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Learning Argument Structures
with Recurrent Neural Network Grammars

Ryo Yoshida and Yohei Oseki
The University of Tokyo

{yoshiryo0617, oseki}@g.ecc.u-tokyo.ac.jp

Abstract
In targeted syntactic evaluations, the syntac-
tic competence of language models (LMs)
has been investigated through various syntac-
tic phenomena, among which one of the im-
portant domains has been argument structure.
Argument structures in head-initial languages
have been exclusively tested in the previous
literature, but may be readily predicted from
lexical information of verbs, potentially over-
estimating the syntactic competence of LMs.
In this paper, we explore whether argument
structures can be learned by LMs in head-final
languages, which could be more challenging
given that argument structures must be pre-
dicted before encountering verbs during incre-
mental sentence processing, so that the rel-
ative weight of syntactic information should
be heavier than lexical information. Specif-
ically, we examined double accusative con-
straint and double dative constraint in Japanese
with the sequential and hierarchical LMs: n-
gram model, LSTM, GPT-2, and Recurrent
Neural Network Grammar (RNNG). Our re-
sults demonstrated that the double accusative
constraint is captured by all LMs, whereas
the double dative constraint is successfully ex-
plained only by the hierarchical model. In ad-
dition, we probed incremental sentence pro-
cessing by LMs through the lens of surprisal,
and suggested that the hierarchical model may
capture deep semantic roles that verbs assign
to arguments, while the sequential models
seem to be influenced by surface case align-
ments. We conclude that the explicit hierarchi-
cal bias is essential for LMs to learn argument
structures like humans.

1 Introduction

Recently, artificial neural networks have had a great
impact on the field of Natural Language Processing.
Nevertheless, despite the improvement brought by
the neural network, it is an open question what lin-
guistic knowledge neural language models (LMs)

can learn from the next word prediction task. One
line of research peeking into the neural network
“black box” is the targeted syntax evaluations with
controlled sentences designed to reveal whether
the LMs have learned specific syntactic knowl-
edge consistent with human acceptability judge-
ments. (e.g., Lau et al., 2017). Using this method,
previous work has shown that these models suc-
cessfully learn a variety of syntactic knowledge
such as subject-verb number agreement (Linzen
et al., 2016; Marvin and Linzen, 2018; Wilcox et al.,
2018).

In targeted syntax evaluations, one of the impor-
tant domains has been argument structure. Pre-
vious work suggested that neural LMs have the
ability to capture argument structures (Kann et al.,
2019; Warstadt et al., 2020), but in head-initial lan-
guages exclusively tested in the previous literature,
argument structures may be predicted from lexical
information of verbs, potentially overestimating
the syntactic competence of the LMs. In addition,
although targeted syntax evaluation to test other lin-
guistic knowledge has confirmed the advantage of
syntactic bias (Kuncoro et al., 2018; Wilcox et al.,
2019; Futrell et al., 2019), hierarchical models such
as Recurrent Neural Network Grammars (RNNGs,
Dyer et al., 2016) have not been evaluated for verb
argument structures.

In this paper, we will examine the effect of
syntactic bias on learning verb argument struc-
tures, using more challenging head-final language,
Japanese. In Japanese, argument structures must be
predicted before encountering verbs during incre-
mental sentence processing, such that the relative
weight of syntactic information should be heav-
ier than lexical information. We specifically focus
on the double accusative constraint (e.g., Harada,
1975, 1986; Shibatani, 1978; Hiraiwa, 2002, 2010)
and the double dative constraint in Japanese. The
double accusative constraint prohibits the occur-
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Previous literature English Italian Russian French German Hebrew Basque Japanese
Linzen et al. (2016),
Marvin and Linzen (2018),
Jumelet and Hupkes (2018),
Chowdhury and Zamparelli (2018, 2019),
Wilcox et al. (2018, 2019),
Futrell et al. (2019),
Warstadt et al. (2019a,b, 2020),
Chaves (2020),
Da Costa and Chaves (2020),
Hu et al. (2020)

