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ORIGINAL ARTICLE Open Access

Estimating the proportion of guilty
suspects and posterior probability of guilt
in lineups using signal-detection models
Andrew L. Cohen1, Jeffrey J. Starns1, Caren M. Rotello1 and Andrea M. Cataldo1,2*

Abstract

Background: The majority of eyewitness lineup studies are laboratory-based. How well the conclusions of these
studies, including the relationship between confidence and accuracy, generalize to real-world police lineups is an
open question. Signal detection theory (SDT) has emerged as a powerful framework for analyzing lineups that
allows comparison of witnesses’ memory accuracy under different types of identification procedures. Because the
guilt or innocence of a real-world suspect is generally not known, however, it is further unknown precisely how the
identification of a suspect should change our belief in their guilt. The probability of guilt after the suspect has been
identified, the posterior probability of guilt (PPG), can only be meaningfully estimated if we know the proportion of
lineups that include a guilty suspect, P(guilty). Recent work used SDT to estimate P(guilty) on a single empirical
data set that shared an important property with real-world data; that is, no information about the guilt or
innocence of the suspects was provided. Here we test the ability of the SDT model to recover P(guilty) on a wide
range of pre-existing empirical data from more than 10,000 identification decisions. We then use simulations of the
SDT model to determine the conditions under which the model succeeds and, where applicable, why it fails.

Results: For both empirical and simulated studies, the model was able to accurately estimate P(guilty) when the
lineups were fair (the guilty and innocent suspects did not stand out) and identifications of both suspects and fillers
occurred with a range of confidence levels. Simulations showed that the model can accurately recover P(guilty)
given data that matches the model assumptions. The model failed to accurately estimate P(guilty) under conditions
that violated its assumptions; for example, when the effective size of the lineup was reduced, either because the
fillers were selected to be poor matches to the suspect or because the innocent suspect was more familiar than
the guilty suspect. The model also underestimated P(guilty) when a weapon was shown.

Conclusions: Depending on lineup quality, estimation of P(guilty) and, relatedly, PPG, from the SDT model can
range from poor to excellent. These results highlight the need to carefully consider how the similarity relations
between fillers and suspects influence identifications.

Keywords: Eyewitness lineup, Confidence, Signal detection theory, Computational modeling, Posterior probability
of guilt, Base rate
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Significance
Witnesses to crimes can provide crucial information to
police investigators. Tragically, however, the identifica-
tion of a suspect as the culprit can be simultaneously er-
roneous and compelling to the jury. Given that a witness
has made an identification from a lineup procedure, how
much weight should the court assign to that evidence?
What we would like to know is the probability that the
suspect is guilty, given that they have been identified by
the witness. Although often ignored, a key step in an-
swering this question is to determine the probability that
the suspect is guilty before the witness provides an identi-
fication. This probability is the base rate of lineups that
include the culprit, or guilty suspect, which can have a
profound impact on the appropriate evaluation of an
eyewitness identification in a courtroom. For an extreme
example, in a police precinct in which the suspect is al-
most never guilty, even a suspect identification made
with a high level of confidence should be treated
skeptically. In a precinct in which the suspect is almost
always guilty, however, even an uncertain suspect identi-
fication should be taken as a strong indication of guilt.
Outside of a laboratory experiment, the true value of this
base rate is unknown, of course. Here, we extend previ-
ous work and rigorously test a model-based statistical
procedure for estimating this base rate. We find that the
procedure works well when conditions matched those
suggested as best practices for police lineups. This work
paves the way to estimating the base rate of guilty sus-
pects in real-world lineups.

Introduction
Witnesses to crimes can provide crucial information to
police investigators. Tragically, however, the identifica-
tion of a suspect as the culprit can be simultaneously er-
roneous and compelling to the jury. Decades of research
has focused on understanding how estimator variables,
such as viewing distance, stress levels, and the presence
or absence of a weapon, influence witnesses’ memory for
the crime. Similarly, a substantial literature has explored
the system variables that determine the details of the
identification process, such as whether lineup members
are viewed sequentially or simultaneously. Estimator and
system variables work together to determine the poten-
tial accuracy of an eyewitness identification decision
(e.g., Cutler, Penrod, & Martens, 1987; Wells, 1978).
Given that a witness has made an identification from a

lineup procedure, how much weight should the court as-
sign to that evidence? What we would like to know is
the probability that the suspect is guilty, given that they

have been identified by the witness. This value is called
the positive predictive value (PPV) or the posterior prob-
ability of guilt (PPG, Wells & Lindsay, 1980; Wells,
Yang, and Smalarz, 2015). PPG is defined as in Eq. 1
PPG is a specific form of a general equation known as

Bayes’ Rule. The factors influencing PPG can be inferred
from Eq. 1. The probability that the suspect is identified,
if guilty, P(identified|guilty), is a function of both the es-
timator variables that determine the witness’s memory
for the culprit and the system variables that render the
identification decision easier or harder (e.g., biasing in-
structions and lineup administration method). As will
become important below, if the suspect is innocent,
physical similarity to the culprit will be among the fac-
tors influencing the probability that the suspect is erro-
neously identified, P(identified|not guilty) (Lindsay,
1986). These variables are relatively straightforward to
interpret, if perhaps difficult to quantify in any given
identification process. Equation 1 shows that the PPG
increases under conditions that make the identification
of guilty suspects more likely and the identification of
innocent suspects less likely.
A remaining component of Eq. 1, the prior prob-

ability that the suspect is guilty, P(guilty), reflects the
base rate of lineups that include the culprit. Outside
of a laboratory experiment, the true value of P(guilty)
is unknown, and that fact presents a serious challenge
to the utility of PPG because PPG varies dramatically
as a function of base rate (Wells et al., 2015). Con-
cretely, consider an example situation in which a wit-
ness’s memory is quite good and the system variables
encourage the witness to respond conservatively, in
accordance with the recommendations of the report
of the National Research Council (2014), resulting in
P(identified|guilty) = 0.46 and P(identified|not guilty) =
0.03. For this scenario, the solid curve in Fig. 1 shows
PPG for every possible base rate, i.e., P(guilty). Note
that PPG can range from 0 to 1, leaving it little more
than a guess. If “reasonable doubt” is defined as a
probability of guilt less than 0.95 (Simon, 1969),
shown by the upper red line in Fig. 1, P(guilty) must
be at least 55% to consider the suspect guilty. Under
weaker identification conditions, P(guilty) must be
even higher for that evidence threshold to be met.
For example, the dashed curved in Fig. 1 shows that
P(guilty) must be at least 81% when the witness with
weaker memory is encouraged to respond conserva-
tively, yielding P(identified|guilty) = 0.31 and P(identi-
fied|not guilty) = 0.07.

PPG ¼ P guiltyjidentifiedð Þ ¼ P identifiedjguiltyð Þ � P guiltyð Þ
P identifiedjguiltyð Þ � P guiltyð Þ þ P identifiedjnot guiltyð Þ � P not guiltyð Þ : ð1Þ
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As discussed previously (see also, Wells, 1993), the
prior probability or base rate of guilt, P(guilty), is un-
known and may vary across law enforcement agencies
and localities (Wells et al., 2015); indeed, 64% of law en-
forcement agencies have no written policy on the con-
struction of a photo lineup (Police Executive Research
Forum, 2013). Given this uncertainty, some researchers
have argued for the use of a measure called diagnosticity
(Wells & Lindsay, 1980). Diagnosticity is the likelihood
ratio of identification of the culprit versus an innocent
suspect:

P identifiedjguiltyð Þ
P identifiedjnot guiltyð Þ : ð2Þ

The probability form of PPG in Eq. 1 can be written in
odds form as follows,

P guiltyjidentifiedð Þ
P not guiltyjidentifiedð Þ ¼

P identifiedjguiltyð Þ
P identifiedjnot guiltyð Þ �

P guiltyð Þ
P not guiltyð Þ :

