L2

2
+
Mγ2

2η2
k

)
1

m

∑
i

‖ηksi,k+1‖2 + εg

At step k0, by choosing ηk = γ, we have

‖∇f(xk0+1)‖ ≤
(
L2

2
+
Mγ2

2η2
k

)
Ψ2

T
2
3

+ εg (7.33)

where, Ψ1 =
(
L2

2
+ Mγ2

2η2
k

)
Ψ2 . The Hessian bound

λmin(∇2f(xk+1))

=
1

m

m∑
i=1

λmin

[
∇2f(xk+1)

]
=

1

m

m∑
i=1

λmin

[
Hi,k − (Hi,k −∇2f(xk+1))

]
≥ 1

m

m∑
i=1

[
λmin(Hi,k)− ‖Hi,k −∇2f(xk+1)‖

]
≥ 1

m

m∑
i=1

λmin(Hi,k)−
1

m

m∑
i=1

‖Hi,k −∇2f(xk+1)‖ (7.34)

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ −

1

m

m∑
i=1

‖Hi,k −∇2f(xk)‖ −
1

m

m∑
i=1

‖∇2f(xk)−∇2f(xk+1)‖

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ − εH −

1

m

m∑
i=1

‖∇2f(xk)−∇2f(xk+1)‖ (7.35)

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ − εH −

1

m

m∑
i=1

L2‖xk − xk+1‖

≥
(
−Mγ

2ηk
− L2

)
1

m

m∑
i=1

‖ηksi,k+1‖ − εH
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≥ −
(
Mγ

2ηk
+ L2

)(
1

m

m∑
i=1

‖ηksi,k+1‖3

)1/3

− εH (7.36)

Equation (7.34) follows from Weyl’s inequality. We apply the Hessian approximation

from the Assumption 7.4 in equation (7.35). In equation (7.36), we apply the result

described in (7.6).

At step k0, by choosing ηk = γ, we have

λmin(∇2f(xk0+1)) ≤ −
(
M

2
+ L2

)
Ψ

1
3

T
1
3

− εH

= −Ψ2

T
1
3

− εH (7.37)

where, Ψ2 =
(
M
2

+ L2

)
Ψ1/3.

Remark 7.3. We choose the step sizes {ηk}T−1
k=0 such way that

∑T
i=0 ηk and

∑T
i=0 η

2
k

is bounded. For the ease of choice, we can choose ηk = c
T
, for some constant c > 0.

Remark 7.4. Both the gradient and the minimum eigenvalue of the Hessian in

the Theorem 7.5 have two parts. The first part decreases with the number iterations T .

The gradient and the minimum eigenvalue of the Hessian have the rate of O(1/T
2
3 ) and

O(1/T
1
3 ), respectively. Both of these rates match the rates of the centralized version

of the cubic regularized Newton. In the second parts of the gradient bound and the

minimum eigenvalue of the Hessian have the error floor of εg and εH , respectively. As

mentioned above (see Remark 7.2 ), in the special cases, both the terms εg and εH

decrease at the rate of 1/
√
|S|, where |S| is the number of data in each of the worker

machines.

Remark 7.5 (Two rounds of communication εg = 0). We can improve the bound

in the Theorem 7.5, with the calculation of the actual gradient which requires one

more round of communication in each iteration. In the first iteration, all the worker
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machines compute the gradient based on the stored data and send it to the center

machine. The center machine averages them and then broadcast the global gradient

∇f(xk) = 1
m

∑m
i=1 gi,k at iteration k. In this manner, the worker machines solve the

sub-problem (7.2) with the actual gradient. The analysis follows same as that of the

Theorem 7.5 with εg = 0. This improves the gradient bound while the communication

remains O(d) in each iteration.

7.3.3 Solution of the Cubic Sub-Problem

The cubic regularized sub-problem (7.2) needs to be solved to update the parameter.

As this particular problem does not have a closed form solution, a solver is usually

employed which yields a satisfactory solution. In previous works, different types of

solvers have been used. [20, 21] solve the sub-problem using Lanczos based method in

Krylov subspace. In [4], the authors propose a solver based on Hessian-vector product

and binary search. Gradient descent based solver is proposed in [19, 122].

