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Concurrent hidden structure & grammar learning

Adeline Tan
University of California, Los Angeles

adelinertan@gmail.com

Abstract

The concurrent learning of both unseen struc-
tures and grammar is an enduring problem in
phonological acquisition. The present study
develops a joint model of word-UR-SR triples
that incorporates a Maximum Entropy model of
SRs conditioned on URs. The learner was pre-
sented with word-SR frequencies, and success-
fully learned the hidden structures and gram-
mars that enabled it to generalize well on test
data that were withheld during training. When
given an option between acquiring a grammar
that supported a rich base analysis and one that
didn’t, the learner always acquired the gram-
mar that supported rich bases. These results
suggest that the preference for acquiring a rich
base grammar over a non rich base one is an
emergent property of the proposed model.

1 Introduction

In order to fully acquire language, a child has to ac-
quire both the representations and grammar of her
language from observed surface forms. Representa-
tions include underlying forms, metrical structures,
morphological boundaries within words, etc. Such
representations are absent from the observed data
that the child receives, and are thus termed hidden
structure. The current study focuses on the learn-
ing of hidden structure(s) concurrently with the
grammar.

Multiple approaches have been proposed for the
concurrent learning of hidden structure and an ac-
companying constraint-based grammar (Tesar and
Smolensky, 2000; Jarosz, 2015; Boersma and Pater,
2016; Rasin and Katzir, 2016; Nelson, 2019). Fol-
lowing Eisenstat (2009), Pater et al. (2012), Staubs
and Pater (2016), Nazarov and Pater (2017), and
O’Hara (2017), this study incorporates a Maximum
Entropy (MaxEnt) grammar (Goldwater and John-
son, 2003) that governs the mapping between hid-
den structures and surface forms. The current study

combines the word-hidden structure mapping with
the hidden structure-surface form mapping by uti-
lizing the chain rule of probability theory. This pro-
duces a joint word-underlying form-surface form
(WORD-UR-SR) model that is compatible with a
weighted-constraint grammar of UR-SR mappings.
While the model is similar to the ones in Staubs
and Pater (2016) and Nazarov and Pater (2017),
the current study focuses on learning URs that an
analyst would posit, with the learned grammar and
lexicon subjected to generalization tasks with wug
morphemes.

The model and the learner are introduced in
§2 and §3 respectively. We then turn to several
schematic languages, the first of which is based
on English voicing assimilation (§4). This is fol-
lowed by a set of six stress languages (§5). Two of
the languages within the stress set allow multiple
analyses, of which only one analysis supports rich
bases (Prince and Smolensky, 2004), thus provid-
ing the opportunity to determine whether there is
a preference for acquiring the rich base grammar
over a non rich base one. The final schematic lan-
guage is based on English velar softening (§6). §7
concludes.

2 Model

The knowledge whose acquisition will be in-
vestigated is knowledge of a particular distribu-
tion over WORD-UR-SR triples (e.g. <CROC-
PL, /kôAk+z/, [kôAks]>: 99%; <CROC-
PL, /kôAk+z/, [kôAkz]>: .003%; <CROC-PL,
/kôAk+s/, [kôAks]>: .002%; . . . ). In this paper,
WORD1 represents a sequence of morphemes, and
morphemes are represented with uppercase letters.

1WORD is also abbreviated WD in this paper.
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The probability of a triple can be rewritten as:

Pr(WD,UR, SR) = Pr(SR|WD,UR)

∗ Pr(WD,UR) (1)

The first term, Pr(SR|WD,UR), is the prob-
ability of an SR for a given WORD-UR pair,
and is determined by the traditional phono-
logical constraint grammar. For instance, if
Pr([bæNks]|BANK-PL, /bæNk+z/) = 0.9, then
we should interpret it to mean that the WORD-
UR pair <BANK-PL, /bæNk+z/> is realized
as SR [bæNks] 90% of the time. The model
proposed here does not condition the UR-SR
mapping on the word. Using the example
above, this means that Pr([bæNks]|BANK1-PL,
/bæNk+z/) = Pr([bæNks]|BANK2-PL, /bæNk+z/)
= Pr([bæNks]|BANK3-3SG.PRES, /bæNk+z/),
where BANK1 is the financial institution concept,
BANK2 is the river concept, and BANK3 is the
concept of turning at an angle. Consequently,
Pr(SR|WD,UR) = Pr(SR|UR), and the proba-
bility of the WORD-UR-SR triple can be simplified
to equation (2):

Pr(WD,UR, SR) = Pr(SR|UR)
∗ Pr(WD,UR) (2)

Such probabilistic mappings of SRs conditioned
on URs (i.e. Pr(SR|UR)) are computed by vir-
tually all probabilistic constraint-based grammars
(e.g. probabilistic OT, probabilitic versions of Har-
monic Grammar, etc.) The current study uses a
MaxEnt model, which is a weighted constraint
grammar.