ð3Þ
Note that the diagnosticity ratio of Eq. 2 is included as

the first term in the right-hand side of Eq. 3. This has
led some researchers to argue that diagnosticity itself
has probative value because larger likelihood ratios yield
larger posterior odds of guilt regardless of the prior odds
(Wells & Lindsay, 1980).
This use of diagnosticity, however, is problematic for

several reasons. First, even a large value of diagnosticity
does not necessarily imply high odds that the suspect is
guilty – with low prior odds of guilt, P(guilty)/P(not
guilty), the posterior odds, P(guilty|identified)/P(not

guilty|identified), will also be low. For example, if diag-
nosticity is 15.3 (= 0.46/0.03), as for our example witness
with stronger memory, but the prior odds of guilty are
only 0.01, then the posterior odds of guilt are about
0.15, a result that strongly favors innocence. Second,
diagnosticity is a performance measure that confounds
memory strength and response bias, as well as other fac-
tors such as the number of photos in the lineup (Rotello
& Chen, 2016). Thus, when available, PPG is a far better
probative measure. Use of PPG, however, requires esti-
mation of the base rate of lineups that contain the cul-
prit to specify the prior odds of guilt.
Wixted, Mickes, Dunn, Clark, and Wells (2016) offered

a substantial advance over the prior literature by providing
a statistical tool that simultaneously allows estimation of
witness-memory accuracy, response bias, and, crucially,
the base rate of guilt. They fit a signal detection model
(Macmillan & Creelman, 2005) to data for which the guilt
or innocence of the suspect is not known, as is true in all
identification procedures conducted by law enforcement.
Using a novel analytic approach described below, Wixted
et al. first demonstrated that the model accurately recov-
ered a known base rate from empirical identification data
even though the data fit by the model had no indication of
which lineups had guilty and innocent suspects. As the au-
thors noted, this feat is seemingly impossible, and one of
our goals is to discover how the model is able to achieve
it. Given this success, Wixted et al. then applied the same
analysis to lineup identifications of robbery suspects in
Houston, Texas (Wells, 2014), estimating that about 35%
of those real lineups included a guilty suspect. This is a re-
markable accomplishment. Wixted et al.’s method offers a
tool capable of assessing and comparing the quality of in-
vestigative lineups across law enforcement agencies and
locations. It also offers the possibility for PPG to be esti-
mated more accurately, providing probative value to the
courts.
In what follows, we first describe in detail how Wixted

et al. (2016) inferred the base rate of guilty suspects
from a single eyewitness identification experiment. We
then extend and test the generality of the model’s suc-
cess by using the same method to fit identification deci-
sions collected across a wide variety of experiments with
a total of 10,137 participant identifications, imitating the
natural variations in lineup identifications conducted by
law enforcement. In particular, we mixed data from a
wide range of empirical studies including differences in
simulated crime, lineup sizes, the similarity relations of
fillers and suspects, exposure and retention intervals, the
position of the suspect in the lineup, different types of
biases, the presence of a weapon, the use of alcohol by
the witness, and the particular individuals used in the
lineups. Applying the model to this range of data is one
of the main contributions of our work as it approximates

Fig. 1 Posterior probability of guilt (PPG) as a function of base rate
of guilt. Solid curve based on d’ = 1.8; dashed curve, d’ = 1.0 (c = 1 in
both cases). Red lines at PPG = 0.95 (reasonable doubt) and 0.51
(probable cause)
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the huge variability across real witnesses and lineup pro-
cedures better than any individual study that, by design,
tightly controls estimator variables (see also, Lindsay,
Read, & Sharma, 1998).
In follow-up analyses, we explored the conditions ne-

cessary for valid base-rate estimation using data from
the 13 individual experiments of varying sample sizes
and, in cases for which estimation was poor, we further
evaluated illustrative conditions within those experi-
ments. In each case, we used a bootstrapping process to
overcome a design limitation inherent in the experimen-
tal work, namely that experiments typically present
roughly half of their participants with lineups that in-
clude the culprit and half that do not. To test the model
under a wider and more realistic range of possible base-
rate conditions, we sampled identification decisions from
a large data base such that the samples included 20%,
35%, 50%, 65%, or 80% guilty-suspect lineups (yielding
80%, 65%, 50%, 35%, or 20% innocent-suspect lineups);
by repeating this process many times, we were able to
assess the variability across outcomes. We then per-
formed parameter-recovery simulations with data gener-
ated by the model to determine the theoretical limits on
the ability of the model to accurately estimate base rates,
and to explore how the model can provide information
about the proportion of guilty suspects without know-
ledge of whether or not any of the individual suspects
were guilty or innocent.
To preview our results, we found that, in many cases,

the model successfully recovered the simulated base rate
and other model parameters reasonably well, but some
systematic and informative recovery errors were ob-
served. We show that these errors occur in situations
where the model can be plausibly understood to be

misspecified. In particular, experiments with various
forms of bias were problematic. Finally, we consider the
implications of these findings and return to estimation
of the PPG that would be highly valuable to the courts.

The signal detection theory (SDT) model
In a typical six-person lineup, there is one suspect and
five fillers (also called “foils” or “lures”) who are known
to be innocent (e.g., Wells & Turtle, 1986). In what fol-
lows, we assume a simultaneous lineup, that is, all six in-
dividuals are viewed at the same time. If the suspect is
guilty, we assume that the witness’s memory will be
stronger for that individual than for any of the fillers, at
least on average (μg – the subscript g stands for “guilty”).
Because the fillers are selected to share many physical
characteristics with the suspect, such as age, race, and
hair color, they will also have some strength in memory
(with mean μf – the subscript f stands for “filler”). In
fact, it is possible that one or more fillers will seem more
familiar to the witness than the suspect. This can occur
when the suspect is innocent, of course, but it can also
occur by chance when the suspect is guilty. This vari-
ability in memory strength is modeled with Gaussian
distributions, N(μg, σg) and N(μf, σf), as shown in the left
panel of Fig. 2.
Witnesses are assumed to make identification deci-

sions by comparing the highest memory strength elicited
by a lineup photo to SDT-model response criteria (e.g.,
c1, c2, c3); a memory strength that exceeds c1 but not c2
results in positive identifications with low confidence,
those that exceed c2 but not c3 yield identifications with
medium confidence, and those that exceed c3 are high-
confidence decisions. If none of the faces in the lineup
elicit a memory strength that exceeds c1 then the lineup

Fig. 2 The signal detection model for lineups. Left: unequal-variance model. Right: equal-variance model. μg and σg are the mean and standard
deviation of the guilty-suspect distribution. μf and σf are the mean and standard deviation of the filler distribution. c1, c2, c3 are the response
criteria for the low-, medium- (med), and high-response confidence regions. ID and No ID are response regions in which an identification is or is
not made, respectively
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is rejected with a “no ID,” “reject,” or “not here” re-
sponse. With three confidence levels, the data have 12
degrees of freedom (df) total, six each from the two
types of lineup (guilty or innocent suspect). Each lineup
type has six df because there are seven possible re-
sponses (identify the suspect with one of three confi-
dence levels, identify a filler with one of three
confidence levels, or reject the lineup) with one df lost
because the seven response frequencies must sum to the
total number of identification attempts. The model has
five free parameters (μg, σg, c1, c2, c3; without loss of gen-
erality, μf = 0 and σf = 1). This model has been shown to
work well when we know the guilt or innocence of the
suspect, as is always true for experimental designs
(Mickes, Flowe, & Wixted, 2012; for a summary, see
Gronlund & Benjamin, 2018).
Estimating the base rate of guilty suspects involves fit-

ting identification data for which the guilt or innocence of
the suspect in the lineup is not known, as in all investiga-
tive lineups. Wixted et al. (2016) called this type of data
collapsed. The data now only have six degrees of freedom
because the lineups are collapsed into the same set of
frequencies for the seven available responses (suspect or
filler identifications at low, medium, or high confidence or
a lineup rejection). The model must now include a
parameter to estimate the base rate of guilty suspects, pg,
where the subscript g again stands for “guilty.” To gain a
degree of freedom in the model, Wixted et al. fixed the
standard deviation of the target distribution, σg = 1, thus
assuming an equal-variance model as shown in the right
panel of Fig. 2. Although this equal-variance assumption
does not typically hold in a standard recognition task
(e.g., Ratcliff, Sheu, & Gronlund, 1992), it might hold
for a lineup task where there is a single target (the guilty
suspect) but many potential foils, inflating the relative
variability of the lure distribution (Wixted et al., 2016;
Wixted, Vul, Mickes, & Wilson, 2018).
It is interesting to note that the recovery of base-rate

information using a SDT model is not ordinarily pos-
sible; for example, collapsing confidence-rating data
from a standard old/new recognition experiment would
make it impossible to estimate memory parameters or
determine the proportion of target trials. Generally, it
seems incredible to claim that one could measure the
proportion of guilty suspects without knowing whether
any one of the individual suspects is guilty or innocent.
As will be explained in more detail below, it is the
unique features of a lineup, in particular, the inclusion
of fillers who are known to be innocent, that allows the
model to accomplish this seemingly magical feat.

Wixted et al. (2016) model fits
Wixted et al. (2016) fit an equal-variance version of the
model to data previously published in Palmer, Brewer,

Weber, and Nagesh (2013). The model simultaneously
predicted the probability of suspect and filler identifica-
tions at each confidence level. Indeed, the mixtures of
identifications across confidence levels are essential to the
ability of the model to estimate the base rate of guilt, as
we show in model simulations below. Wixted et al. also
sampled guilty- and innocent-suspect trials from the
Palmer et al. data set in varying proportions, concluding
that the SDT model accurately recovered the sampled
base rate over most of the range, though the base-rate par-
ameter pg underestimated the true value for base rates
over 0.80. Using the same analytic approach, Wixted et al.
fit the SDT model to the Houston robberies field data, es-
timating pg to be 0.35. Although there is no way to verify
the accuracy of that estimate, it is worth noting that this
work is the first principled estimate of a real-world eyewit-
ness base rate and is based on the same signal detection
model that has recently led to other advances in the field
(e.g., Colloff & Wixted, 2020; Semmler, Dunn, Mickes, &
Wixted, 2018; Wixted et al., 2018). Furthermore, as we
show below, the model used to make this estimate works
well under standard testing conditions, indicating that this
estimate should be taken seriously.
The advance offered by Wixted et al. should not be

underestimated. Consider the implications for the
courts: If the estimates of the base rate of guilty suspects
can be trusted, this model would allow far more accurate
estimation of the posterior probability that an identified
suspect is guilty. For example, reconsider our stronger
and weaker witnesses discussed in the context of Fig. 1.
Without an estimate of pg we were left with estimates of
PPG that ranged from 0 to 1 for both witnesses. If they
were witnesses to a robbery in Houston, we can refine
our estimates of the PPG for the suspect to roughly 0.9
for the stronger witness, and about 0.7 for the weaker
witness, assuming that the base rate of lineups contain-
ing guilty suspects is 0.35 for that type of crime in that
location.
Before reaching a conclusion with such strong and

consequential implications, however, it is necessary to
test the signal detection model on a wider range of data.
The current work fills this gap. To preview our results,
the model generally works well, though not always as
well as for the Palmer et al. data fit by Wixted et al., and
the situations in which the model is challenged by the
data prove to be informative about what type of data
cause the model to be misspecified, thereby producing
poor parameter estimates.