In the previous works, for example [129, 141, 128], the authors consider the exact

solution of the cubic sub-problem for theoretical analysis. Recently, inexact solutions

to the sub-problem is also proposed in the centralized (non-distributed) framework. For

instance, [73] analyzes the cubic model with sub-sampled Hessian with approximate

model minimization technique developed in [20]. Moreover, [122] shows improved

analysis with gradient based minimization which is a variant studied in [19]. Both

exact and inexact solutions to the sub-problem yields similar theoretical guarantees.

In our framework, each worker machine is tasked with solving the sub-problem.

For the purpose of theoretical convergence analysis, we consider that worker machines

obtain the exact solution in each round. However, in experiments (Section 7.5), we

apply the gradient based solver of [122] to solve the sub-problem. Here, we let each

worker machines run the gradient based solver for 10 iterations and send the update to

the center machine in each iteration. Furthermore, , we provide an analysis where the
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sub-problem is solved approximately, and characterize how the approximation error

affects the convergence rate of Algorithm 4.

We consider that the solution to the sub-problem described in equation (7.2) to

be inexact. The solver returns si,k+1 + ∆i,k+1 instead of the global minimizer si,k+1 for

ith worker in iteration k. In the following we show the consequence of approximate

solution. The update at the center machine in iteration k is

xk+1 = xk + ηk
1

m

m∑
i=1

s̃i,k+1 = xk + ηk (sk+1 + ∆k+1)

Here ∆k+1 = 1
m

∑m
i=1 ∆i,k+1. This is the inexact part in the update in the iteration

k + 1. We define an uniform bound on ∆k+1 for all iterations as ‖∆k+1‖ ≤ ‖∆‖.

f(xk+1)− f(xk)

≤∇f(xk)
T (xk+1 − xk) +

1

2
(xk+1 − xk)

T∇2f(xk)(xk+1 − xk) +
L2

6
‖xk+1 − xk‖3

≤ηk∇f(xk)
T (sk+1 + ∆k+1) + η2

k

1

2
(sk+1 + ∆k+1)T∇2f(xk)(sk+1 + ∆k+1) +

L2

6
‖ηk(sk+1 + ∆k+1)‖3

≤ ηk∇f(xk)
T sk+1 + η2

k

1

2
(sTk+1∇2f(xk)sk+1) +

c1L2

6
‖ηksk+1‖3︸ ︷︷ ︸

Term1

+ ηk∇f(xk)
T∆k+1 +

η2
k

2

(
2sTk+1∇2f(xk)∆k+1 + ∆T

k+1∇2f(xk)∆k+1

)
+
c1L2

6
‖ηk∆k+1‖3︸ ︷︷ ︸

Term2

In the above c1 is a constant. Now we bound Term 2

Term 2 ≤ηk
[
εg +

ηk
2

(2‖sk+1‖εH‖∆k+1‖) +
c1L2η

2
k

6
‖∆‖2

]
‖∆k+1‖ ≤ ηkC2‖∆‖

Term 1 can be bounded in the line of the proof of Theorem 7.5 and we can achieve,

f(xk+1)− f(xk) ≤− λ
1

m

∑
i

‖si,k+1‖3 + λΓ + ηkC2‖∆‖
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And for step k0, we get the following

(
1

m

m∑
i=1

‖ηk0si,k0+1‖3

) 1
3

≤ Ψ

T
1
3

where Ψ =
[
f(x0)−f∗

λ
+
∑T−1

k=0
λΓ

λ

] 1
3

Now the gradient condition

‖∇f(xk+1)‖

=

∥∥∥∥∥∇f(xk+1)− 1

m

m∑
i=1

gi,k −
1

m

m∑
i=1

(γHi,k+1si,k+1 −
Mγ2

2
‖si,k+1‖si,k+1)

∥∥∥∥∥
≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

(gi,k −∇f(xk))