Following the traditional phonological MaxEnt
model, each UR-SR pair (x, y) is associated with
a feature vector, ~v(x, y), which captures the pair’s
properties. For UR-SR pairs, there are two classes
of relevant properties. The first class concerns the
form that the SR takes. For example, a feature
may be used to track how many pairs of adjacent
obstruents of an SR have different voicing values.
Such features are known as markedness constraints.
The second class of features concerns the mapping
between the UR and the SR, and are most com-
monly used to penalize any changes between the
two. These features are conventionally known as
faithfulness constraints. Each feature has an as-
sociated weight, and the feature weights can be
organized into the weight vector ~w. The features

of the UR-SR pair (x, y) are linearly combined
(as in equation (3)2) to produce its harmony score,
h(x, y). h(x, y) is essentially the weighted sum of
the UR-SR pair (x, y)’s features, and is a scalar
(rather than a vector).

h(x, y) = −(~w · ~v(x, y)) (3)

The MaxEnt model then maps each pair’s harmony
score to its probability (equation (4)).

Pr(SR = y|UR = x) =
eh(x,y)

Z(x)
(4)

Since the traditional phonological MaxEnt gram-
mar is a conditional (“discriminative”) model, the
partition function Z(x) sums over all UR-SR pairs
that share the same UR (equation 5).

Z(x) =
∑

y′∈Yx
eh(x,y

′) (5)

In equation (5), Yx is the set of all SRs that are com-
patible with UR x. This has the effect of normaliz-
ing the probability of a particular UR-SR mapping
among only all other mappings from the same UR.

The second term in equation (2), Pr(WD,UR),
is the joint probability of a WORD-UR pair.
This implicitly defines a conditional distribution
Pr(UR|WD) (equation (6)).

Pr(UR = x|WD = w) =

Pr(WD = w,UR = x)∑
x′ Pr(WD = w,UR = x′)

(6)

Under this conditional distribution we would ex-
pect Pr(/kôAk+z/|CROC-PL) to be high, and
Pr(/kôAk+s/|CROC-PL), Pr(/kôAg+z/|CROC-
PL), etc. to be low. For the morpheme CROC,
the learner needs to choose between 2 possible
stem-final segments: voiceless /k/ and voiced
/g/3. For the plural morpheme, the learner needs
to choose between voiceless /s/ and voiced /z/.
Consequently, there are four potential URs that the
learner considers for the word CROC-PL (Table
1). Table 1 also shows the four features for each

2A UR-SR pair is active for a phonological constraint when
it violates the requirements of that constraint, which in turn
reduces the pair’s conditional probability. Hence the negative
sign in equation (3).

3This example is modeled after English voicing assimila-
tion where adjacent obstruents agree in voicing. The surface
sequence [ks] could have arisen from any of the following UR
sequences {/k+s/, /k+z/, /g+s/, /g+z/}. Hence, I vary only
the stem-final segment, but none of the other stem segments.
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of the four variants that the learner has to choose
among. These features represent the strength of
association between a particular morpheme and an
aspect (e.g. morpheme-final obstruent voicing) of
its UR. Within phonology, such features are also
known as UR constraints (Zuraw, 2000; Boersma,
2001). Similar to its UR-SR counterpart, there is
a feature vector ~u(w, x) for each WORD-UR pair
(w, x). Likewise, the UR constraint weights can be
organized into a vector ~θ. The harmony score for
each WORD-UR pair is computed as per equation
(7)4.

g(x, y) = ~θ · ~u(x, y) (7)

The harmony score of a WORD-UR pair is then
mapped to its probability (equation 8).

Pr(WD = w,UR = x) =
eg(w,x)

Z
(8)

In contrast to the UR-SR model described above,
the WORD-UR model is not conditional. The nor-
malization takes place over all WORD-UR pairs
(equation (9)).

Z =
∑

w∈W

∑

x∈Xw

eg(w,x) (9)

In equation (9),W is the set of words, and Xw is
the set of all URs that are compatible with word
w. This normalization produces a generative dis-
tribution over WORD-UR pairs, which in turn pro-
duces the generative distribution over WORD-UR-
SR triples of equation (2). This departs from the
models in Staubs and Pater (2016) and Nazarov
and Pater (2017), which are discriminative mod-
els. A generative model is capable of describing
differences in the frequencies of various words,
in addition to the relationship between words and
their realizations, whereas a discriminative model
only does the latter.

3 Learning

The model takes in a set of WORD-SR pair frequen-
cies (e.g. {<CROC-PL, [kôAks]>: 50; <CROC-
PL, [kôAkz]>: 0; . . .}), and learns a probabil-
ity distribution over WORD-UR-SR triples (e.g.
<CROC-PL, /kôAk+z/, [kôAks]>: 99%; <CROC-
PL, /kôAk+z/, [kôAkz]>: .003%; <CROC-PL,

4A WORD-UR pair is active for a particular UR constraint
when it contains the morpheme, segment, etc., required by
that constraint, which in turn increases the pair’s probability.
Hence the sign difference between equations (3) and (7).