"

Gulordava et al. (2018) " " " "

Ravfogel et al. (2018) "

An et al. (2019) " "

Mueller et al. (2020) " " " " "

Table 1: Summary of the previous literature on targeted syntactic evaluations. Works for English are shown above
the horizontal line and works for other European languages are shown below the horizontal line.

rences of two or more NPs marked with the ac-
cusative case particle o within the same clause, and
the double dative constraint is the restriction on
the case taken by verbs. We will test these con-
straints with the sequential and hierarchical LMs,
n-gram, LSTM, GPT-2 (Radford et al., 2019) and
Recurrent Neural Network Grammars (RNNGs).
As a result, we demonstrated that the double ac-
cusative constraint could be captured by all LMs,
whereas the double dative constraint is successfully
explained only by the hierarchical model. In addi-
tion, we analyzed the phrase-by-phrase surprisal
of the LMs, and suggested that the hierarchical
model may capture deep semantic roles that verbs
assign to arguments, while the sequential models
are influenced by surface case alignments. This re-
sult suggests that the double accusative constraint,
which is a constraint to spell out the surface case,
can be solved well by the sequential model, but
the double dative constraint, which is a constraint
at the level of the deep semantic role that verbs
assign to arguments, can be solved well only by the
hierarchical model. Taken together, we conclude
that the explicit hierarchical bias is essential for
LMs to learn the human-like syntactic competence
to process argument structures.

Another important contribution of this paper is
that, to the best of our knowledge, it was the first
attempt to conduct targeted syntax evaluation using
Japanese. The goal of natural language processing
community is to build a LM having language inde-
pendent general language processing ability, but so
far targeted syntax evaluation has been done mainly
for English (above the horizontal line in Table 1)
and other European languages (below the horizon-
tal line in Table 1). In order to achieve the goal, it

is important to evaluate the syntactic competence
of LMs for non-European languages.

2 Methods

To investigate the effect of explicitly modeling hi-
erarchical structures, we train linear LMs and a
hierarchical LM. In order to eliminate the effect of
the amount of training data, we trained all LMs on
the same training data. In addition, we restricted
our evaluation to left-to-right LMs corresponding
to incremental sentence processing, to make LMs
predict the verb argument structure before they see
the verb. We used the same model sizes reported
in the papers proposing each model (Table 2).

2.1 Language Models

Long Short-Term Memory (LSTM): LSTMs
are a sequential model using the recurrent neural
network architecture (Hochreiter and Schmidhu-
ber, 1997). We used a 2-layer LSTM with 256
hidden and input dimensions. The implementation
by Gulordava et al. (2018) was employed.1

GPT-2: GPT-2 is a sequential model using the
Transformer architecture (Vaswani et al., 2017).
We used the same architecture of GPT-2 small (Rad-
ford et al., 2019) with 12 layers and 756 hidden
and input dimensions. The implementation by Hug-
gingface’s Transformer package (Wolf et al., 2020)
was employed.

Recurrent Neural Network Grammar (RNNG):
RNNGs are a hierarchical model which explicitly
models hierarchical structures (Dyer et al., 2016).

1https://github.com/facebookresearch/
colorlessgreenRNNs
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Language Model #Layers #Hidden dimensions #Input dimensions
LSTM 2 256 256
GPT-2 12 768 768
RNNG 2 256 256

Table 2: Model sizes of neural LMs evaluated in this paper.

Figure 1: The architecture of RNNGs used in this paper.
This figure is reproduced from Hale et al. (2018).

In this paper, we used stack-only RNNGs (Kuncoro
et al., 2017). RNNGs generate trees such as “(S
(NP The hungry cat) (VP meows))”; each of the
elements is encoded as a vector and stored in a
stack, which is illustrated inside the gray box in
Figure 1. At each step of generation, one of the
following three actions is selected based on the
current state of the stack, which is encoded as a
vector by stack LSTM:

• NT(X) introduces a nonterminal X that is en-
coded as a vector onto the top of the stack.
This action generates an open nonterminal
“(X”.