∥∥∥∥∥
+

∥∥∥∥∥∇2f(xk)(xk+1 − xk)− γ
1

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥
≤L2 ‖ηksk+1‖2 +

∥∥∥∥∥ηkm
m∑
i=1

∇2f(xk)si,k+1 −
γ

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+
Mγ2

2m

∑
i

‖si,k+1‖2 + εg

L2η
2
k‖∆‖2 + ‖∇2f(xk)‖‖∆‖

Following the gradient bound of the proof of the Theorem 7.5, we have

‖∇f(xk+1)‖ ≤ ‖∇f(xk0+1)‖ ≤
(
L2

2
+
Mγ2

2η2
k

)
Ψ2

T
2
3

+ εg + (L2ηk‖∆‖+ εH)‖∆‖

For the Hessian bound, we use the (7.35),

λmin(∇2f(xk+1)) ≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ − εH −

1

m

m∑
i=1

‖∇2f(xk)−∇2f(xk+1)‖

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ − εH −

1

m

m∑
i=1

L2‖xk − xk+1‖

≥
(
−Mγ

2ηk
− L2

)
1

m

m∑
i=1

‖ηksi,k+1‖ − εH − L2‖∆‖
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≥ −
(
Mγ

2ηk
+ L2

)(
1

m

m∑
i=1

‖ηksi,k+1‖3

)1/3

− εH − L2‖∆‖

Now comparing with the results of the Theorem 7.5, the gradient and Hessian

bounds suffer only by additional term (L2ηk‖∆‖+ εH)‖∆‖ and L2‖∆‖ respectively.

This additional terms are of the order O(‖∆‖). If the worker machines solve the

sub-problem exactly (‖∆‖ = 0), we get back the guarantees described in Theorem

7.5.

7.4 Byzantine Resilience

In this section, we analyze our algorithm’s resilience against Byzantine workers.

We consider that α(< 1
2
) fraction of the worker machines are Byzantine in nature.

We denote the set of Byzantine worker machines by B and the set of the rest of

the good machines as M. In each iteration, the good machines send the solution

of the sub-cubic problem described in equation (7.2) and the Byzantine machines

can send any arbitrary values or intentionally disrupt the learning algorithm with

malicious updates. Moreover, in the non-convex optimization problems, one of the

more complicated and important issue is to avoid saddle points which can yield highly

sub-optimal results. In the presence of Byzantine worker machines, they can be in

cohort to create a fake local minima and drive the algorithm into sub-optimal region.

Lack of any robust measure towards these type of intentional and unintentional attacks

can be catastrophic to the learning procedure as the learning algorithm can get stuck

in such sub-optimal point. To tackle such Byzantine worker machines, we employ a

simple process called norm based thresholding.

After receiving all the updates from the worker machines, the central machine

outputs a set U which consists of the indexes of the worker machines with smallest

norm. We choose the size of the set U to be (1− β)m. Hence, we ‘trim’ β fraction

of the worker machine so that we can control the iterated update by not letting the
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worker machines with large norm participate and diverge the learning process. We

denote the set of trimmed machine as T . We choose β > α so that at least one of the

good machines gets trimmed. In this way, the norm of the all the updates in the set

U is bounded by at least the largest norm of the good machines.

Theorem 7.6. Suppose for non-Byzantine machines, Assumptions 7.1-7.4 hold and

0 ≤ α ≤ β ≤ 1
2
. Running Algorithm 5 for T iterations, the sequence {xi}Ti=1 generated

contains a point x̃ such that

‖∇f(x̃)‖ ≤ Ψ1,byz

T
2
3

+ εg + Minor Terms O(
1

T
);λmin

(
∇2f(x̃)

)
≥ −Ψ2,byz

T
1
3

− εH .

(7.38)

Proof. Proof of Theorem 7.6 We consider the following

f(xk+1)− f(xk)

≤∇f(xk)
T (xk+1 − xk) +

1

2
(xk+1 − xk)

T∇2f(xk)(xk+1 − xk) +
L2

6
‖xk+1 − xk‖3

=
ηk
|U|
∇f(xk)

T
∑
i∈U

si,k+1︸ ︷︷ ︸
Term1

+
η2
k

2|U|2

(∑
i∈U

si,k+1

)T

∇2f(xk)

(∑
i∈U

si,k+1

)
︸ ︷︷ ︸

Term2

+
L2

6

∥∥∥∥∥ ηk|U|∑
i∈U

si,k+1

∥∥∥∥∥
3

︸ ︷︷ ︸
Term3

(7.39)

In line (7.39), we expand the update xk+1 − xk = ηk
|U|
∑

i∈U si,k+1. Also we use the

following fact.

|U| = |U ∩M|+ |U ∩ B| (7.40)

|M| = |U ∩M|+ |T ∩M| (7.41)