/kôAk+s/, [kôAks]>: .002%; . . . ). The triple proba-
bility defined in Section 2 in fact implicitly defines
a distribution over WORD-SR pairs as well. More
concretely, the probability of pairs can be computed
from the probability of triples via this summation:

Pr(WD = w, SR = y)

=
∑

x

Pr(WD = w,UR = x, SR = y)

=
∑

x

Pr(SR = y|UR = x) ∗ Pr(WD = w,UR = x)

=
∑

x

eh(x,y)

Z(x)
∗ e

g(w,x)

Z

(10)

The likelihood Pr(WD,SR) can be understood
as a function of the parameters ~w and ~θ. Experi-
mentation showed that regularization terms did not
improve performance in fitting to test data that was
withheld from training, so the learner’s objective
is to seek the values of ~w and ~θ that maximize
this likelihood. In order to assess which values
of ~w and ~θ will be found by the learner, I use the
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). Notice that Pr(WD,SR) is a
marginal distribution5. The likelihood function of
marginal distributions is not guaranteed to be con-
vex, so each EM run finds a local maximum. I take
the highest of these local maxima to identify the
predicted outcome of learning.

4 English Voicing Assimilation

In English voicing assimilation, adjacent obstru-
ents with different voicing values are resolved with
suffixes assimilating their voicing value to that of
the stem. The underlying voicing value of stem-
final obstruents and suffixes constitute the hidden
structures.

4.1 Experimental setup
The first language had the words {CROC-PL, DOG-
PL, COW-PL}. Its grammar had the constraints
{AGREE(voice), IDENTstem, IDENTgeneral}, so ~w
was 3-dimensional for this language. In addition,
six potential UR variants {/kôAk/, /kôAg/, /dAk/,
/dAg/, /-s/, /-z/} were considered, making ~θ 6-
dimensional. These nine dimensions correspond to
the first nine rows in Table 3.

What constitutes successful learning? First, we
can check whether the UR learned for each mor-
pheme of the training data matches what would

5The summation in equation (10) produces marginal prob-
abilities.
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WORD URWORD (CROC, /kôAk/) (CROC, /kôAg/) (PL, /-s/) (PL, /-z/)

CROC-PL /kôAk+s/ 1 0 1 0
/kôAg+s/ 0 1 1 0
/kôAk+z/ 1 0 0 1
/kôAg+z/ 0 1 0 1

Table 1: UR constraints for the word CROC-PL.

be predicted via traditional phonological analy-
ses. For example, a phonologist would posit that
a child learns the URs /kôAk/, /dAg/ and /-z/ for
the CROC, DOG and -PL morphemes respectively.
Recall that the model produces a distribution over
WORD-UR-SR triples. In order to find the proba-
bility of the word-sized UR containing /-z/ in the
appropriate position, given that the WORD (i.e. se-
quence of morphemes) has -PL in that position, we
apply the following equation:

p(/-z/|-PL) =

[Pr(UR=/dAk-z/, WD=DOG-PL)
+Pr(UR=/dAg-z/, WD=DOG-PL)
+Pr(UR=/kôAk-z/, WD=CROC-PL)
+Pr(UR=/kôAg-z/, WD=CROC-PL)
+Pr(UR=/kaw-z/, WD=COW-PL)]

[Pr(WD=DOG-PL)+Pr(WD=CROC-PL)
+Pr(WD=COW-PL)]

(11)

The probability of a particular UR for each mor-
pheme is calculated in the same manner for each
of the other morpheme-UR pairs.

Second, the model must be able to generalize to
unseen data in the way that humans do. Unseen
data are WORD-SR pairs that the model wasn’t pro-
vided with in the training set. For English voicing
assimilation, the words in Table 2 provide a good
test set for generalizability. Each test word is com-

WORD

WUG-PL
HEAK-PL
CRA-PL
DOG-D
CROC-D

Table 2: Test set words for English voicing assimilation.

posed of a new morpheme and an old morpheme.
This isolates each of the old morphemes, so that
only one old morpheme appears in each word. This
allows us to test what the model knows between /-
s/ vs. /-z/ as the UR of the -PL morpheme, as well
as what the model knows about how /-s/ & /-z/
are realized on the surface. The new nouns WUG
/w2g/, HEAK /hik/ & CRA /kôA/ will illuminate
what the model had learned about the -PL suffix. I

introduce a novel suffix with UR /-d/ (representing
some morpheme I will write as -D), to test what the
model had learned about the roots DOG and CROC.
For example, if Pr((/hik-z/, [hiks])|HEAK-PL) is
high, then we’d know that the model generalizes
in the same way that English speakers do, as evi-
denced by wug tests. The probability of a UR-SR
pair for a given word is calculated as per equation
(12).