• GEN(x) introduces a terminal symbol x that
is encoded as a vector onto the top of the stack.
This action generates a terminal symbol “x”.

• REDUCE triggers “syntactic composition”
function, which creates a new single vector
that represents a phrase X from the elements

Figure 2: “Syntactic composition” function that is ex-
ecuted during a REDUCE action. This figure is repro-
duced from Dyer et al. (2016).

of its children in the stack. For example, “(NP
The hungry cat)” is represented by a new sin-
gle vector by this action.

If NT(X) or GEN(x) is selected, which open non-
terminal or word is generated is selected based on
the same vector that represents the current state of
the stack.

If REDUCE is selected, “syntactic composition”
function is executed by bidirectional LSTM (Fig-
ure 2). In both directions, a nonterminal vector
such as “(NP” is input first, and then its children
vectors such as “u”, “v” and “w” are input in for-
ward or reverse order. After all the children vectors
are input, the phrase vector ”x” is calculated from
the output of the forward and reverse LSTMs.

We used RNNGs that had a 2-layer stack LSTM
with 256 hidden and input dimensions. The im-
plementation by Noji and Oseki (2021) was em-
ployed.2 RNNGs were given the correct tree
structures only during training, so we used word-
synchronous beam search (Stern et al., 2017) to
inference tree structures behind terminal subwords
during evaluation. We set the action beam size to
100, the word beam size to 10, and the fast track to
1.

n-gram: As a baseline, we also train 5-gram LM
using KenLM.3

2https://github.com/aistairc/
rnng-pytorch

3https://github.com/kpu/kenlm
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2.2 Training data

All LMs were trained on the National Institute for
Japanese Language and Linguistics Parsed Cor-
pus of Modern Japanese (NPCMJ), that comprises
67,018 sentences annotated with tree structures.4

The sentences were split into subwords by a byte-
pair encoding (Sennrich et al., 2016).5 LSTM, GPT-
2, and n-gram used only terminal subwords, while
RNNGs used terminal subwords and tree structures.
All neural LMs (LSTM, GPT-2, and RNNGs) were
given one sentence at a time and were trained for 40
epochs and 3 times with different random seeds.6

2.3 Acceptability judgements with LMs

Recently, many efforts have been made on the
evaluation of the syntactic competence of LMs.
Previous work (e.g., Linzen et al., 2016; Marvin
and Linzen, 2018; Wilcox et al., 2018) evaluated
whether LMs assign a higher probability to an ac-
ceptable sentence than to an unacceptable one, us-
ing a minimal pair such as (1).

(1) a. The hungry cat meows.

b. *The hungry cat meow.

There are several methods to measure an LM’s pref-
erence between two sentences in a minimal pair.
One of them is prediction task, which compares a
probability of grammatically critical position. For
example, in the example in (1), we would expect
the model to predict p(meows|The hungry cat) >
p(meow|The hungry cat). However, the predic-
tion task setting is not applicable when grammat-
icality is determined by the interaction of several
words or when the information necessary to deter-
mine grammaticality does not appear in the left
context. In this paper, we use the more general
full-sentence setting (Marvin and Linzen, 2018;
Warstadt et al., 2020), which compares a prob-
ability of the two complete sentences. For ex-
ample, in the example in (1), we would expect
the model to predict p(The hungry cat meows) >
p(The hungry cat meow).

4http://npcmj.ninjal.ac.jp
5Implemented in sentencepiece (Kudo and Richardson,

2018). We set character coverage to 0.9995, and vocabulary
size to 8000

6Traces and semantic information were removed in the
way described in Manning and Schutze (1999).