Combining both the equations (7.40) and (7.41), we have

|U| = |M| − |T ∩M|+ |U ∩ B| (7.42)
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We use the fact of (7.42) to bound each term in equation (7.39). First, consider the

Term 1,

ηk
|U|
∇f(xk)

T
∑
i∈U

si,k+1

=
ηk

(1− β)m
∇f(xk)

T

[∑
i∈M

si,k+1 −
∑

i∈M∩T

si,k+1 +
∑
i∈U∩B

si,k+1

]

=
ηk

(1− β)m

[∑
i∈M

gTi,ksi,k+1 −
∑

i∈M∩T

∇f(xk)
T si,k+1 +

∑
i∈U∩B

∇f(xk)
T si,k+1 +

γ

2

∑
i∈M

sTi,k+1Hi,ksi,k+1

]

− ηkγ

2(1− β)m

∑
i∈M

sTi,k+1Hi,ksi,k+1 +
ηk

(1− β)m

∑
i∈M

(∇f(xk)− gi,k)
T si,k+1

(7.43)

≤− Mγ2ηk
4(1− β)m

[∑
i∈M

‖si,k+1‖3

]
+

ηkεg
(1− β)m

∑
i∈M

‖si,k+1‖ −
ηkγ

2(1− β)m

∑
i∈M

sTi,k+1Hi,ksi,k+1

+
ηkL

(1− β)m

( ∑
i∈M∩T

‖si,k+1‖+
∑
i∈U∩B

‖si,k+1‖

)

≤− Mγ2ηk
4(1− β)m

[∑
i∈M

‖si,k+1‖3

]
− ηkγ

2(1− β)m

∑
i∈M

sTi,k+1Hi,ksi,k+1 +
ηk

(1− β)
((1− α)εg + L)Γ

(7.44)

We use the following facts in (7.44).

• gTi,ksi,k+1 + γ
2
sTi,k+1Hi,ksi,k+1 ≤ −M

4
γ2‖si,k+1‖3 and sum over the setM.

• The gradient approximation described in Assumption 7.3.

• As the function f is L- Lipschitz, the gradient is bounded.

Now we bound Term 3 as follows,

L2

6

∥∥∥∥∥ ηk|U|∑
i∈U

si,k+1

∥∥∥∥∥
3

≤ L2η
3
k

6(1− β)m

∑
i∈U

‖si,k+1‖3 (7.45)

≤ L2η
3
k

6(1− β)m

[∑
i∈M

‖si,k+1‖3 −
∑

i∈M∩T

‖si,k+1‖3 +
∑
i∈U∩B

‖si,k+1‖3

]
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≤ L2η
3
k

6(1− β)m

[∑
i∈M

‖si,k+1‖3 + αmΓ3

]
(7.46)

In line (7.45), we use the inequality described in (7.4) and in line (7.46), we split

the sum using (7.42).

Finally, we bound Term 2

η2
k

2|U|2

(∑
i∈U

si,k+1

)T

∇2f(xk)

(∑
i∈U

si,k+1

)

=
η2
k

2(1− β)2m2

(∑
i∈U

sTi,k+1∇f(xk)si,k+1 +
∑
i 6=j∈U

sTi,k+1∇f(xk)sj,k+1

)

=
η2
k

2(1− β)2m2

×

(∑
i∈M

sTi,k+1(∇2f(xk)−Hi,k)si,k+1 −
∑

i∈M∩T

sTi,k+1∇2f(xk)si,k+1 +
∑
i∈U∩B

sTi,k+1∇2f(xk)si,k+1

)

+
η2
k

2(1− β)2m2

∑
i 6=j∈U

sTi,k+1∇2f(xk)sj,k+1 +
η2
k

2(1− β)2m2

∑
i∈M

sTi,k+1Hi,ksi,k+1

(7.47)

≤ η2
k

2(1− β)2m2

[
εH
∑
i∈M

‖si,k+1‖2 + L1

∑
i∈M∩T

‖si,k+1‖2 + L1

∑
i∈U∩B

‖si,k+1‖2

]

+
η2
k

2(1− β)2m2

[
L1‖

∑
i∈U

si,k+1‖2 − L1

∑
i∈U

‖si,k+1‖2

]
+

η2
k

2(1− β)2m2

∑
i∈M

sTi,k+1Hi,ksi,k+1

(7.48)