Pr(UR = x, SR = y|WD = w) =

Pr(WD = w,UR = x, SR = y)∑
x′
∑

y′ Pr(WD = w,UR = x′, SR = y′)
(12)

4.2 Results

The training data consisted of 10 logically possi-
ble WORD-SR pairs, of which only three were
observed. Each of the three observed pairs
{(CROC-PL, [kôAks]), (DOG-PL, [dAgz]), (COW-
PL, [kawz])} was only observed once. The learner
sought the parameter values that maximized the
likelihood of the training data. Five settings of the
parameters are shown in Table 3. I found these
by running the EM algorithm from 20 randomly
initialized6 starting points. The likelihood of the
training data for each of the five parameter settings
is 0.33 × 0.33 × 0.33 = 0.333. These five set-
tings have already hit the maximum likelihood of
training data – there isn’t another parameter setting
that would provide a much better likelihood since
these settings have already matched the empirical
relative frequencies almost perfectly.

6Initial weights for all eight languages in the present study
were drawn from a uniform distribution with range=[0.1, 5) for
phonological constraints & range=[0, 100) for UR constraints.

7In this paper, negative weights were only allowed for
UR constraints. Weights for regular phonological constraints
were not allowed to be negative. For voicing assimilation, the
UR constraint (COW, /kaw/) was excluded from the set of
features, since the morpheme COW had only one underlying
form under consideration. This resulted in (DOG, /dAg/)
attaining 0 weight, which pushed (DOG, /dAk/) to a negative
weight. Because it is the difference between weights rather
than the actual value of the weights that matter, the negative
weights do not have any meaningful impact on the results.
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1 2 3 4 5

AGREE(voice) 24.7 40.9 24.4 33.3 26.5
IDENTstem 15.0 11.9 12.6 29.4 11.6
IDENTgeneral 11.9 18.5 12.0 18.5 13.6
(DOG, /dAk/) -43.2 -11.9 -30.0 -26.4 -11.6
(DOG, /dAg/) 0.0 0.0 0.0 0.0 0.0
(CROC, /kôAk/) 0.0 0.0 0.0 0.0 0.0
(CROC, /kôAg/) -16.3 -23.7 -20.5 -33.1 -13.3
(-PL, /-s/) 0.3 14.4 9.5 20.7 24.6
(-PL, /-z/) 91.0 56.8 76.6 83.0 77.4

Pr(CROC-PL, [kôAks]) 0.33 0.33 0.33 0.33 0.33
Pr(DOG-PL, [dAgz]) 0.33 0.33 0.33 0.33 0.33
Pr(COW-PL, [kawz]) 0.33 0.33 0.33 0.33 0.33

Likelihood of training data 0.333 0.333 0.333 0.333 0.333

Negative log-likelihood of training data -3.29585 -3.29585 -3.29585 -3.29584 -3.29586

Table 3: Feature weights7, probability of observed data, & likelihood of training data from the best five runs (English voicing
assimilation).

Recall the first criterion of successful learning:
the learner has to learn the very same morpheme-
sized URs that human learners are posited by pho-
nologists to learn. Applying the equation in (11),
we see that the lexicon learned is indeed the one
that matches with traditional phonological analysis
(Table 48). A further examination of the UR con-
straints confirms that the UR constraints associated
with expected URs (i.e. DOG has underlying root-
final /g/, CROC has underlying root-final /k/, the
plural morpheme is underlying /-z/) have higher
weights than their counterparts (Table 3).

1 2 3 4 5

p(/dAg/|DOG) 1.0 1.0 1.0 1.0 1.0
p(/kôAk/|CROC) 1.0 1.0 1.0 1.0 1.0
p(/-z/|-PL) 1.0 1.0 1.0 1.0 1.0

Table 4: Lexicon (English voicing assimilation).

To fulfill the second criterion of successful learn-
ing, the learned models had to generalize in the
same way that English speakers generalize. The
generalization task considered 8 UR-SR combi-
nations for each word9. For nonce word HEAK
/hik/, an English speaker would produce [hiks]
for HEAK-PL via the UR /hik-z/. Thus, suc-
cessful generalization for the word HEAK-PL re-
quired assigning high probability to the UR-SR

8All probabilities in Table 4 were very close to or at 100%.
The lowest was 99.9991% for p(/dAg/|DOG) of the fifth pa-
rameter setting.

9To illustrate the 8 combinations, consider the nonce word
WUGS. 2 variations are available via the UR: /-s, -z/, 2 via
the SR of the stem-final consonant: [w2k, w2g], and 2 via the
SR of the suffix consonant: [-s, -z]. This produces 23 = 8
UR-SR combinations.

pair (/hik-z/, [hiks]), and low probability to the
seven other pairs. Table 5 presents, in the top five
rows, Pr((UR, SR)|WD) for the UR-SR pairs that
are expected to have high probability for their re-
spective words, given what we know about how
English speakers behave on wug tests. The results
in Table 510 indicate that all five models very suc-
cessfully generalized in a manner that mimicked
speakers, with probabilities close to or at 100%. A
look at the learned phonological constraint weights
in Table 3 shows why all five parameter settings
mirrored speakers so well in the generalization task.
The models all learned the two crucial weight-
inequalities required for English voicing assimi-
lation: AGREE(voice) > IDENTgeneral as well as
IDENTstem > 0.