3 Targeted argument structures

3.1 Double accusative constraint
Japanese has a constraint that prohibits the occur-
rences of two or more NPs marked with the ac-
cusative case particle o in the same clause. This
constraint is called “double accusative constraint”,
and have attracted considerable interest in the study
of Japanese syntax (e.g., Harada, 1975, 1986; Shi-
batani, 1978; Hiraiwa, 2002, 2010). One example
of double accusative constraint is given in (2):

(2) a. Ken-ga
Ken-Nom

Naomi-ni/o
Naomi-Dat/Acc

gakko-ni
school-Dat

ik-ase-ta
go-Caus-Past
‘Ken made Naomi go to school.’

b. Ken-ga
Ken-Nom

Naomi-ni
Naomi-Dat

sono-hon-o
Dem-book-Acc

yom-ase-ta
read-Caus-Past
‘Ken made Naomi read the book.’

c. *Ken-ga
Ken-Nom

Naomi-o
Naomi-Acc

sono-hon-o
Dem-book-Acc

yom-ase-ta
read-Caus-Past
‘Ken made Naomi read the book.’

As shown in (2a), when the object NP is marked
with the dative case particle ni, the causee NP can
be marked with either the dative case particle ni or
the accusative case particle o. However, as shown
in (2bc), when the object NP is marked with the
accusative case particle o, the causee NP cannot
be marked with the accusative case particle o (2c),
but must be marked with the dative case particle ni
(2b).

We can assess the syntactic competence of
LMs on double accusative constraint by examin-
ing whether LMs assign a higher probability to
(2b) than (2c), where both arguments are marked
with the accusative case particle o within the same
sentence. For this purpose, 22 minimal pairs of
the (2bc) pattern made by Tamaoka et al. (2018)
were collected and the probabilities of the two sen-
tences were compared for each minimal pair. We
confirmed that case markers are tokenized into in-
dividual subword tokens.

3.2 Double dative constraint
Now we turn to another phenomenon on argument
structures: double dative constraint. In Japanese,
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Language Model Accuracy (%)
n-gram 72.7
LSTM 97.0 (± 2.1)
GPT-2 95.5 (± 3.7)
RNNG 98.5 (± 2.1)

Table 3: The result of targeted syntactic evaluation on
double accusative constraint. Average accuracies with
standard deviations across different random seeds are
reported.

case is marked with particles, and different verbs
can take different case patterns. One example of
double dative constraint is given in (3):

(3) a. Ken-ga
Ken-Nom

Naomi-o
Naomi-Acc

gakko-ni
school-Dat

oku-tta
take-Past

‘Ken took Naomi to school.’

b. *Ken-ga
Ken-Nom

Naomi-ni
Naomi-Dat

gakko-ni
school-Dat

oku-tta
take-Past

‘Ken took Naomi to school.’

As shown in (3a), double object verbs take three
arguments: an NP marked with the nominative case
particle ga, an NP marked with the accusative case
particle o, and an NP marked with the dative case
particle ni. Double object verbs cannot take an
NP marked with the dative case instead of an NP
marked with the accusative case (3b), resulting in
unacceptable sentences.

We can assess the syntactic competence of LMs
on double dative constraint by examining whether
LMs assign a higher probability to (3a) than (3b).
In order to make the results comparable to the dou-
ble accusative constraint in the previous section,
we contrast (3a) with (3b), where both arguments
are marked with the dative case particle ni within
the same sentence. For this purpose, 22 minimal
pairs of the (3ab) pattern made by Tamaoka et al.
(2018) were collected and the probabilities of the
two sentences were compared for each minimal
pair. We confirmed that case markers are tokenized
into individual subword tokens.

4 Results

4.1 Double accusative constraint
The result of targeted syntactic evaluation on dou-
ble accusative constraint is shown in Table 3. Av-

Language Model Accuracy (%)
n-gram 81.8
LSTM 89.4 (± 8.6)
GPT-2 86.4 (± 3.7)
RNNG 100.0 (± 0.0)

Table 4: The result of targeted syntactic evaluation on
double dative constraint. Average accuracies with stan-
dard deviations across different random seeds are re-
ported.

erage accuracies with standard deviations across
different random seeds are reported. First, the base-
line n-gram model underperformed the neural LMs.
This result demonstrates that the dataset used to
test the double accusative constraint cannot merely
be solved with local information.