≤ η2
k

2(1− β)2m
[εH(1− α) + L1] Γ2 +

η2
k

2(1− β)2m2

∑
i∈M

sTi,k+1Hi,ksi,k+1

+
η2
kL1

2(1− β)2m
((1− β)m− 1)Γ2 (7.49)

Collecting all the results we have

f(xk+1)− f(xk)

≤− Mγ2ηk
4(1− β)m

[∑
i∈M

‖si,k+1‖3

]
− ηkγ

2(1− β)m
(γ − ηk

(1− β)m
)
∑
i∈M

sTi,k+1Hi,ksi,k+1
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+
ηk

(1− β)
((1− α)εg + L)Γ +

L2η
3
k

6(1− β)m

[∑
i∈M

‖si,k+1‖3 + αmΓ3

]

+
η2
k

2(1− β)2m
[εH(1− α) + (1− β)mL1] Γ2

≤−
[

Mγη2
k

4(1− β)m2
− L2η

3
k

6(1− β)m

]∑
i∈M

‖si,k+1‖3 + +
L2η

3
k

6(1− β)
αΓ3

+
η2
k

2(1− β)2m
[εH(1− α) + (1− β)mL1] Γ2 +

ηk
(1− β)

((1− α)εg + L)Γ

=− λbyz
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3 + λfloor

where

λbyz =

[
Mγ

4(1− β)m
− L2

6(1− β)

]
(1− α)

Now we can have the following results from the proof of Theorem 7.5 for step

k0 = arg min0≤k≤T−1 ‖xk+1 − xk‖

‖xk0+1 − xk0‖3 ≤

[
1

(1− β)m

∑
i∈U

‖ηk0si,k0+1‖3

]

≤ (1− α)

(1− β)

[
1

(1− α)m

∑
i∈M

‖ηk0si,k0+1‖3 +
α

1− α
η3
k0

Γ3

]

≤ (1− α)

(1− β)

1

T

[
f(x0)− f ∗

λbyz
+

∑T−1
k=0 λfloor
λbyz

+
α

1− α
η3
k0

Γ3

]
(7.50)

=
ΨΓ

T
(7.51)

where, Ψbyz =
[
f(x0)−f∗
λbyz

+
∑T−1
k=0 λfloor
λbyz

] 1
3

and ψΓ = (1−α)
(1−β)

[
f(x0)−f∗
λbyz

+
∑T−1
k=0 λfloor
λbyz

+ α
1−αη

3
k0

Γ3
]

The gradient condition

‖∇f(xk+1)‖

=

∥∥∥∥∥∇f(xk+1)− 1

|M|
∑
i∈M

gi,k −
1

|M|
∑
i∈M

γHi,k+1si,k+1 −
Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥ (7.52)
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≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥+

∥∥∥∥∥ 1

|M|
∑
i∈M

(gi,k −∇f(xk))

∥∥∥∥∥
+

∥∥∥∥∥∇2f(xk)(xk+1 − xk)− γ
1

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥+

∥∥∥∥∥ 1

|M|
∑
i∈M

Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥
≤ L2η

2
k

2

∥∥∥∥∥ 1

|U|
∑
i∈U

si,k+1

∥∥∥∥∥
2

+ εg +
Mγ2

2

1

|M|
∑
i∈M

‖si,k+1‖2

+

∥∥∥∥∥ ηk|U|∑
i∈U

∇2f(xk)si,k+1 −
γ

|M|
∑
i∈M

∇2f(xk)si,k+1

∥∥∥∥∥
+

∥∥∥∥∥ γ

|M|
∑
i∈M

∇2f(xk)si,k+1 −
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥ (7.53)

In line (7.52), we use the fact the first order optimal condition (7.18) holds for the

good machines in the setM. And in (7.53), we use the in exact gradient condition

from Assumption 7.3 and the condition (7.20). Consider the term∥∥∥∥∥ ηk|U|∑
i∈U

∇2f(xk)si,k+1 −
γ

|M|
∑
i∈M

∇2f(xk)si,k+1

∥∥∥∥∥
+

∥∥∥∥∥ γ

|M|
∑
i∈M

∇2f(xk)si,k+1 −
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥
=

∥∥∥∥∥ ηk
(1− β)m

[
∑
i∈M

∇2f(xk)si,k+1 −
γ

(1− α)m

∑
i∈M

∇2f(xk)si,k+1]