For voicing assimilation, the model did well on
both the UR-learning of morphemes & wug-test
mirroring tasks because both the lexicon & gram-
mar learned by the learner mirrored what English
speakers are believed to have learned for voicing
assimilation.

5 PAKA stress languages

5.1 Experimental setup

The next 6 languages were generated using simi-
lar morphemes and constraints that generated the
PAKA World dataset in Tesar et al. (2003). There
were two roots: (PA & BA), as well as two suf-
fixes (-KA & -GA). The URs of PA and KA were
always unstressed: /pa/ & /-ka/. In contrast, the

10All probabilities in Table 5 were very close to or at 100%.
The lowest was 99.9986% for Pr((/dAg-d/, [dAgd])|DOG-D)
of the fifth parameter setting.
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1 2 3 4 5

Pr((/w2g-z/,[w2gz])|WUG-PL) 1.0 1.0 1.0 1.0 1.0
Pr((/hik-z/,[hiks])|HEAK-PL) 1.0 1.0 1.0 1.0 1.0
Pr((/kôA-z/,[kôAz])|CRA-PL) 1.0 1.0 1.0 1.0 1.0
Pr((/dAg-d/, [dAgd])|DOG-D) 1.0 1.0 1.0 1.0 1.0
Pr((/kôAk-d/, [kôAkt])|CROC-D) 1.0 1.0 1.0 1.0 1.0
Pr((/w2g-s/,[w2gz])|WUG-PL) 0.0 0.0 0.0 0.0 0.0
Pr((/w2g-z/,[w2kz])|WUG-PL) 0.0 0.0 0.0 0.0 0.0
...

...
...

...
...

...

Table 5: Probability of UR-SR pair for a given test set word (English voicing assimilation).

URs of BA & GA could bear stress, so the model
considered the potential-URs {/"ba/, /ba/, /-"ga/,
/-ga/}. Accordingly, the relevant UR constraints
for this dataset were: (BA, /"ba/), (BA, /ba/), (GA,
/-"ga/) & (GA, /-ga/). The four features that went
into Pr(SR|UR) were:

• MAINLEFT (ML)
– Stress the leftmost syllable.

• MAINRIGHT (MR)
– Stress the rightmost syllable.

• MAXgeneral-STRESS (F )
– If a syllable is stressed in the UR, retain

its stress in the SR.
• MAXroot-STRESS (FR)

– If a root syllable is stressed in the UR,
retain its stress in the SR.

These morphemes & constraints produced six
logically possible languages11, which are the six
sets of observed SRs shown in Table 6. Languages
3, 4 & 6 were each compatible with only 1 lexi-
con. Language 5 was compatible with both /-ga/
& /-"ga/, but compatible with only a single gram-
mar. For Languages 1 & 2, four lexicon-grammar
combinations were available for each language.

5.2 Results
For each language, the training data had 12 logi-
cally possible WORD-SR pairs13, of which four
pairs were each observed once. The four SRs for

11Since MaxEnt generates probabilistic languages, there are
technically an infinite number of possible languages. However,
I’m restricting the set of languages to only those where there
is effectively only one winning SR per UR.

12Since the model is MaxEnt rather than non-probabilistic
Harmonic Grammar, the difference between the terms on both
sides of an inequality need to be sufficiently large in order to
generate categorical outcomes. Determining exactly how large
a difference is needed for each inequality is difficult. Never-
theless, the test task provides a way to check that the trained
weights indeed produce sufficient difference between the two
terms of an inequality. If the difference were not sufficiently
large, the test task would fail to produce categorical outcomes.

13There were three SRs per word – left-stress, right-stress,
and no stress at all.

each language can be read off column “Observed
SRs” of Table 6. As with English voicing assimila-
tion, I did 20 EM runs per language. For all six lan-
guages, the learner succeeded in finding multiple
parameter settings that hit the maximum likelihood
of training data 0.25×0.25×0.25×0.25 = 0.254.
For the sake of brevity, only one of these parameter
settings is presented for each of the six languages
(Table 7).

To test generalizability, two new roots {SO /so/,
ZE /"ze/} and two new suffixes {-FO /-fo/, -VE
/-"ve/} were introduced to form test set words (Ta-
ble 8). As expected, all parameter settings that
attained the maximum likelihood of training data
generalized to test words at near 100% probability.
A sample of the probabilities of UR-SR pairs for
test word BA-FO is shown for one simulation of
Language 3, where the combination of trained mor-
pheme BA with an unaccented suffix like /-ka/ pro-
duced stress on the first syllable. Likewise, when
BA combines with unstressed /-fo/, successful gen-
eralization requires a UR-SR pair with ["bafo] to
have high probability (Table 9).