Results
Details of the experimental data, SDT model and model-
fitting procedure, and the simulations are provided in
the “Methods” section. Here we focus on the results and
only briefly describe the methods. We do note, however,
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that, rather than relying on simulations, closed-form so-
lutions were used for the SDT model (e.g., Cohen et al
(n.d.) (in press)).

Experimental data
Full data set
The SDT model described previously was fit simultan-
eously to the data from 13 eyewitness lineup experiments,
involving a total of 10,137 identification decisions. As dis-
cussed previously, the rationale for mixing data across a
large number of studies was to approximate the huge vari-
ability across real witnesses, who view different crimes
under different viewing conditions and who vary substan-
tially in their individual characteristics. We do not claim
that our combined data set is a close analog to real witness
identification data, but it is certainly a much closer analog
than data from any single experiment in which these esti-
mator variables are all tightly controlled (or manipulated)
across subject-witnesses. All of the 13 experiments col-
lected confidence ratings from witnesses and used a sim-
ultaneous lineup procedure, i.e., all photos were shown at
the same time. Critically, the model was applied to col-
lapsed data, i.e., data in which the guilt or innocence of
the suspect is not known. Thus, the main question is
whether, without this information, the model can recover
the base rate of guilty suspects present in the data by esti-
mating a value for the pg parameter that is near the true
P(guilty).
The results are shown in Fig. 3. First, consider the left

panel. The number in the lower right shows the sample
size in the original data set. The green circle plots the

estimated base rate for the experimental data on the y-
axis against the actual experimental base rate on the x-
axis. The model does an excellent recovering the actual
experimental base rate.
Next, we bootstrapped samples from the original data

set to generate data sets with a known range of base rates.
That is, samples of trials in which the suspect was known
to be guilty were combined with samples of trials in which
the suspect was known to be innocent in different propor-
tions, i.e., .20, .35, .50, .65, and .80 guilty suspects. Each
sampled data set comprised 1000 identification attempts,
so, for example, a .20 base-rate data set would have re-
sponses from 200 guilty-suspect lineups and 800
innocent-suspect lineups. We refer to data generated in
this way as sampled data and the base rates of sampled
data as sampled base rates. The SDT model was then used
to estimate the sampled base rate. This process was re-
peated 1000 times. The gray circles represent the esti-
mated sampled base rate for each of the 1000 sampled
data sets, with the sampled base rates jittered on the x-axis
for visibility. For each sampled base rate, the median esti-
mated base rate is marked with a red x and the 10th and
90th quantiles are marked with red lines.
Consistent with Wixted et al. (2016), the estimated

base rate tracks the actual sampled base rate well. There
are some caveats, however. First, there is considerable
variability in the estimated base rate for each actual sam-
pled base rate. The middle 80% of the estimated base
rates, i.e., the distance between the 10th and 90th quan-
tiles, span a range of approximately 0.15 to 0.20. Al-
though this result indicates that the model’s estimated

Fig. 3 Results of the signal detection theory (SDT) model analysis when fit to the full data set. Left: actual and estimated base rates for the full
data set combined across all 13 experiments. The green circle shows the actual experimental base rate and the SDT-model estimate. Each gray
circle shows the estimated base rate for one of the sampled (smp) data sets, with the sampled base-rate value jittered for visibility. The red lines
and red x show the 10th and 90th quantiles and median of these estimated base rates. The number in the lower-right corner is the overall
sample size. Middle: data results and model predictions for low- (L), medium- (M), and high- (H) confidence suspect identifications, low- (l),
medium- (m), and high- (h) confidence filler identifications, and lineup rejections (R). Right: the green line shows the actual base rate in the
experimental data and the red line shows the estimated base rate from the SDT model. In the upper section, the black curve shows how the
model fit value changes as the model base rate varied. The number in the lower-left provides the likelihood ratio (lr) of the model when the
estimated and actual experimental base rates are used. In the lower section, the gray curve shows the distribution of estimated base rates for
data simulated from the SDT model with the model base rate fixed at the actual experimental base rate. The y-axis is frequency
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base rate provides a fair approximation to the true value,
it is an open question as to whether the observed level
of variability in those estimates is acceptable. This vari-
ability will also change with sample size, and readers
should note that the displayed estimates are based on a
large sample (1000 witnesses). Second, there is a slight
but clear bias such that low sampled base rates tend to
be overestimated. To a lesser extent, high sampled base
rates tend to be underestimated. Base-rate estimation is
best for sampled values near 0.5. While we might be
tempted to take comfort from the fact that most experi-
mental base rates are also near 0.5, there is typically no
need to estimate experimental base rates; rather, our
goal is to accurately estimate the currently unknown
base rate of police line ups that include the guilty sus-
pect, which may vary considerably.
The middle panel of Fig. 3 shows the fit of the model

to the original data. The green o’s are the experimental
data and red x’s are the model predictions. The labels L,
M, and H show the proportion of trials resulting in low-,
medium-, and high-confidence suspect identifications.
Similarly, the labels l, m, and h reflect the proportion of
trials yielding low-, medium-, and high-confidence filler
identifications, and the point labeled R shows the pro-
portion of lineups that were rejected by the witness (i.e.,
a “no ID” decision was made). The fit is excellent, with
the model accurately predicting performance in every re-
sponse category.
The bootstrapped samples shown in the left panel of

Fig. 3 provide one way of evaluating how well the SDT
model estimates the sampled base rate. A different way
of assessing the model is to consider how well it fits the
data when a particular base rate is assumed. Concretely,
suppose that the true base rate in a particular data set is
0.50. If the SDT model provides a good description of
the data, it should provide a good fit (indicated by a
small value of G2) when the base-rate parameter pg is
fixed at a value close to 0.50, and a relatively poor fit
(i.e., large G2) when pg is set to a value that is far from
0.50. Observing such a pattern would provide support
for the conclusion that the model’s estimated base rate
is constrained by the data. On the other hand, if changes
in the model’s base-rate parameter do not result in sub-
stantial changes in the fit statistic, then that would imply
that the model’s estimated base rate is not sufficiently
informed by the data and should not be trusted.
The right panel of Fig. 3 shows the results of this sen-

sitivity analysis. The upper section of the right panel
shows the fit measure, G2, that is observed when the
SDT model is fit to the experimental data under a wide
range of assumptions about the value of pg. Specifically,
we fit the experimental data many times, using a differ-
ent fixed value of pg (ranging from 0.01 to 0.99) for each
fit. The x-axis shows the fixed value of the model base

rate pg and the black curve shows the corresponding
values of G2 (where lower values are better). For this
large data set, with a true base rate of approximately
0.52, the model’s fit profile is quite good. The parabolic
shape of the black curve shows that the model only fits
these data well when the model’s base-rate parameter is
in a relatively narrow range around the true base rate in
the data (shown with the green vertical line). This para-
bolic shape shows that it is not a coincidence that the
model estimates the base rate in the data quite accur-
ately when the base-rate parameter is free to vary (as in
the results shown in the left panel of Fig. 3). This esti-
mated value is shown with the red vertical line.
Another advantage of this approach is that we can

compare the fit of the model when the true base rate is
used as the value of pg to the fit that results when pg is
unconstrained. That is, we can compute the relative like-
lihood, lr, of the model with the best-fitting estimated
base rate and the actual base rate. This value, shown in
green in the lower-left corner of the right, upper panel,
means that the best-fitting base rate is 1.9 times more
likely than the actual base rate. In this context, that
means that fixing the model base rate to the actual base
rate does not meaningfully change the fit of the model.
Finally, the lower section of the right panel of Fig. 3

assesses how well the SDT model can estimate base rates
when the data are known to be generated by the model,
assuring that the model assumptions are met. This sec-
tion of the figure was generated as follows. First, the
model was fit to the full data set with pg fixed at the ac-
tual data base rate. Second, data were simulated from
the model using the parameters estimated from the first
step and pg was again fixed at the actual base rate. The
sample size and lineup sizes for the simulation were the
same as in the data. Third, the model was fit to this sim-
ulated data. Steps 2 and 3 were repeated 1000 times.
The lower section of the right panel of Fig. 3 provides
the frequency with which a given base rate, pg, was re-
covered. The gray curve shows a kernel density estima-
tion of the distribution of estimated base rates. The peak
of the distribution is at the generating base rate, pro-
vided by the green vertical line. Critically, the estimated
base rate from the full data set, the red line, is still rela-
tively likely.
In summary, all of these different ways of evaluating