Second, among the neural LMs, the hierarchi-
cal model (RNNG) achieved the highest accuracy,
while the sequential models (LSTM and GPT-2)
also reached the near perfect performance. This
result provide evidence supporting that the neural
LMs can capture the double accusative constraint
without explicitly modeling hierarchical structures.

4.2 Double dative constraint

The result of targeted syntactic evaluation on dou-
ble dative constraint is shown in Table 4. Average
accuracies with standard deviations across different
random seeds are reported. First, the baseline n-
gram model performed relatively well, but the per-
formance is still lower than the neural LMs. This
result indicates that the dataset used to test the dou-
ble dative constraint can reasonably be solved with
local information alone, but neural architectures
may be required to reach the higher performance.

Second, among the neural LMs, the hierarchi-
cal model (RNNG) achieved the perfect accuracy,
whereas the sequential models (LSTM and GPT-2)
did not reach the near perfect performance with
only slight improvements over the baseline n-gram
model. This result provide evidence supporting
that, unlike the double accusative constraint, the
neural LMs can capture the double dative constraint
only when explicitly modeling hierarchical struc-
tures.

5 Probing sentence processing

Sections 3.1 and 3.2 demonstrated that the explicit
hierarchical bias may not be necessary for the dou-
ble accusative constraint, but crucial for the double
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dative constraint. Why can the sequential models
learn the double accusative constraint, but not the
double dative constraint? In this section, following
Futrell et al. (2019), we probe sentence processing
and identify the phrases where LMs make different
predictions for acceptable and unacceptable sen-
tences by computing phrase-by-phrase surprisal of
LMs. The following analyses include neural LMs
to the exclusion of the n-gram model.

5.1 Methods
We probed sentence processing of LMs through
the information-theoretic complexity metric
called surprisal (Hale, 2001; Levy, 2008):
− log p(segment|context) . In psycholinguistics,
it is well known that humans predict next segments
during incremental sentence processing, and the
less predictable the segment is, the more surprising
that segment is. The previous literature established
that cognitive efforts measured from humans are
proportional to surprisals computed from LMs
(e.g., Smith and Levy, 2013; Frank and Bod, 2011;
Frank et al., 2015). Building on this result, we
probe sentence processing by LMs through the
lens of surprisal.

5.2 Results
5.2.1 Double accusative constraint
Figure 3 shows phrase-by-phrase surprisal for the
double accusative constraint. Phrasal surprisal was
computed as the cumulative sum of surprisals of
its constituent subwords. Average surprisals with
standard errors across different items and random
seeds are reported.

We observe that all LMs show the largest sur-
prisal difference at the accusative case particle o
marking the third NP. This observation suggests
that the all LMs captured the double accusative
constraint through consecutive case marking on
the second and third NPs. Notice incidentally that
only RNNG shows larger surprisal at the end of
unacceptable sentences than acceptable sentences.

5.2.2 Double dative constraint
Figure 4 shows phrase-by-phrase surprisal for the
double dative constraint. Phrasal surprisal was
computed as the cumulative sum of surprisals of
its constituent subwords. Average surprisals with
standartd errors across different items and random
seeds are reported.

First, unlike the double accusative constraint, we
cannot observe the phrases where all LMs consis-

tently show a large surprisal difference. Second,
LSTM and GPT-2 show the largest surprisal differ-
ence at the dative case particle o marking the third
NP, while RNNG shows the largest surprisal dif-
ference at the case particle marking the second NP.
These observations suggest that the sequential mod-
els are more surprised when the dative case particle
ni marks two NPs consecutively, while the hierar-
chical model is more surprised when the dative case
particle ni marks the second NP incorrectly, which
should be marked by the accusative case particle o.