5.3 Rich base supporting grammars

According to Prince and Smolensky (2004), the
role of a constraint-based grammar is to assign an
output to each input15. In the case of absolute ill-
formedness (e.g. absence of right-stressed SRs in
a left-stressed language), the grammar (i.e. the
constraint interactions that govern the UR-SR map-
ping) must ensure that no input ever leads to ill-
formed outputs (e.g. not even a UR with rightmost

14UR constraints for the morphemes PA & -KA that do
not have multiple URs under consideration were included in
this feature set. Hence negative UR constraint weights do not
make an appearance here.

15Prince and Smolensky (2004) were writing about Opti-
mality Theory, where the grammar consisted of ranked con-
straints picking a sole output for each input. Nevertheless, the
grammar’s role in mapping inputs to outputs still holds for
probabilistic constraint-based grammars.
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Lg Observed SRs Description Lexicon Required weight inequalities12

1 ["paka, "paga, "baka, "baga] predictable left-stress /ba, -ga/ ML > MR
/"ba, -ga/

/ba, -"ga/ ML > MR + F
/"ba, -"ga/

2 [pa"ka, pa"ga, ba"ka, ba"ga] predictable right-stress /ba, -ga/ MR > ML
/ba, -"ga/

/"ba, -ga/ MR > ML + F + FR
/"ba, -"ga/

3 ["paka, pa"ga, "baka, "baga] full accentual contrast, default left /"ba, -"ga/ MR + F > ML > MR

4 [pa"ka, pa"ga, "baka, ba"ga] full accentual contrast, default right /"ba, -"ga/ ML + F + FR > MR > ML + FR

5 [pa"ka, pa"ga, "baka, "baga] contrast in roots only, default right /"ba, -ga/ ML + FR > MR > ML
/"ba, -"ga/

6 ["paka, pa"ga, "baka, ba"ga] contrast in suffixes only, default left /ba, -"ga/ MR + F > ML > MR

Table 6: PAKA languages and respective logically-possible lexicon-grammar combinations.

Lg 1 Lg 2 Lg 3 Lg 4 Lg 5 Lg 6

MAINLEFT (ML) 19.6 0.0 16.9 8.4 0.0 44.7
MAINRIGHT (MR) 0.0 20.0 0.0 23.3 19.4 0.0
MAXgeneral-STRESS (F) 1.5 1.7 32.4 37.4 21.7 111.4
MAXroot-STRESS (FR) 3.1 0.0 7.5 0.0 23.2 2.2
(BA, /ba/) 69.9 47.3 15.5 36.4 27.8 81.1
(BA, /"ba/) 0.5 77.2 61.4 80.5 66.7 34.2
(GA, /-ga/) 59.6 28.1 11.1 25.8 71.4 59.3
(GA, /-"ga/) 6.2 65.2 61.2 85.0 35.2 76.8

Likelihood training data 0.254 0.254 0.254 0.254 0.254 0.254

Negative log-likelihood training data -5.545177 -5.545177 -5.545178 -5.545178 -5.545177 -5.545177

Table 7: Feature weights14 & likelihood of training data from the best runs for each PAKA language.

WORD

SO -FO
SO -GA
BA -FO
ZE -GA
BA -VE

Table 8: Test set words for the six PAKA languages.

stress can produce an SR with rightmost stress).
Within models that feature probabilistic UR-SR
mappings, this translates to the grammar ensuring
that no inputs ever map to ill-formed outputs with
anything other than a vanishingly small probability.
In other words, the grammar should be fail-safe; it
should be able to map all URs (even implausible
ones like a right-stressed UR in a left-stressed lan-
guage) to SRs with appropriate probability values.
This concept is known as the Richness of the Base
(Prince and Smolensky, 2004).

Language 1 & Language 2 are languages with
predictable left- and right-stress respectively. Each
of these two languages is compatible with two

WORD UR-SR pair Pr(UR, SR|WD)

BA -FO /ba-fo/, [bafo] 2.7× 10−12

/ba-fo/, ["bafo] 4.6× 10−5

/ba-fo/, [ba"fo] 2.7× 10−11

/"ba-fo/, [bafo] 1.8× 10−21

/"ba-fo/, ["bafo] 9.9995× 10
/"ba-fo/, [ba"fo] 1.7× 10−20

Table 9: Generalization to BA-FO in Language 3 (one run
shown).