the ability of the SDT model to fit these data suggest
that it does a good job, although there is quite a bit of
variability in the estimated base rate even with a sample
that includes many identification attempts (N = 1000 tri-
als, left panel of Fig. 3).
A more familiar way of looking at eyewitness identifica-

tion decisions is to use a calibration curve (Juslin, Olsson,
& Winman, 1996) or confidence-accuracy characteristic
(Mickes, 2015), which plots the accuracy of the
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identifications as a function of witness confidence. These
curves can be generated for both empirical data and
model predictions, as shown in Fig. 4. Each column shows
the calibration curves for a sampled base rate. The model
predictions are averaged across the results from all simula-
tions at that base rate. We begin by discussing the top
row, which shows the proportion of correct responses
given either a rejection (rej) or a low (sL), medium (sM),
or high (sH) confidence suspect identification. For ex-
ample, a value of 0.60 for sL means that 60% of the low-
confidence suspect choices were to guilty suspects and
40% were to innocent suspects. A value of 0.70 for rej
means that 70% of the rejected lineups included an inno-
cent suspect, and so were correctly rejected; the other 30%
included a guilty suspect that was missed. These results il-
lustrate an effect of the over-prediction of estimated base
rate for low-sampled base rates (left panel of Fig. 3). Spe-
cifically, for low-sampled base rates, the model predicts
that performance for suspect identifications will be more
accurate than is actually observed. As sampled base rate
increases, this difference between the data and the model’s
predictions is reduced; however, the model slightly over-
predicts the accuracy of rejected lineups.
These graphs also reflect the ability of the SDT model

to recover PPG. Recall that PPG is defined as the prob-
ability of the suspect being guilty, if the suspect is identi-
fied. That is exactly the information the sL, sM, and sH
points in the top row of Fig. 4 provide, for individual
confidence levels. For comparison to previous work,

those graphs were generated by averaging across predic-
tions. To get a sense of the variability inherent in the es-
timated PPG we repeated this analysis, but for each
individual sampled data set. The results are provided in
Fig. 5. There are three main results. First, the model cap-
tures the relative PPG values across both base rates
(panels) and low (black circles), medium (red triangles),
and high (green crosses) confidence levels. Second, how-
ever, and consistent with Fig. 4, the model over-
predicts PPG, especially for low base rates. Third,
there is considerable variability across sampled data
sets, again, especially for low base rates, suggesting
that estimated PPG is a relatively imprecise measure
of actual PPG. This result is important as it suggests
that, although estimation of base rates is fairly good,
the PPG estimated by the model is significantly
higher than the PPG in the data, especially for low
base rates similar to that estimated by Wixted et al.
(2016) for the Houston data. That is, the base rate es-
timated from the model provides an inflated sense of
the guilt of an identified suspect.
Returning to Fig. 4, the bottom row plots the probabil-

ity of a suspect identification given a low- (L), medium-
(M), or high- (H) confidence response (for either a sus-
pect or filler identification). For example, a value of 0.30
for low-confidence responses means that 30% of the
low-confidence responses were suspect identifications
and 70% were not. Here, the model does an excellent
job throughout.

Fig. 4 Calibration curves using the full data set for both experimental data and model predictions. Each column is for a different sampled base
rate. The top row plots the proportion of correct responses given either a rejection (rej) or a low (sL)-, medium (sM)-, or high (sH)-confidence
suspect response. The bottom row plots the probability of a suspect identification given a low- (L), medium- (M), or high- (H) confidence
response (suspect or filler)
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Individual experiments
The previous results show that, when applied to a data
set drawn from a range of experimental procedures,
sample sizes, lineup sizes, and manipulations that
simulate different estimator variables, the model does a
fairly good job of estimating the actual base rate, but
with systematic biases in some cases and high variabil-
ity in estimates. To get a sense of how robust the re-
sults were, we next applied the SDT model to the data
from each of the 13 individual experiments, repeating
the same analyses on each experiment as we reported
for the overall data set. The only difference is that the
analyses were applied to each of the 13 experiments in-
dividually, rather than the combined data set.
Overall, these individual experiment model fits were

excellent. That is, the SDT model did an excellent job in
accounting for the response proportions for each identi-
fication category. These data, along with the calibration
curves and sensitivity analyses for each experiment, are
provided on Open Science Framework (OSF; https://osf.
io/3qz5n).
The key results of these model fits are the base-rate

estimates for the bootstrapped samples drawn for each
experiment; these are shown in Fig. 6. The results are
quite variable. For some experiments, the model did a
very good job in estimating the base rate. For example,
the data from Brewer and Wells (2006), Carlson et al.
(2016), Mickes (2015) Experiments 1 and 2, and Rotello
et al. (2015) Experiment 3, produced very good to excel-
lent mean estimated base rates (though often with high
variability). Of particular note is the superb base-rate es-
timation for the Palmer et al. (2013) study which is the
same data set used by Wixed et al. (2016). The base-rate
estimates for other studies were good, albeit biased to

varying degrees, including Mickes et al. (2017) Experi-
ment 1 and Rotello et al. (2015) Experiment 2. Yet other
studies showed a good correlation between actual and
estimated base rates, but with an extreme bias. These in-
clude Carlson et al. (2017), Kneller and Harvey (2016),
and Wetmore et al. (2015). The estimated base rates for
Rotello et al. (2015) Experiment 1 and Gronlund et al.
(2009) were very poor.
Mediocre to poor base-rate estimation in some of these

studies can be easily explained. In Rotello et al. Experi-
ment 1, the suspect identification rates were quite low and
did not vary much as a function of confidence. The Knel-
ler and Harvey (2016) study involved only 120 partici-
pants, and in two of their three conditions there were no
suspect identifications made with high confidence. These
results suggest that it is important to get a good sample of
suspect identifications and responses at all confidence
levels. The Wetmore et al. (2015) study, like Gronlund
et al. (2009), included biased lineups that strongly encour-
aged selection of the suspect, which results in an inflated
estimate of the base rate of guilty suspects. We suspect
that this is one main reason the that model overestimates
the base rate for this experiment and we explore this ex-
planation further in the next section.

Experimental conditions
Estimation of base rates for the individual experiment data
shows highly variable performance. For the majority of
studies, base-rate estimation was good to excellent. There
were studies, however, for which base-rate estimation was
very poor. In some cases, as discussed previously, an ex-
planation is readily available. In others, it is not readily ap-
parent why the model performs so poorly. To generate a
more fine-grained view of where the model performs well

Fig. 5 The model-predicted posterior probability of guilty (PPG) plotted against the actual sampled PPG for different base rates sampled from the
full data set, for low-, medium-, and high-confidence responses
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Fig. 6 Actual and estimated base rates for each of the 13 individual experiments (see Table 1). The green circle shows the actual experimental
base rate plotted against its estimate. Each gray circle shows the estimated base rate for one of the sampled data sets (smp; the sampled base
rates are jittered for visibility). The red lines and red x show the 10th and 90th quantiles and median of these estimated base rates. The number
in the lower-right corner is the experiment sample size
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and where it performs poorly, we now turn to a
condition-by-condition analysis of the data.
A summary of the conditions used is provided in

Table 2 of the “Methods” section. The full set of results,
the model fits (which were all very good to excellent),
sensitivity analysis, and calibration curves for each con-
dition are provided on OSF. Here, we discuss the condi-
tions from two experiments that proved to be especially
informative regarding the conditions under which the
model performed poorly.
Some of the experimental manipulations are expected

to strongly influence identification rates and the distri-
bution of confidence. For example, biased or unfair
lineups in which the fillers are dissimilar to the suspects,
as in Gronlund et al. (2009), tend to inflate suspect iden-
tification rates and confidence levels. The presence of a
visible weapon, as in Carlson et al. (2017), is expected to
draw attention away from the perpetrator, thus reducing
guilty-suspect identification rates and lowering confi-
dence. Indeed, estimation of base rate was especially
poor in exactly these conditions.
The Gronlund et al. (2009) study manipulated a num-

ber of factors, including the fairness of the lineup and
the memory strength of the suspect. There were three
levels of fairness, fair (F), intermediate (I), or biased (B),
which were generated by manipulating the similarity of
the fillers and suspect. In addition, guilty suspects could
be represented by a photo that was a better or worse
match to the way that they appeared in the witnessed
crime, resulting in a strong (GS) or weak (GW) memory
strength. Naturally, the GS conditions resulted in more
suspect identifications than the GW conditions. Simi-
larly, innocent suspects could be strong (IS) by virtue of
offering a good match to the perpetrator, or else weak
(IW); there were more IS than IW suspect identifica-
tions. Interestingly, the Gronlund et al. data reveal that
the GW suspects were identified less often than either
the IS or IW suspects; in that case, the perpetrator elic-
ited lower memory strength than the innocent suspect.
Because the innocent suspects had never been seen be-
fore, these conditions could be viewed as manipulations
of selection bias rather than memory strength. The
condition-by-condition Gronlund et al. (2009) results
are provided in Fig. 7.
The Gronlund et al. (2009) results are nuanced. Esti-

mation was good, albeit noisy, for the fair (no-bias)
condition with a weak innocent suspect (FIW). This
condition corresponds to a standard lineup in which
the weak innocent suspect was essentially just another
filler. All of the other conditions, however, show strong
deviations from accurate base-rate estimation. Base-rate
estimation is at or near ceiling for all of the biased (B)
conditions because in those conditions the suspect was
identified with high probability and high confidence,