In order to confirm this result, we statistically
tested via paired-samples t-tests whether the “sur-
prisal differences between acceptable and unaccept-
able sentences” are significantly different between
the case particle marking the second NP (the phrase
where the dative case particle marks one NP incor-
rectly) and the case particle marking the third NP
(the phrase where the dative case particle marks
two NPs consecutively). The result revealed that
LSTM shows a significantly larger surprisal dif-
ference at the case particle marking the third NP
(p < 0.05), while RNNG shows a significantly
larger surprisal difference at the case particle mark-
ing the second NP (p < 0.05), but GPT-2 did not
show any significant difference (p = 0.067). In
other words, LSTM was more surprised when the
dative case particle ni marks two NPs consecutively,
while RNNGs were more surprised when the dative
case particle ni marks the second NP incorrectly,
which should be marked by the accusative case par-
ticle o, but GPT-2 was equally surprised at both
phrases. The important conclusion here is that the
hierarchical model (RNNG) not only achieved the
perfect accuracy but also captured the double da-
tive constraint for right reasons (i.e. incorrect case
marking on the second NP), while the sequential
models (LSTM and GPT-2) solved the double da-
tive constraint for wrong reasons (i.e. consecutive
case marking on the second and third NPs). In fact,
as in (4), it is possible to have consecutive dative
cases in Japanese, for example, when a NP marked
by the dative case expresses time, and it is wrong
to judge ungrammaticality on the basis of a series
of dative cases.

(4) Ken-ga
Ken-Nom

yoake-ni
dawn-Dat

gakko-ni
school-Dat

i-tta
go-Past

‘Ken went to school at dawn.’
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(c) RNNG

Figure 3: Phrase-by-phrase surprisal for the double accusative constraint. Phrasal surprisal was computed as the
cumulative sum of surprisals of its constituent subwords. Average surprisals with standard errors across different
items and random seeds are reported.
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Figure 4: Phrase-by-phrase surprisal for the double dative constraint. Phrasal surprisal was computed as the
cumulative sum of surprisals of its constituent subwords. Average surprisals with standard errors across different
items and random seeds are reported.
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6 General discussion

In summary, we demonstrated that all LMs can cap-
ture the double accusative constraint, while only
the hierarchical model can solve the double dative
constraint with the perfect accuracy. Moreover,
further analyses of incremental sentence process-
ing revealed that the double accusative constraint
can be attributed to the phrase where the second
and third NPs are marked consecutively, while the
double dative constraint seems to be adequately
captured by the hierarchical model at the phrase
where the second NP is marked incorrectly. In this
section, we discuss these results from the perspec-
tive of theoretical linguistics.

First, Hiraiwa (2010) proposes that the double
accusative constraint is not a pure syntactic con-
straint, but an interface constraint on the spell-out
of the accusative case; namely, the phonological
constraint against realizing multiple occurrences of
the accusative case value within the same domain.
Interestingly, this proposal is consistent with our
results in that the double accusative constraint is
modeled by LMs through surface case alignments
like consecutive case marking on the second and
third NPs.

Second, the double dative constraint, on the other
hand, seems to be a pure syntactic constraint, where
NPs should be marked with the accusative case
particle given deep semantic roles (i.e. theme)
that verbs assign to arguments. Among the neu-
ral LMs tested above, only RNNG distinguished
unacceptable sentences from acceptable sentences
at the phrase where the second NP is marked incor-
rectly. Although GPT-2 also shows a similar trend
to RNNG, the sequential models seem to be sur-
prised for wrong reasons by consecutive case mark-
ing on the second and third NPs, which is not the
critical point of the difference between acceptable
and unacceptable sentences. This result may sug-
gest that the sequential models cannot learn deep
semantic roles that verbs assign to arguments and,
alternatively, are strongly influenced by surface
heuristics (McCoy et al., 2019). In contrast, the
hierarchical model can learn those deep semantic
roles by explicitly modeling hierarchical structures
(Wilcox et al., 2020).

7 Limitations and future work

In this paper, we performed the targeted syntac-
tic evaluation of LMs on argument structure in
Japanese, which could be more challenging than

English given that argument structures must be
predicted before encountering verbs during incre-
mental sentence processing. However, our results
suggests that the dataset used in this paper may be
too easy: even the baseline n-gram model can solve
well (accuracy = 72.7% on double accusative con-
straint and 81.8% on double dative constraint). We
should evaluate LMs on more challenging dataset
to strengthen the argument in this paper.