∥∥∥∥∥
+

ηk
(1− β)m

(‖
∑

i∈M∩T

∇2f(xk)si,k+1‖+ ‖
∑
i∈B∩U

∇2f(xk)si,k+1‖) +
γ

(1− α)m
εH‖si,k+1‖

≤
(

ηk
(1− β)m

− γ

(1− α)m

)
L1

∑
i∈M

‖si,k+1‖+
ηkL1

(1− β)
‖si,k+1‖+

γ

(1− α)m
εH
∑
i∈M

‖si,k+1‖

=

(
ηkL1

(1− β)m
− γ(L1 − εH)

(1− α)m

)∑
i∈M

‖si,k+1‖+
ηkL1

(1− β)
‖si,k+1‖

≤ ηkL1

(1− β)
Γ (7.54)

We choose γ > ηk(1−α)
(1−β)

L1

L1−εH
in equation (7.54). Now we have,

L2η
2
k

2

∥∥∥∥∥ 1

|U|
∑
i∈U

si,k+1

∥∥∥∥∥
2

≤ L2η
2
k

2(1− β)m

∑
i∈U

‖si,k+1‖2
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≤ L2η
2
k

2(1− β)m
[
∑
i∈M

‖si,k+1‖2 +
∑
i∈B∩T

‖si,k+1‖2]

≤ L2

2(1− β)m

∑
i∈M

‖ηksi,k+1‖2 +
L2η

2
k

2(1− β)
αΓ2 (7.55)

Putting the calculation of (7.54) and (7.55), in (7.53), we have,

‖∇f(xk+1)‖

≤
(

L2η
2
k

2(1− β)m
+

Mγ2

2(1− α)m

)∑
i∈M

‖si,k+1‖2 + εg +
γεH

(1− α)
Γ +

L2η
2
k

2(1− β)
αΓ2

≤
(
L2(1− α)

2(1− β)
+
Mγ2

2η2
k

)
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖2 + εg +
γεH

(1− α)
Γ +

L2η
2
k

2(1− β)
αΓ2

≤
(
L2(1− α)

2(1− β)
+
Mγ2

2η2
k

)[
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3

]2/3

+ εg +
γεH

(1− α)
Γ +

L2η
2
k

2(1− β)
αΓ2

≤
(
L2(1− α)

2(1− β)
+
Mγ2

2η2
k

)
(
ψbyz
T

)2/3 + εg +
γεH

(1− α)
Γ +

L2η
2
k

2(1− β)
αΓ2 (7.56)

We use the power mean inequality described in (7.6) in line (7.56). Then at step

k0, we have,

‖∇f(xk0+1)‖ ≤ Ψ1,byz

T
2
3

+ εg + Minor term O(
1

T
), (7.57)

where

Ψ1,byz =

(
L2(1− α)

2(1− β)
+
Mγ2

2η2
k

)
(ψbyz)

2/3

The Hessian bound is

λmin(∇2f(xk+1))

=
1

(1− α)m

∑
i∈M

λmin

[
∇2f(xk+1)

]
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=
1

(1− α)m

∑
i∈M

λmin

[
Hi,k − (Hi,k −∇2f(xk+1))

]
≥ 1

(1− α)m

∑
i∈M

[
λmin(Hi,k)− ‖Hi,k −∇2f(xk+1)‖

]
(7.58)

≥ 1

(1− α)m

∑
i∈M

λmin(Hi,k)−
1

(1− α)m

∑
i∈M

‖Hi,k −∇2f(xk+1)‖

≥ 1

(1− α)m

∑
i∈M

−Mγ

2
‖si,k+1‖ −

1

(1− α)m

∑
i∈M

‖Hi,k −∇2f(xk)‖

− 1

(1− α)m

∑
i∈M

‖∇2f(xk)−∇2f(xk+1)‖ (7.59)

≥ 1

(1− α)m

∑
i∈M

−Mγ

2
‖si,k+1‖ − εH −

1

(1− α)m

∑
i∈M

L2‖xk − xk+1‖

=− Mγ

2ηk

1

(1− α)m

∑
i∈M

‖ηksi,k+1‖ − L2‖xk − xk+1‖ − εH

≥ −Mγ

2ηk

[
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3

]1/3

− L2‖xk − xk+1‖ − εH (7.60)