regardless of guilt or innocence; the model interprets
this response pattern as reflecting a high base rate of
lineups containing guilty suspects. One way of under-
standing this outcome is to contrast the effective size of
the lineup (E’; Tredoux, 1998) and the lineup size as-
sumed by the model, which always reflects the actual
number of photos shown. To the extent that these two
values differ, the model is misspecified for the data.
Whereas the model assumed a lineup size of six, for the
biased lineups from Gronlund et al. (2009), the effective
lineup size E’ was always less than two.
Another striking misestimation of the sampled base

rate is evident in instances of the Gronlund et al. (2009)
data in which the guilty suspect is a poor match to the
perpetrator (GW). In that case, the model’s estimates of
base rate are actually negatively correlated with the sam-
pled base rate. This failure of the model occurs because
the GW suspect is selected less often than either the IW
or IS suspects, which means that there are fewer suspect
identifications in the data as the sampled base rate in-
creases; the model interprets this low suspect identifica-
tion rate as reflective of the base rate. The combined
effect of (intermediate) biased lineups and guilty sus-
pects that are a poor match to the perpetrator is visible
in the IGW condition, which shows overestimation of
the base rate overall due to the relative dissimilarity of
the filler photos to the perpetrator, as well as the nega-
tive relationship between estimated and sampled base
rates that stems from inclusion of the GW suspect.
In Carlson et al. (2017) a weapon was either shown

(S), present but concealed (C), or not shown (N). The
condition-by-condition Carlson et al. (2017) results are
provided in Fig. 8. In all conditions, the model’s estimate
of the base rate is too low, and the degree of underesti-
mation varies systematically with the participants’ aware-
ness of the weapon. When there is no weapon (N), the
bias is smallest. When the weapon is visible (S), the esti-
mates are very strongly biased, reflecting the relatively
low probability that the suspect is identified. Presence of
a concealed weapon results in moderate bias.
So that the resulting misestimation of the base rates

can be understood more easily, up to this point, we
have highlighted the way in which the conditions of
two specific studies were particularly challenging to
the model. In turns out, however, that there is a sys-
tematic pattern in the data across all experimental
conditions that predicts poor base-rate estimation.
Figure 9 shows the distribution of identification re-
sponses for all 47 experimental conditions from Table
2. The blue points show the responses from all condi-
tions in which PPG was underestimated. The red
points show the results from all of the conditions in
which PPG was overestimated. Although, for expos-
ition, the data in the top panel of Fig. 9 are separated
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by innocent-suspect and guilty-suspect trials, recall
that the model was fit to the collapsed data, which
are shown in the bottom panel. The difference be-
tween medium-confidence suspect identifications (top
panel, right-hand M) and the low-confidence filler

identifications (top row panel, right-hand l) in
innocent-suspect lineups accounts for 52% of the vari-
ability in the model PPG misspecifications (r = .72,
p = .04). The reason that these particular response
rates are challenging for the model is that fillers and

Fig. 7 Actual and estimated base rates for conditions from Gronlund et al. (2009). The green circle shows the actual experimental base rate and
its estimate. Each gray circle shows the estimated base rate for one of the sampled data sets (smp). The red lines and red x show the 10th and
90th quantiles and median of these estimated base rates. The number in the lower-right corner is the condition sample size. See Table 2 for
condition labels
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innocent suspects are assumed to be sampled from
the same distribution (see Fig. 2). This means that
the model is forced to predict that the conditional
distribution of confidence levels is the same for both
of these lineup members; when the data show more
identifications of innocent suspects than fillers, which
tends to happen with moderate confidence, it resolves this
conflict by incorrectly concluding that those suspect iden-
tifications are to guilty suspects and thus overestimates
the base rate of lineups that include guilty suspects. In
contrast, when the data show more filler identifications
than innocent-suspect selections, the model resolves this
conflict by concluding that there are fewer lineups con-
taining guilty suspects and thus underestimates the base
rate. A shift of criterion cannot completely account for
this pattern because, for example, an increase in the
medium-confidence response region will simultaneously
increase the probably of medium-confidence suspect and
filler responses, a pattern which does not occur. A similar
pattern emerges for both the guilty-suspect trials and in
the collapsed data.

Best practices
One of the strengths of the previous analyses is that they
show how well the SDT model performs under a wide

range of situations. Many of the experimental condi-
tions, however, were specifically designed to deviate
from best practices for lineups; for example, with the in-
clusion of biased instructions or fillers that are dissimilar
from the suspect. Thus, they may not provide a good in-
dication of how well the model would perform under
ideal conditions (e.g., fair lineups, good witness instruc-
tions, double-blinded administration). Indeed, the previ-
ous section illustrates that the model fails to capture
performance in exactly these problematic conditions. It
is, therefore, informative to examine model performance
when these less-than-ideal conditions are removed from
the data set. We call the remaining data sets the best-
practices data set. See the “Methods” section for details.
We repeated our previous analyses on these data; the
base-rate estimation, model fit, and sensitivity results are
provided in Fig. 10, and the calibration curves are shown
in Fig. 11.
The model fit is excellent. The bias to overestimate

the proportion of guilty suspects for low base rates is
now gone. Indeed, the model is very well calibrated at
the lower end of the scale. There is, however, still a ten-
dency to underestimate the proportion of guilty suspects
at the higher end of the scale, and the estimates are still
quite variable considering the large sample size (1000
witnesses). Furthermore, the deviations from the calibra-
tion curves are greatly reduced. The only exception is a
tendency to overestimate the proportion of correctly
rejected lineups, especially at high base rates. A compari-
son of the actual sampled PPG and model-predicted
PPG is provided in Fig. 12. When restricted to these
conditions, although there is still considerable variability
across sampled data sets, the model does a very good to
excellent job of estimating PPG at all base rates and all
levels of confidence.

Simulations
We have shown that the SDT model does a good job
overall in estimating the true base rate of lineups that
include the guilty suspect from collapsed data. Next, we
consider the theoretical limits of this performance level
using parameter recovery simulations. We generated a
large number of data sets with the SDT model and then
fit each simulated data set with the same model, allow-
ing all five parameter values to vary freely (again, note
that we fit an equal-variance model, σg = 1). At issue in
this analysis is the ability of the SDT model to accur-
ately recover the parameters that were used to generate
the data. The generating parameters for each simulated
data set were randomly sampled from highly variable
distributions, so the model was challenged to accurately
estimate the base-rate parameter, pg, against a back-
ground of random variation in all of the other model
parameters. If the model succeeds, then we can

Fig. 8 Actual and estimated base rates for conditions from Carlson
et al. (2017). The green circle shows the actual experimental base
rate and its estimate. Each gray circle shows the estimated base rate
for one of the sampled data sets (smp). The red lines and red x
show the 10th and 90th quantiles and median of these estimated
base rates. The number in the lower-right corner is the condition
sample size. See Table 2 for condition labels
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Fig. 9 The response category proportions for all 47 experimental conditions with knowledge of the guilt or innocence of the suspect (top) or
collapsed data (bottom). The lines show data from conditions in which the model-estimated PPG was higher (red, closed points) or lower (blue,
open points) than the actual PPG. The larger symbols provide the means within each response category

Fig. 10 Results of the signal detection theory (SDT) model analysis when fit to the best-practices data set. Left: actual and estimated base rates
when combined across all best-practices data. The green circle shows the actual experimental base rate and the SDT-model estimate. Each gray
circle shows the estimated base rate for one of the sampled data sets (smp), with the sampled base-rate value jittered for visibility. The red lines
and red x show the 10th and 90th quantiles and median of these estimated base rates. The number in the lower-right corner is the overall
sample size. Middle: data results and model predictions for low- (L), medium- (M), and high- (H) confidence suspect identifications, low- (l),
medium- (m), and high- (h) confidence filler identifications, and lineup rejections (R). Right: the green line shows the actual base rate in the
experimental data and the red line shows the estimated base rate from the SDT model. In the upper section, the black curve shows how the
model fit value changes as the model base rate varied. The number in the lower-left provides the likelihood ratio (lr) of the model when the
estimated and actual experimental base rates are used. In the lower section, the gray curve shows the distribution of estimated base rates for
data simulated from the SDT model with the model base rate fixed at the actual experimental base rate. The y-axis is frequency
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conclude that there are data patterns that specify base
rate in a way that cannot be mimicked by any combin-
ation of the other parameters. We used simulated data
sets comprising 100, 500, or 1000 identification at-
tempts to assess the effect of sample size. Full simula-
tion details can be found in the “Methods” section. The
code is provided on OSF.
Figure 13 shows the ability of the model to recover three

key parameters: the distance between target- and lure-

strength distributions (μg), the identification criterion (c1),
and the base rate of lineups with guilty suspects (pg). Each
plot shows results for 250 fits to simulated data with the
parameter value that generated the simulated data on the
x-axis and the parameter value estimated in fits of those
simulated data on the y-axis. In each case, the points tend
to be concentrated along the positive diagonal, indicating
accurate parameter recovery. Recovery for all parameters
improves with larger samples, as expected. Notably, base-