grammars (Table 6). In Language 1, the two pos-
sible grammars are Grammar 1 (ML > MR) &
Grammar 2 (ML>MR + F ). The lexicon that in-
cludes /-ga/ minimally requires Grammar 1, while
the lexicon that includes /-"ga/ minimally requires
Grammar 2. Since the weights of phonological con-
straints could not be negative, Grammar 2 entails
Grammar 1. It follows that Grammar 2 is com-
patible with both /-ga/ & /-"ga/ while Grammar
1 is compatible with only /-ga/. Grammar 2 is
thus a grammar that supports rich bases because it
is capable of producing SRs with the right proba-
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bilities even with an implausible UR (underlying
stressed suffix /-"ga/ in a left-stressed language
where unstressed root /pa/ also exists). In con-
trast, Grammar 1 is the less restrictive grammar
because it requires onlyML>MR, thus allowing
MR + F > ML. The gang effect of right-stress
(MR) and general faithfulness (F ) over left-stress
(ML) results in /pa-"ga/ surfacing with rightmost
stress *[pa-"ga]. For Language 2, this entailment
relation also holds amongst its two grammars, with
Grammar 4 (MR>ML + F + FR) being the rich
base supporting grammar, and Grammar 3 (MR >
ML) the less restrictive one. These two languages
thus provide useful test cases on whether there is a
preference for a rich base supporting grammar over
its less restrictive rival or vice versa.

All 20 runs for Languages 1 & 2 always learned
the rich base grammar. Trained weights for an
example run of Language 1 is shown in Table 7,
where the rich base grammar, ML (19.6) >MR +
F (0 + 1.5), is learned. To test this further, I ran 200
more simulations for both languages. All 200 runs
for both languages always learned the rich base
supporting grammar, sometimes with the lexicon
that minimally required the rich base grammar, and
sometimes with the lexicon that minimally required
the less restrictive one. This indicated a strong
preference for learning the rich base grammar over
its less restrictive counterpart.

The preference for acquiring the rich base gram-
mar is an emergent property of the model. EM
finds the local maximum by hill-climbing from a
randomly initialized point within the solution space.
The solution space is the likelihood function of the
marginal distribution (equation (10)) of the model
defined in §2. Hill-climbing (i.e. gradient ascent)
is guided by the gradients of the solution space at
the current point. The preference for converging at
maxima corresponding to the rich base grammar
indicates the following: within the solution space,
there are more points with gradients pointing to-
wards maxima corresponding to the rich base gram-
mar and fewer points with gradients pointing to-
wards maxima corresponding to the less restrictive
grammar. Since the solution space is a property of
the model (rather than that of a particular learner),
models with similar architecture (e.g. Staubs and
Pater (2016); Nazarov and Pater (2017)) are likely
to also favor the acquisition of rich base grammars.

6 Velar Softening

In English velar softening, /k/→ [s] before a high
front vowel when a morpheme-boundary intervenes
(e.g. electri[k]∼electri[s]-ity). Velar softening
is an instance of the derived environment effect
(DEE) because its triggering environment requires
the presence of a morpheme boundary. DEEs are
a puzzle because both the alternation and the seg-
mentation into morphemes must be acquired simul-
taneously. In an additional wrinkle, DEEs are often
only triggered by specific morphemes. For exam-
ple, the -ity morpheme triggers velar softening, but
the -ish morpheme does not. Velar softening thus
has three sources of hidden structure – presence
of a morpheme boundary, whether a particular suf-
fix is exceptional in triggering velar softening, and
the usual UR-segment-learning (/k/ or /s/) that
we’ve already seen in the preceding test cases. I
use the *-symbol to indicate the exception tagged
UR variant.

6.1 Experimental setup

There were eight observed words {ELECTRIC,
ELECTRICITY, ELECTRICISH, KITTY, SE-
CURE, SECURITY, SMALL, SMALLISH}. The
three sources of hidden structure were combined to
produce URs for these eight words. The URs for
ELECTRICITY are shown with their relevant UR
constraint features (Table 10). The UR /electrik-
*ity/ contained the morphemes ELECTRIC16 &
-ITY, so it was active for those two features. These
features represent a new class of UR constraint,
namely those that indicate the presence of certain
morphemes. Such features were not required in the
preceding cases as the morpheme boundary was
not in question. The UR /electrik-*ity/ had un-
derlying /k/ for morpheme ELECTRIC, and the
exception-tagged version of the -ITY suffix, so it
was also active for features (ELECTRIC, k)17 &
(-ITY, -*ity) respectively. These UR constrains are
the same kind that we’ve seen before.

Three phonological constraints controlled the
UR-SR mapping – a general markedness constraint
against [kI] sequences (M ), an exception-tagged
version that was active only when an exception-
tagged morpheme was part of the [kI] sequence
(ME), and a general IDENT constraint (Fgen).