In (7.58), we use the Weyl’s inequality. In (7.60), we use the power mean inequality

described in (7.6) At step k0, we have

λmin(∇2f(xk0+1)) ≥ −Mγ

2ηk
(
ψbyz
T

)1/3 − L2(
ψΓ

T
)1/3 − εH

=−
(
Mγ

2ηk
ψ

1/3
byz + L2ψ

1/3
Γ

)
1

T 1/3
− εH

=− ψ2,byz

T 1/3
− εH (7.61)

where

Ψ2,byz =

(
Mγ

2ηk
ψ

1/3
byz + L2ψ

1/3
Γ

)
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Remark 7.6. Compared to the non-Byzantine part described in Theorem 7.5,

the rate of remains same except for the error floor of the gradient bound suffering a

minor terms. It is worth pointing out that under iid data assumption (special case,

see Remark 7.2), this error floor is unavoidable, as seen by [135].

Remark 7.7. The condition for the step-size ηk remains same as described in the

Remark 7.4.

Remark 7.8. [Comparison with [135]] In a recent work, [135] provides a perturbed

gradient based algorithm to escape the saddle point in non-convex optimization in the

presence of Byzantine worker machines. Also, in that paper, the Byzantine resilience

is achieved using techniques such as trimmed mean, median and collaborative filtering.

These methods require additional assumptions (coordinate of the gradient being sub-

exponential etc.) for the purpose of analysis. In this work, we do not require such

assumptions. Moreover, we perform a simple norm based thresholding that provides

robustness. Also the perturbed gradient descent (PGD) actually requires multiple rounds

of communications between the central machine and the worker machines whenever

the norm of the gradient is small as this is an indication of either a local minima

or a saddle point. In contrast to that, our method does not require any additional

communication for escaping the saddle points. Our method provides such ability by

virtue of cubic regularization.

Remark 7.9. Since our algorithm is second order in nature, it requires less number

of iterations compared to the first order gradient based algorithms. Our algorithm

achieves a superior rate of O(1/T
2
3 ) compared to the gradient based approach of rate

O(1/
√
T ). Our algorithm dominates ByzantinePGD [135] in terms of convergence,

communication rounds and simplicity and efficiency of Byzantine resilience.

205



7.5 Experimental Results

First we show that our algorithm indeed escapes saddle point with a toy example.

We choose a 2 dimensional example: minw∈R2 [f1(w) + f2(w)] where f1(w) = w2
1 − w2

2

and f2(w) = 2w2
1 − 2w2

2 (Here w2
i denotes the i-th coordinate of w2. This problem is

the sum of two non-convex function and has a saddle point at (0, 0). In Figure 7.2

(left most) we observe that our algorithm escapes the saddle point (0, 0), with random

initialization.

(a) Flipped label (b) Negative update (c) Gaussian noise (d) Random label

(e) Flipped label (f) Negative update (g) Gaussian noise (h) Random label

Figure 7.1: Function loss of the training data ‘a9a’ dataset (first row) and ‘w8a’ dataset
(second row) with 10%, 15%, 20% Byzantine worker machines for (a,e). Flipped label
attack.(b,f). Negative Update attack (c,g). Gaussian noise attack and (d,h). Random
label attack for non-convex robust linear regression problem.

Next, we validate our algorithm in Byzantine setup on benchmark LIBSVM ([23])

data-set in both convex and non-convex problems. We choose the following loss

functions: (a) Logistic loss:minw∈Rd
1
n

∑
i log

(
1 + exp(−yixTi w)

)
+ λ

2n
‖w‖2, and (b)

Non-convex robust linear regression:minw∈Rd
1
n

∑
i log

(
(yi−wTxi)

2

2
+ 1
)
, where w ∈ Rd

is the parameter, {xi}ni=1 ∈ Rd are the feature vectors and {yi}ni=1 ∈ {0, 1} are the

corresponding labels. We choose ‘a9a’(d = 123, n ≈ 32K, we split the data into 70/30
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and use as training/testing purpose) and ‘w8a’(training data d = 300, n ≈ 50K and

testing data d = 300, n ≈ 15K ) classification datasets and partition the data in 20

different worker machines.