In addition, in order to make the fair comparison
of different architectures of the LMs, we trained all
LMs on NPCMJ, the largest treebank in Japanese.
However, since NPCMJ is relatively small (67,000
sentences), and the previous literature has shown
that sequential models can reach the higher per-
formance comparable to hierarchical models when
trained on larger training data (Futrell et al., 2019),
whether the results scale or not remains to be ex-
plored in future work.

Finally, this paper was the first attempt to con-
duct the targeted evaluation in Japanese, but only
two syntactic phenomena on argument structures
were examined in this paper. In order to scale the
targeted syntactic evaluation, we plan to evaluate
the syntactic competence of LMs on a wider range
of syntactic phenomena in Japanese. We hope that
this paper will motivate the targeted evaluation of
the syntactic competence of LMs across languages.

8 Conclusion

In this paper, we explored whether argument struc-
tures can be learned by LMs in head-final lan-
guages, where argument structures must be pre-
dicted even before encountering following verbs
during incremental sentence processing. Specifi-
cally, we examined double accusative constraint
and double dative constraint in Japanese with the
sequential and hierarchical LMs: n-gram model,
LSTM, GPT-2, and RNNG. Our results demon-
strated that the double accusative constraint could
be captured by all LMs, whereas the double da-
tive constraint is successfully explained only by
the hierarchical model. In addition, we probed
sentence processing by LMs through the lens of
surprisal, and suggested that the hierarchical model
may capture deep semantic roles that verbs assign
to arguments, while the sequential models are in-
fluenced by surface case alignments. We conclude
that the explicit hierarchical bias is essential for
LMs to learn the human-like syntactic competence
to process argument structures.

108



Acknowledgements

We would like to thank three anonymous reviewers
of the Society for Computation in Linguistics for
valuable comments and suggestions. This work
was supported by JST PRESTO Grant Number JP-
MJPR21C2, and developed from a term paper sub-
mitted to the graduate course titled “Foundations
of Linguistic Analysis I” offered at the Department
of Language and Information Sciences, Graduate
School of Arts and Sciences, University of Tokyo
in Spring 2021.

References
Aixiu An, Peng Qian, Ethan Wilcox, and Roger Levy.

2019. Representation of constituents in neural lan-
guage models: Coordination phrase as a case study.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2888–
2899, Hong Kong, China. Association for Computa-
tional Linguistics.

Rui Chaves. 2020. What don’t RNN language models
learn about filler-gap dependencies? In Proceedings
of the Society for Computation in Linguistics 2020,
pages 1–11, New York, New York. Association for
Computational Linguistics.

Shammur Absar Chowdhury and Roberto Zamparelli.
2018. RNN simulations of grammaticality judg-
ments on long-distance dependencies. In Proceed-
ings of the 27th International Conference on Compu-
tational Linguistics, pages 133–144, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Shammur Absar Chowdhury and Roberto Zampar-
elli. 2019. An LSTM adaptation study of
(un)grammaticality. In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 204–212,
Florence, Italy. Association for Computational Lin-
guistics.

Jillian Da Costa and Rui Chaves. 2020. Assessing the
ability of transformer-based neural models to repre-
sent structurally unbounded dependencies. In Pro-
ceedings of the Society for Computation in Linguis-
tics 2020, pages 12–21, New York, New York. Asso-
ciation for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent Neural Net-
work Grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 199–209, San Diego,
California. Association for Computational Linguis-
tics.

Stefan Frank and Rens Bod. 2011. Insensitivity of the
Human Sentence-Processing System to Hierarchical
Structure. Psychological science, 22:829–34.

Stefan L. Frank, Leun J. Otten, Giulia Galli, and
Gabriella Vigliocco. 2015. The ERP response to the
amount of information conveyed by words in sen-
tences. Brain and Language, 140:1–11.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32–42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
Green Recurrent Networks Dream Hierarchically.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

John Hale. 2001. A Probabilistic Earley Parser as
a Psycholinguistic Model. In Proceedings of the
Second Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 159–166.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2727–2736, Melbourne, Australia. Associa-
tion for Computational Linguistics.