Fig. 11 Calibration curves using the best-practices data set for both experimental data and model predictions. Each column is for a different
sampled base rate. The top row plots the proportion of correct responses given either a rejection (rej) or a low (sL)-, medium (sM)-, or high (sH)-
confidence subject response. The bottom row plots the probability of a suspect identification given a low- (L), medium- (M), or high- (H)
confidence response (suspect or filler)

Fig. 12 The model-predicted posterior probability of guilty (PPG) plotted against the actual sampled PPG for different base rates sampled from
the best-practices data set, for low-, medium-, and high-confidence responses
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rate estimation is quite accurate with 1000 identification
attempts per data set, with a strong majority of estimates
within 5 percentage points of the true generating value.
Our empirical results with 1000 identification attempts
were noticeably more variable than the simulation results,
suggesting that estimates based on real data are subject to
additional uncertainty introduced by violations of the
model’s assumptions, as discussed previously. Estimation
sometimes failed for the μg parameter such that μg went to
the maximum value allowed in the estimation program
(which was arbitrarily set to 5). This failed estimation was
most common at the smaller sample sizes.
The results in Fig. 13 show that the model is capable

of distinguishing changes in base rate from changes in
the other parameters, but it is not immediately obvious
how the model does so. The latter question is especially
mysterious given that collapsing the data seems to hide
all information about base rates. We found that two as-
pects of the data are critical for this seemingly magical
feat: the relative proportion of filler and suspect identifi-
cations and the distribution of responses across different
confidence levels in each of these response categories.
Although suspect identifications cannot be directly clas-
sified as correct or incorrect without knowing the guilt
status of each suspect, filler identifications are known to
be incorrect because the fillers are chosen from a pool

of people known to be innocent. Thus, the model can
gauge the extent to which things are “going well” – that
is, a high proportion of suspects are guilty and witnesses
are often successful in recognizing the true culprit – by
evaluating the proportion of filler identifications (the
lower the better).
How, then, does the model distinguish the two processes

that might lead to troublingly high rates of filler selections,
low base rate and poor witness memory? That is where
the distribution across confidence comes in. Figure 14
demonstrates the role of confidence in estimating base
rates. The circles are model predictions with a baseline
parameter set, and the pluses and triangles are predictions
generated by changing either the memory-strength param-
eter (μg) or the base-rate parameter (pg), respectively, to in-
crease the proportion of collapsed suspect identifications
by the same amount. Boosting suspect identifications by
improving memory strength also strongly increases the
confidence for collapsed suspect identifications. The boost
in collapsed suspect picks is produced because witnesses
with a better memory are more likely to recognize guilty
suspects in the subset of lineups that have them, and
stronger memory also increases confidence in these guilty-
suspect picks. Thus, increasing memory-strength results in
fewer simulated suspect identifications being made with
low and medium confidence. This effect occurs because

Fig. 13 Parameter recovery of μg, c1, and pg from data simulated with the signal detection theory (SDT) model
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the target-strength distribution shifts to the right with a
higher μg value (i.e., increased memory strength), which
also means that a greater proportion of this distribution
falls in the highest confidence region. In contrast, increas-
ing collapsed suspect identifications by increasing the base
rate of guilty suspects has a flatter response profile across
the confidence levels, showing a less dramatic increase in
high-confidence suspect identifications compared to a
memory change, and no decreases in responses made with
medium or low confidence. In this scenario, the change in
collapsed suspect picks is not driven by a change in re-
sponses to guilty or innocent suspects, but by a higher-
level change in how these two trial types are proportionally
mixed. Showing witnesses more lineups with guilty sus-
pects means that there are more trials likely to produce a
suspect identification, but does not mean that witnesses
will be more confident when they do identify a guilty
suspect.
Interestingly, the difference in response distributions

due to changes in base rate and memory strength cannot
be eliminated by allowing the confidence criteria to vary.
The critical reason is that changing the confidence cri-
teria also changes the confidence distribution for filler
identifications. Figure 14 shows that the distinct confi-
dence profiles for base rate and memory changes occur
only for suspect selections and not filler identifications.
Thus, changing the confidence criteria cannot make a
base-rate change look like a shift in memory strength
because the filler identification decisions would be dis-
torted in detectable ways.
We also used the simulations to assess the theoretical

ability of the model to estimate PPG. Figure 15 shows a

scatterplot of the actual PPG for each data set of 1000
simulated witnesses and the estimated PPG generated by
fitting the model to each data set. Similar to the param-
eter recovery results, the points closely follow the posi-
tive diagonal, indicating excellent recovery of PPG.
Again, these results are cleaner than the analyses that
bootstrapped data from real data sets, suggesting that
the analyses of real data are subject to additional uncer-
tainty based on violations of model assumptions.

Discussion
When analyzing real-world data from eyewitness identi-
fications, it is, unfortunately, not possible to precisely de-
termine how a witness identification of a suspect should
change our belief in the guilt of the suspect. One prob-
lem is that the probability of guilt after the suspect has
been identified, the PPG, can only be meaningfully esti-
mated if we also know the proportion of lineups that in-
clude a guilty suspect, P(guilty).
Recent work (Wixted et al., 2016) successfully used a

SDT model to estimate P(guilty) on a single empirical
data set that provided the model with no information
about the guilt or innocence of the suspects. The main
goal of the current work was to extend this prior work
by testing the ability of the SDT model to estimate
P(guilty) on a much wider range of empirical data.
To test the SDT model, we collated data from 13 ex-

periments and more than 10,000 identification decisions.
The experiments varied in simulated crime, lineup sizes,
the similarity relations of fillers and suspects, exposure
and retention intervals, the position of the suspect in the
lineup, different types of biases, the presence of a

Fig. 14 The change in the signal detection theory (SDT) response
distribution collapsed across innocent-suspect and guilty-suspect
lineups when the proportion of suspect picks is increased by
changing either memory strength or the base rate of guilty suspects
in the SDT model

Fig. 15 Actual and estimated posterior probability of guilt (PPG) for
data simulated by the signal detection theory (SDT) model
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weapon, the use of alcohol by the witness, and the par-
ticular individuals used in the lineups. All experiments
provided the lineup photos simultaneously and collected
confidence ratings.
From these experiments, we generated data sets with a

known proportion of guilty suspects. To mimic a real-
world setting in which the guilt or innocence of the sus-
pect is not known, the data were then collapsed over
guilty-suspect and innocent-suspect trials. We then used
the SDT model to estimate the base rate of guilty suspects
from these collapsed data sets. We took advantage of new
software and results, including closed-form solutions for
the SDT model, that aid in fitting SDT models to lineup
data (Cohen et al (n.d.) (in press)).
When tested on data drawn from this full data set, the

model did a good job estimating base rate. When the ac-
tual base rate was low, however, both the estimated base
rate and estimated PPG were too high. When the actual
base rate was high, the estimated base rate was somewhat
low. There was also considerable variability in these esti-
mates. Estimation was excellent for base rates near 50%.
To get a sense of the generalizability of the results, the

model was then applied to data from each of the 13 exper-
iments separately. The results varied, with some experi-
ments showing very good base-rate estimation and others
showing extremely poor base-rate estimation. A closer
look at individual experimental conditions demonstrated
that conditions that bias participants to select the suspects
too often or too seldom, for example, by manipulating the
similarity of the suspect and fillers, are particularly trouble-
some. An analysis of the result patterns suggests that the
model is misspecified under these conditions. The basic
idea is that the biasing conditions tend to increase or de-
crease the proportion of suspect identifications. Critically,
these changes are selective, so that the response pattern
changes cannot be accounted for solely by shifts of re-
sponse criteria. Thus, the model, in turn, interprets a shift
toward or away from suspect identifications as a change in
base rate. Indeed, when the model was applied to only
conditions that approximated fair lineups, the best-
practices data set, estimation of both base rates and PPG
was very good to excellent, although high base rates were
still slightly underestimated and variability in estimates
was high given the large sample size. Further evidence that
the model failure is due to a model misspecification comes
from simulations of the SDT model which suggest that,
when the data conform to the model assumptions, param-
eter estimation is very accurate. Estimation of both base
rate and PPG was more accurate for model-generated data
than empirical data, suggesting that the empirical data are
subject to inaccuracies based on violations of the model’s
assumptions.
One caveat should be noted, which is that this work as-

sumes an equal-variance SDT model. That is, variability in

the memory strengths of both targets and lures are as-
sumed equal. This assumption is a mathematical require-
ment – without it, the model is under-constrained, and
the base-rate parameter cannot be uniquely identified. In
favor of this assumption, Wixted et al. (2016) found that
an equal-variance SDT model was sufficient to account
for both the uncollapsed and collapsed data from Palmer
et al. (2013). It may be prudent, however, to treat the
equal-variance assumption with skepticism. Indeed, a host
of prior work suggests that the memory strengths for tar-
gets should be more variable than the memory strengths
for lures (for a recent review, see Rotello, 2017). We ac-
knowledge, however, that it is an open question whether
and/or when the equal-variance assumption is violated in
a lineup context. Regardless, a consequence of inappropri-
ately assuming an equal-variance model is that measures
of memory accuracy will be confounded with differences
in witnesses’ tendency to choose from the lineup (Rotello,
Masson, & Verde, 2008). For this reason, we currently rec-
ommend against using the model in this form to compare
performance across different uncollapsed, experimental
conditions.
To determine the effect of incorrectly assuming an