(a) saddle point escape (b) 10% Byzantine (c) 15% Byzantine (d) 20% Byzantine

Figure 7.2: (a) Plot of the function value with different initialization to show that
the algorithm escapes the saddle point with functional value 0. Comparison of our
algorithm with ByzantinePGD [135] in terms of the total number of iterations to
achieve small gradient norm (‖g‖ ≤ 0.1) for (b) 10% (c) 15% and (d) 20% fraction
Byzantine machines for different types of attack.

We now show the effectiveness of our algorithm in Byzantine setup. In this work,

we consider the following four Byzantine attacks:

1. ‘Gaussian Noise attack’: where the Byzantine worker machines add Gaussian

noise to the update.

2. ‘Random label attack’: where the Byzantine worker machines train and learn

based on random labels instead of the proper labels.

3. ‘Flipped label attack’: where (for Binary classification) the Byzantine worker

machines flip the labels of the data and learn based on wrong labels.

4. ‘Negative update attack’: where the Byzantine workers computes the update

s (here solves the sub-problem in Eq. (7.2)) and communicates −c ∗ s with

c ∈ (0, 1) making the direction of the update opposite of the actual one.

We show the classification accuracy on testing data of ‘a9a’ and ‘w8a’ dataset for

logistic regression problem in Figure 7.3 and training function loss of ‘a9a’ and ‘w8a’
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dataset for robust linear regression problem in the Figure 7.1. It is evident from the

plots that a simple norm based thresholding makes the learning algorithm robust. We

choose the parameters λ = 1,M = 10, learning rate ηk = 1, fraction of the Byzantine

machines α = {.1, .15, .2} and β = α + 2
m
.

(a) Flipped label (b) Negative update (c) Gaussian noise (d) Random label

(e) Flipped label (f) Negative update (g) Gaussian noise (h) Random label

Figure 7.3: Classification accuracy of the testing data ‘a9a’ dataset (first row) and
‘w8a’ dataset (second row) with 10%, 15%, 20% Byzantine worker machines for (a,e).
Flipped label.(b,f). Negative Update (c,g). Gaussian noise and (d,h). Random label
attack for logistic regression problem.

In Figure 7.4, we show the performance of our algorithm in non-Byzantine setup

(α = β = 0). In the top row of Figure 7.4, we plot the classification accuracy on test

data of both ‘a9a’ and ‘w8a’ datasets for logistic regression problem and in the bottom

row of Figure 7.4, we plot the function value of the non-convex robust linear regression

problem for training data of ‘a9a’ and ‘w8a’ datasets. We choose the learning rate

ηk = 1 and the parameter λ = 1 and M = {10, 15, 20}.

208



(a) a9a (b) w8a (c) a9a (d) w8a

Figure 7.4: (First row) Accuracy of the algorithm for logistic regression on test data
of (a). a9a and (b). w8a dataset. (Second row). Function value of the non-convex
robust linear regression on the training data of (a). a9a and (b). w8a dataset.

7.6 Conclusion and Future Direction

In this chapter, we address the problem of the saddle points in the non-convex

optimization problem in the presence of Byzantine machines. We solve the problem of

saddle point escape and ’saddle point attack’ in the presence of Byzantine machines

with cubic regularized Newton method and norm based thresholding. In each iteration,

the worker machines solve a cubic regularized sub-problem that is non-convex in

nature. Solving this sub-problem is an interesting challenging problem on its own.

In this chapter, we consider that the worker can solve the sub-problem exactly for

theoretical analysis purpose. The problem is actually very hard to solve. A few

literature works [19, 4] have studied the problem and found efficient solution. In [122],

the authors have provided a gradient based approach to solve the sub-problem and

showed the analysis for the number of Hessian and gradient computations required to

achieve a certain level of convergence guarantee in centralised scenario. The problem

is significantly hard for the case of distributed learning as it is very difficult estimate

the effect of the update in each machine has on the convergence result. In the future,

it would be a challenging to figure out how to solve the problem locally in order to

achieve second order stationary problem. Also, a very straight forward extension of

this work would be to apply the δ-approximate compressor on the update to reduce the
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communication further. Also for the purpose of having a clear idea on the convergence

rate, a comparison study between the accelerated method of first order method and

cubic newton would be interesting.
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