S. I. Harada. 1986. ”counter equi-np deletion”. Jour-
nal of Japanese Linguistics, 11(1-2):157–202.

Shin-Ichi Harada. 1975. The functional uniqueness
principle. Attempts in linguistics and literature,
2:17–24.

Ken Hiraiwa. 2002. Facets of case: On the nature of
the double-o constraint. In The proceedings of the
3rd Tokyo Psycholinguistics Conference (TCP 2002),
pages 139–163. Citeseer.

Ken Hiraiwa. 2010. Spelling out the double-o con-
straint. Natural Language & Linguistic Theory,
28(3):723–770.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-term Memory. Neural computation,
9(8):1735–80.

109



Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1725–1744, Online. Association for Compu-
tational Linguistics.

Jaap Jumelet and Dieuwke Hupkes. 2018. Do lan-
guage models understand anything? on the ability
of LSTMs to understand negative polarity items. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 222–231, Brussels, Belgium.
Association for Computational Linguistics.

Katharina Kann, Alex Warstadt, Adina Williams, and
Samuel R. Bowman. 2019. Verb argument structure
alternations in word and sentence embeddings. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 287–297.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What Do Recurrent Neural Network
Grammars Learn About Syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1249–1258, Valencia, Spain.
Association for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies
well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1426–1436, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, Acceptability, and Probabil-
ity: A Probabilistic View of Linguistic Knowledge.
Cognitive Science, 41(5):1202–1241.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126–1177.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Christopher Manning and Hinrich Schutze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. MIT Press.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Aaron Mueller, Garrett Nicolai, Panayiota Petrou-
Zeniou, Natalia Talmina, and Tal Linzen. 2020.
Cross-linguistic syntactic evaluation of word predic-
tion models. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5523–5539, Online. Association for
Computational Linguistics.

Hiroshi Noji and Yohei Oseki. 2021. Effective batch-
ing for recurrent neural network grammars. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4340–4352, Online.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shauli Ravfogel, Yoav Goldberg, and Francis Tyers.
2018. Can LSTM learn to capture agreement? the
case of Basque. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pages 98–107, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Masayoshi Shibatani. 1978. Nihongo no bunseki.
Taishukan Publishing Company.

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128(3):302–319.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017.
Effective Inference for Generative Neural Parsing.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Katsuo Tamaoka, Jingyi Zhang, and Toshiki Satoh.
2018. An experimental study on psychological real-
ity of double accusative constraint by the maze task.
Studia Linguistica, 32:115–130.

110



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of NIPS, pages 5998–
6008.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason
Phang, Anhad Mohananey, Phu Mon Htut, Paloma
Jeretic, and Samuel R. Bowman. 2019a. Investi-
gating BERT’s knowledge of language: Five anal-
ysis methods with NPIs. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2877–2887, Hong Kong,
China. Association for Computational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: A benchmark of linguis-
tic minimal pairs for English. In Proceedings of the
Society for Computation in Linguistics 2020, pages
409–410, New York, New York. Association for
Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019b. Neural network acceptability judg-
ments. Transactions of the Association for Compu-
tational Linguistics, 7:625–641.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about filler–gap dependencies? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 211–221, Brussels, Belgium.
Association for Computational Linguistics.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural super-
vision improves learning of non-local grammatical
dependencies. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3302–3312, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ethan Wilcox, Peng Qian, Richard Futrell, Ryosuke
Kohita, Roger Levy, and Miguel Ballesteros. 2020.
Structural supervision improves few-shot learning
and syntactic generalization in neural language mod-
els. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4640–4652, Online. Associa-
tion for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

111


	Learning Argument Structures with Recurrent Neural Network Grammars
	Recommended Citation

	Learning Argument Structures with Recurrent Neural Network Grammars