16Abbreviated as EL...C in Table 10.
17Abbreviated as (EL...C, k) in Table 10.
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URELECTRICITY EL...C EL...CITY -ITY (EL...C, k) (EL...C, s) (EL...CITY, k) (EL...CITY, s) (-ITY, -*ity) (-ITY, -ity)

/electrik-*ity/ 1 0 1 1 0 0 0 1 0
/electrik-ity/ 1 0 1 1 0 0 0 0 1
/electris-*ity/ 1 0 1 0 1 0 0 1 0
/electris-ity/ 1 0 1 0 1 0 0 0 1
/electrikity/ 0 1 0 0 0 1 0 0 0
/electrisity/ 0 1 0 0 0 0 1 0 0

Table 10: URs under consideration for the word ELECTRICITY shown with their UR constraint features (English velar
softening).

6.2 Results

The training data had 12 logically possible WORD-
SR pairs, of which eight were each observed once.
Of 125 EM runs, multiple parameter settings were
found to have reached the maximum likelihood
of training data 0.1258 = 5.9605 × 10−5. 90.9%
of these parameter settings learned the very same
hidden structures that matched the standard phono-
logical analysis of velar softening. This included
learning that the -ITY morpheme was exception-
tagged but that -ISH wasn’t. All of these hidden
features were learned at probabilities18 greater than
97%, with the lowest going to the probability of a
morpheme boundary in SECURITY at 97.3%.

To test whether the learned grammars gener-
alized in a way that mimicked human learners,
the following three morphemes were introduced:
a new root with a morpheme-final-/k/ (CLEMIC
/"klEmIk/), an exception-tagged suffix *-ISM /*-
Izm/ and a non-exception-tagged suffix -Y /-i/
to create the test words in Table 11. For each

WORD Expected UR-SR

ELECTRIC-ISM electri/k/-*ism, electri[s]ism
ELECTRIC-Y electri/k/-y, electri[k]y
CLEMIC-ITY clemi/k/-*ity, clemi[s]ity
CLEMIC-ISH clemi/k/-ish, clemi[k]ish

Table 11: Test set words for English velar softening & UR-
SR pairs expected to be learned by human learners.

test word, its expected UR-SR pair arose from
what traditional phonological analysis would have
a child positing as its UR and SR. For instance, the
word ELECTRIC-ISM would be posited to have
morpheme-final /k/ as opposed to /s/ for ELEC-
TRIC, with that /k/ surfacing as [s]. The expected
UR-SR pair for each word is shown in column “Ex-
pected UR-SR” of Table 11. The same 90.9% of
parameter settings that hit the maximum likelihood
of training data generalized well to the test set with
probabilities of the expected UR-SR pair for each

18These probability values were calculated using the same
method shown in eq (11).

word approaching 100%19. Examination of the
weights learned for the parameter settings that suc-
cessfully generalized confirmed that they had each
learned the grammar necessary for velar softening.
That is, the alternation applied when the suffix was
exception-tagged (ME + M > Fgen), but did not
take place when the suffix wasn’t exception-tagged
(Fgen >M ).

What would this high-but-not-100% rate of ac-
quisition of the velar softening grammar mean for
human learners? Perhaps 10% of people fail to
learn the velar softening grammar, and instead rely
on memorized forms for existing words. These
people are predicted to not apply velar softening in
a wug test. Interestingly, in a wug test with nonce
stems and the -ity suffix, Pierrehumbert (2006)
found that 2 in 10 subjects did not have produc-
tive velar softening.

7 Conclusion

The present study produced a domain-general
model that concurrently learned both hidden struc-
ture and a weighted-constraint grammar. The
model was trained on eight languages, and general-
ized well to test data on all of them. Two languages
in particular presented a choice between acquiring
a grammar that supported rich bases versus one
that didn’t. This study found a strong preference
for acquiring the rich base grammar, which I ar-
gued was an emergent property of the model. The
present study thus presented a way in which a rich
base grammar may be acquired when URs are not
known in advance.

Acknowledgments

I would like to thank Tim Hunter and Kie Zuraw
for stimulating discussion which made this paper
better. I also thank the three anonymous reviewers
for helpful feedback.

19The lowest probability was Pr(/klEmIk-IS/,
[klEmIkIS]|CLEMIC-ISH) = 99.983%.

63



References
Paul Boersma. 2001. Phonology-semantics interaction

in OT, and its acquisition. In Robert Kirchner, Wolf
Wikeley, and Joe Pater, editors, Papers in Experi-
mental and Theoretical Linguistics, volume 6, pages
24–35. University of Alberta, Edmonton.

Paul Boersma and Joe Pater. 2016. Convergence prop-
erties of a gradual learning algorithm for harmonic
grammar. In John J. McCarthy and Joe Pater, edi-
tors, Harmonic Grammar and Harmonic Serialism.
Equinox Press, London.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Soci-
ety, Series B (Methodological), 39(1):1–38.

Sarah Eisenstat. 2009. Learning underlying forms with
maxent. Master’s thesis, Brown University.

Sharon Goldwater and Mark Johnson. 2003. Learning
OT constraint rankings using a maximum entropy
model. In Jennifer Spenader, Anders Eriksson, and
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