equal-variance model, we fit an equal-variance SDT
model, letting the base-rate parameter vary, to data sim-
ulated from an unequal-variance SDT model. In particu-
lar, we performed the same simulation as previously, but
assumed that the standard deviation of the target distri-
bution was 1.5, 50% higher than the lure standard devi-
ation. Details are provided on OSF. The main result was
that the individual parameter estimates were biased: Es-
timates of pg were systematically low and estimates of μg
were systematically high. It is interesting to speculate
that the low base-rate estimation seen in some studies,
such as Carlson et al. (2017), could be due to an incor-
rect assumption of equal variance. Remarkably, however,
when estimating PPG, these biases cancelled each other
out – estimates of PPG were excellent. Thus, although
individual parameter estimates were biased, estimates of
PPG were more robust. Further exploring the effect of
such model misspecifications is an important avenue of
future research.
Overall, depending on the crime scene circumstances

and the lineup procedures – that is, both estimator and
system variables – the results vary from very poor to
very good base-rate estimation. Assuming that biased
lineups do not account for a large proportion of real-
world situations, the worst case scenario regarding base-
rate estimation is probably similar to the results from
the full data set (Fig. 3), which slightly overestimates
base rate and substantially overestimates PPG when the
actual base rates are low. If lineup quality is higher, i.e.,
more akin to the lineups represented in the best-
practices data set, then base-rate estimation is very good
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across a wide range and estimation of PPG is excellent
(Fig. 10).

Conclusions
The probability that a suspect who has been identified as
the culprit is actually guilty, the posterior probability of
guilt (PPG), can only be meaningfully estimated if we
know the proportion of lineups that include a guilty sus-
pect, P(guilty) (Wells et al., 2015). In real-world settings,
with real-world data from eyewitness identifications, this
information is, unfortunately, not known. Previous work
(Wixted et al., 2016) has shown that a signal detection
theory (SDT) model can be used to estimate P(guilty),
but the technique was validated with data from a single
study. Here, we extended this prior work by testing the
ability of the SDT model to estimate P(guilty) on a wide
range of empirical data. In summary, the SDT model
was able to successfully recover P(guilty) in experiments
that conformed to the model’s assumptions, but failed,
to varying extents, when the lineups were biased. For
unbiased lineups, estimation of both P(guilty) and PPG
were very good to excellent. For biased lineups, both
P(Guilty) and PPG were overestimated because the sus-
pect will be chosen too often and with confidence that is
high, whereas fillers will be chosen too rarely. Thus,
under good testing conditions, the SDT model provides
valuable information about the evidentiary value of an
eyewitness identification.

Methods
In this section, we first describe the data used in the
analyses and then the details of the SDT model and
simulations.

Data
The data used in the following analyses were selected to
have the following characteristics. First, the data were
from simultaneous lineups; that is, all individuals in the
lineup were viewed by the participant at the same time.
Second, there were at least six individuals in the lineup;
in fact, all experiments considered here used either
lineups of length six or eight. Third, confidence judg-
ments were collected. Fourth, both guilty-suspect and
innocent-suspect trials were included and the guilt or in-
nocence of the suspect was known on every trial. Finally,
the data were either available in published materials or
were provided to us by the authors.

Full data set and individual experiments
The data from 13 experiments were used in the analyses,
with a total of 10,137 trials. The experiment references
are provided in Table 1. If we analyzed data from only a
subset of experiments in a multi-experiment report, each
experiment is listed separately. Conditions within that

experiment were collapsed. In a later analysis, we separ-
ately analyze experimental conditions. The table also
provides the labels used for the experiments in the fig-
ures, the experiment sample size, the number of individ-
uals in the lineup, the number of confidence levels, and
the factors manipulated in the experiment.
Law enforcement officers do not typically ask wit-

nesses to make an identification from a lineup lacking
an actual suspect. For this reason, it is necessary to iden-
tify a suspect on every trial, even for innocent-suspect
trials. Where available, we used the innocent-suspect
identified by the authors. Where unavailable, either be-
cause an innocent suspect was not designated by the ex-
perimenters or because the data summary tables did not
clearly identify that individual, an innocent suspect was
randomly selected from the fillers on each trial.
Across these 13 experiments, different numbers of

confidence levels were used. In contrast, our strategy for
fitting the model to data assumes that all studies have
the same number of confidence levels. To resolve this
issue, we followed the basic idea from Wixted et al.
(2016) and normalized confidence ratings to a 0–1 scale,
assigning low, medium, and high confidence to normal-
ized responses below 0.65, between 0.65 and 0.85, and
above 0.85, respectively. To normalize the data, we di-
vided the response confidence level rank minus 1 by the
number of possible confidence levels for that study
minus 1. The subtraction is necessary because confi-
dence level ranks start at 1, but we wanted a normalized
confidence scale that starts at 0. For example, assume
that a study had seven confidence levels and, on a par-
ticular response, the confidence rating was 4. The nor-
malized confidence for that response is (4 – 1)/(7 – 1) =
0.50 (the mid-point of that particular confidence scale),
which, because it is below 0.65, is classified as a low-
confidence response. In certain cases; for example,
where there were few responses in a confidence range,
the data provided by the researchers were collapsed
across confidence levels. In such cases, we provide the
collapsed ranges and compute the normalized confi-
dence based on these collapsed ranges.

Experimental conditions
In a subsequent analysis, we separately examine condi-
tions from these 13 experiments. The details of a subset
of these conditions are provided in the “Results” section.
In Table 2 we briefly list the conditions, sample size, and
figure labels for each condition.

Best practices
We also performed an analysis with only the experimen-
tal conditions that were designed to conform to best
practices for police lineups; e.g., fair instructions. For
this analysis, we only analyze published data, i.e., the
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Rotello et al. (2015) experiments are not considered.
The data used in this analysis are as follows: Brewer and
Wells (2006) fair instructions; Carlson et al. (2016, 2017)
all data; Gronlund et al. (2009) removing biased lineups
and lineups with strong innocent suspects; Kneller and
Harvey (2016) all data; Mickes (2015) all data; Mickes
et al. (2017) all data; Palmer et al. (2013) all data; Wet-
more et al. (2015) removing biased lineups and trials
with strong innocent suspects. These data included 6685
trials across the 10 experiments.

SDT model
The signal detection model was implemented as de-
scribed previously. Following Wixted et al. (2016), we
used an equal-variance SDT model (σg = σl = 1). We as-
sumed three confidence levels. There were five free pa-
rameters: the mean of the suspect/target distribution
(μg), the base rate of guilty suspects (pg = P(guilty) from

Eq. 1), and the three criteria (c1, c2, and c3)
1 The mean

and standard deviation of the lure/filler distribution were
fixed at μf = 0 and σf = 1, respectively. The standard devi-
ation of the suspect/target distribution was also fixed at
σg = 1.
The basic idea of the model is as follows. Assume a

lineup of length six. If the culprit is present, one sample
is drawn from the target distribution and five are drawn
from the lure distribution of Fig. 1. The sample with the
highest strength, h, drives the response. If h < c1 the
lineup is rejected. If h > c1 and the sample is from the
target distribution, the culprit is selected. If h > c1 and
the sample is from the lure distribution, a filler is se-
lected. The response is of low, medium, and high

Table 1 The experimental data used in the analyses

Reference Data subset Label N Lineup
size

Confidence
levels

#
confidence
levels

Factors

Brewer and Wells (2006) Single exp. BW,
2006

1200 8 0 to 100 by
10

11 Instruction fairness (biased, unbiased),
foil similarity (low, high)

Carlson et al. (2016) Single exp. C+,
2016

1415 6 0 to 1 by .1 11 Exposure duration (3 s, 10 s), weapon
(present, absent)

Carlson, Dias,
Weatherford, and Carlson
(2017)

Single exp. C+,
2017

1234 6 0 to 100 by
10

11 Weapon (present, absent, concealed)

Gronlund, Carlson,
Dailey, and Goodsell
(2009)

Single exp.
(simultaneous only)

G+,
2009

1279 6 1 to 7 by 1 7 Video quality (good, poor), guilty strength
(strong, weak), innocent strength (weak, strong),
lineup fairness (unbiased, intermediate, biased),
suspect position (2, 5)

Kneller and Harvey
(2016)

Single exp. KH,
2016

120 6 1 to 7 by 1 7 Alcohol (control, placebo, mild intoxication)

Mickes (2015) Exp. 1 M,
2015,
E1

302 6 0 to 100 by
10

11 –

Mickes (2015) Exp. 2
(simultaneous only)

M,
2015,
E2

238 6 0 to 100 by
10

11 –

Mickes et al. (2017) Single exp.
(confidence ratings
only)

M+,
2017,
E1

978 6 0–30 and 40
to 100 by 10

8 –

Palmer et al. (2013) Exp. 1 P+,
2013

908 8 0–20 and 30,
100 by 20

5 Exposure duration (90 s, 5 s), retention interval
(imm., 6–103 days)

Rotello, Guggenmos, and
Isbell (2015)

Exp. 1
(simultaneous only)

R,E1 437 6 0 to 100 by
10

11 Suspect position (2, 5)

Rotello et al. (2015) Exp. 2
(simultaneous only)

R,E2 521 6 0 to 100 by
10

11 Suspect position (2, 5)

Rotello et al. (2015) Exp. 3
(simultaneous only)

R,E3 376 6 0 to 100 by
10

11 Suspect position (2, 5)

Wetmore et al. (2015) Single exp.
(simultaneous only)

W+,
2015

1129 6 1 to 7 by 1 7 Retention interval (imm., 48 h), lineup fairness
(biased, unbiased, other), innocence strength
(weak, strong)

Notes: exp. experiment, imm. immediate

1The following ranges were put on the fit parameters: .01 < pg < .99, 0
<μg < 3, − 3 < c1 < 6, and .01 < Δc < 3, where Δc is the distance
between successive criteria.
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Table 2 The data analyzed by condition
Reference Condition Label N

Brewer and Wells (2006) Low fairness, neutral instructions BW,2006,LN 300

High fairness, neutral instructions BW,2006,HN 300

Low fairness, liberal instructions BW,2006,LL 300

High fairness, liberal instructions BW,2006,HN 300

Carlson et al. (2016) Shown weapon, short exposure C+,2016,SS 337

No weapon, long exposure C+,2016,NL 368

Shown weapon, long exposurea C+,2106,SL 710

Carlson et al. (2017) No weapon C+,2017,N 409

Concealed weapon C+,2017,C 418

Shown weapon C+,2017,S 407

Gronlund et al. (2009)b Fair lineup, innocent weak G+,2009,FIW 317

Intermediate bias, innocent weak G+,2009,IIW 308

Biased lineup, innocent weak G+,2009,BIW 325

Fair lineup, innocent strong G+,2009,FIS 312

Intermediate bias, innocent strong G+,2009,IIS 320

Biased lineup, innocent strong G+,2009,BIS 336

Fair lineup, guilty weak G+,2009,FGW 320

Intermediate bias, guilty weak G+,2009,IGW 316

Biased lineup, guilty weak G+,2009,BGW 323

Fair lineup, guilty strong G+,2009,FGS 314

Intermediate bias, guilty strong G+,2009,IGS 310

Biased lineup, guilty strong G+,2009,BGS 336

Kneller and Harvey (2016) No alcohol KH,2016,N 40

Alcohol KH,2016,A 40

Placebo KH,2016,P 40

Palmer et al. (2013) Short exposure, short retention P+,2013,SS 253

Short exposure, long retention P+,2013,SL 218

Long exposure, short retention P+,2013,LS 219

Long exposure, long retention P+,2013,LL 218

Wetmore et al. (2015)c Fair, innocent weak, short retention W+,2015,FIWS 178

Fair, innocent strong, short retention W+,2015,FISS 101

Biased, innocent weak, short retention W+,2015,BIWS 184

Biased, innocent strong, short retention W+,2015,BISS 107

Otherd, innocent weak, short retention W+,2015,OIWS 111

Other, innocent strong, short retention W+,2015,OISS 107

Fair, innocent weak, long retention W+,2015,FIWL 176

Fair, innocent strong, long retention W+,2015,FISL 115

Biased, innocent weak, long retention W+,2015,BIWL 153

Biased, innocent strong, long retention W+,2015,BISL 110

Other, innocent weak, long retention W+,2015,OIWL 108

Other, innocent strong, long retention W+,2015,OISL 113

Note: Only a subset of these conditions are discussed in the text. The full set of results is provided on OSF
aIncludes both the 3-s and 10-s weapon view. The culprit’s face was seen for 10 s in both conditions
bTo perform the analysis, both guilty-suspect and innocent-suspect trials are needed. Both strength levels of the innocent or guilty suspects that were not
fixed were included. All levels of video quality and suspect position were used
cTo perform the analysis, both guilty-suspect and innocent-suspect trials are needed. The innocent weak/strong suspects were paired with the guilty
strong suspects
dDetails are not provided in Wetmore et al. (2015) or in the data regarding these instructions, but they were designed to be similar to police instructions,
so were included
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confidence if c1 < h < c2, c2 < h < c3, c3 < h, respectively. If
the culprit is not present, all six samples are drawn from
the lure distribution, one of these lures is designated as
the suspect, and the model proceeds in the same
fashion.
Because we are interested in cases in which the

guilt or innocence of the suspect is unknown, the
model predictions are collapsed over guilty-suspect
and innocent-suspect trials. For example, if the model
predicts 10% of trials are high-confidence suspect re-
sponses to a guilty suspect and 2% of trials are high-
confidence suspect responses to an innocent suspect ,
the model predictions will have 12% high-confidence
suspect responses. The same process is repeated for
all response categories. The data were collapsed in
the same way.
For computational efficiency, the model was imple-

mented using the closed-form equations (Cohen et al
(n.d.) (in press); also see Wixted et al., 2018). The model
was fit using the G2 fit measure to the seven data points
from the collapsed data (suspect or filler at high/medium/
low confidence or reject). Model predictions were not
allowed to go below 0.001. Cells with no data were re-
moved from the fit measure.
The model predictions depend, in part, on the lineup

length. The experiments used here were selected to have
at least six photos in the lineup; in fact, there were al-
ways either six or eight photos. Thus, when combined,
the data set was comprised of experiments using lineups
of different lengths. To combine the fit measure across
experiments, the same set of parameters was used to
predict the data at each lineup length separately and
then these fit measures were combined by weighting
them by the proportion of trials of each lineup length.
As a baseline, the model was first fit to the original,

unmodified data (all 10,137 trials). To generate data
sets with different base rates, the model was also fit
to resampled data from the original data. To keep
sample size constant across experiments, we fixed the
number of sampled trials at 10002 Assume a desired
base rate of 0.20, that is, we want 20% of the trials to
be guilty-suspect trials. From the original data, 20%
(200) samples were drawn with replacement from the
guilty-suspect trials and 80% (800) samples were
drawn with replacement from the innocent-suspect
trials. The model was then fit to these 1000 trials as
described previously. To produce a distribution of es-
timated base-rate parameters, this process was re-
peated 1000 times. This entire process was then

repeated for base rates of 0.20, 0.35, 0.50, 0.65, and
0.80. This range of base rates was selected to cover
the likely range of actual base rates of police lineups.
We deemed it unlikely that lineups would have base
rates lower than 0.20 or higher than 0.80.
In addition to the model fit, we also computed the fol-

lowing measures, used to generate calibration curves, for
both the data and model. First, we calculated the pro-
portion of suspect identifications at each confidence
level that were guilty (see Wixted et al., 2016). Although
not always done in prior work, for completeness, we also
computed the proportion of rejected lineups for which
the suspect was innocent (e.g., Wells et al., 2015). Sec-
ond, we calculated the proportion of suspect identifica-
tions at each confidence level, regardless of the guilt of
the suspect. This was done for the data from each sam-
pled base rate. The results were averaged across all sam-
pled data sets.
We also conducted two analyses designed to explore

how sensitive the SDT model was to the specific value of
the base-rate parameter, pg. First, we assessed how well
the SDT model fits the data when a particular base rate
is assumed. Second, we assessed how well the SDT
model can estimate base rates when the data are known
to be generated by the model, assuring that the model
assumptions are met. Details of, and results from, these
analyses are provided in the “Results” section.
The model was first applied to the entire combined

data set from the 13 experiments of Table 1. The model
was then applied to the data from each individual ex-
periment and then to the conditions listed in Table 2.

Simulations
The simulation code is available on the project’s OSF
page. Each loop of the simulation routine involved the
following steps:

1. A random parameter set was generated by
randomly sampling each parameter value from a
uniform distribution. The ranges were as follows:
1.5 < μg < 3.5, 0.5 < c1 < 1.5, distance between c1 and
c2, 0.2 < Δc2 < 0.4, distance between c2 and c3,
0.2 < Δc3 < 0.7, 0.2 < pg < 0.8.

2. A simulated data set was created by randomly
sampling N trials from the signal detection
model with the sampled parameter values. Each
simulated data set had Npg lineups in which the
culprit was present (“target-present”) and N(1 −
pg) lineups in which the culprit was not present
(“target-absent”), just like the data in our
empirical bootstrap analyses. Thus, in both the
simulations and our main analyses, we are
treating base rates as a descriptive statistic that
applies to a given data set. Generalizing to a new

2Different sample sizes were tried. The qualitative results for sample
sizes above about 100 were similar; thus, we just report a sample size
of 1000 here. This is also very roughly the size of the Houston data set
used in Wixted et al. (2016).
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data set would involve additional uncertainty,
which could be represented in simulations by
sampling the number of target-present lineups
from a binomial distribution parameterized by N
and pg. For target-present lineups, a response was
selected by randomly sampling five strength
values from the lure distribution for fillers and
one from the target distribution for the guilty
suspect, selecting the highest of these strength
values, and comparing this highest value to the
criteria. The same process was used for target-
absent lineups, except that the innocent-suspect
strength was sampled from the lure distribution.

3. The model was fit to the simulated data set by
minimizing G2. Fits always began with the same
initial parameter values: μg = 2, c1 = 1, c2 = 1.5, c3 =
2, and pg = .5.

4. The true (data-generating) and fit parameter values
were saved, along with the G2 value.
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