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Abstract: There is great interest in developing biodegradable biopolymer-based packaging mate-
rials whose functional performance is enhanced by incorporating active compounds into them,
such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants,
and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble,
matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly
incorporate into the packaging materials. These challenges can often be overcome by encapsulating
the active compounds within food-grade nanoparticles, which are then introduced into the packaging
materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings
or films can greatly improve their functional performance. For example, anthocyanins can be used
as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors
to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical
extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicro-
bial and antioxidant activities. The resistance of packaging materials to external factors can be
improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid),
and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to con-
trol the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food
over time, which may extend their efficacy. This article reviews the different kinds of nanocarriers
available for loading active compounds into these types of packaging materials and then discusses
their impact on the optical, mechanical, thermal, barrier, antioxidant, and antimicrobial properties of
the packaging materials. Furthermore, it highlights the different kinds of bioactive compounds that
can be incorporated into biopolymer-based packaging.

Keywords: bioactive compounds; active packaging; nanoencapsulation; controlled release;
sustainability; plant-based delivery systems

1. Introduction

The main factors reducing the quality, shelf life, and safety of foods are microbial
spoilage, chemical reactions, and respiration, which are exacerbated by improper packag-
ing and storage conditions. The deterioration of foods through these mechanisms increases
food waste and foodborne illnesses, thereby reducing the sustainability and health of
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the food supply. The development and utilization of advanced packaging materials is
an important strategy to overcome these problems [1]. Currently, petroleum-based pack-
aging materials are primarily used for this purpose because of their low cost, ease of
large-scale production, and excellent functional performance [2]. Nevertheless, synthetic
plastics cannot be produced sustainably due to their poor biodegradability [3]. Further-
more, they cause environmental pollution and have negative effects on human health [4].
For these reasons, the design and development of eco-friendly sustainable packaging
materials has received considerable attention [5]. Biopolymer-based packaging materials,
which are typically constructed from proteins and/or polysaccharides extracted from
animal or plant sources, are being explored as possible alternatives to petroleum-based
ones [6,7]. However, these biopolymer-based materials often have limitations in terms of
their functional properties. The functional performance of this kind of packaging material
can often be improved by incorporating additives, such as light blockers, plasticizers,
crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors [8–13]. These
additives can be used to alter the optical properties, mechanical strength, barrier properties,
and stability of packaging materials, as well as to provide an indication of the quality,
safety, or age of a packaged product. In some cases, the active agents incorporated into
a packaging material may be designed to diffuse into the food over time so as to provide
a prolonged effect, e.g., antimicrobials or antioxidants [14]. However, the direct incorpo-
ration of many of these active agents into biopolymer-based films is challenging because
they are volatile, water-insoluble, chemically unstable, matrix-incompatible, or adversely
impact film properties [14]. Nanoencapsulation of active agents can be used to overcome
many of these problems [15,16]. In this case, the active agents are first incorporated into
a well-designed nanoparticle, which is then introduced into the biopolymer-based pack-
aging material. In this article, we review the different kinds of nanocarriers available
for loading active agents and then discuss their effects on the properties of biopolymer-
based packaging materials. We then highlight various applications of packaging materials
containing nanoencapsulated active compounds in foods.

2. Overview of Nanocarriers for Active Compounds

Numerous kinds of nanocarriers are available that could potentially be used to incor-
porate active agents into biopolymer-based packaging materials, including microemulsions,
nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes,
biopolymer nanoparticles, and nanogels (Figure 1). Because nanocarriers based on pro-
teins [17], polysaccharides [18], lipids [19], and other food-grade polymers [20,21] have
been reviewed in detail elsewhere, we only give a brief overview here. For food appli-
cations, nanocarriers constructed from natural organic substances are preferred because
of their lower environmental impact and toxicity, such as those fabricated from proteins,
polysaccharides, phospholipids, and/or lipids [22]. In general, there are two main ap-
proaches for fabricating food-grade nanocarriers: top-down and bottom-up methods.
Top-down methods involve the physical, chemical, or enzymatic disruption of macroscopic
materials or large particles until they fall into the nanoscale range. Bottom-up methods
typically involve the physical or chemical assembly of nanoparticles from molecules. The
selection of a particular approach depends on the nature of the food product and the
type of nanoparticles being produced. For example, bulk liquids can be broken down
into nanoparticles by high pressure homogenization or microfluidization (top-down),
whereas surfactant molecules will spontaneously assemble into nanoparticles due to the
hydrophobic effect (bottom-up) [21].
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Nanocarriers can be produced that exhibit a wide range of different particle char-
acteristics, such as compositions (e.g., proteins, polysaccharides, phospholipids, lipids,
and/or minerals), sizes (e.g., 1 nm to 1 µm), shapes (e.g., spherical, ellipsoid, rectangle,
or fibrous), electrical charges (e.g., positive, negative, or neutral), surface hydrophobicities
(e.g., polar to non-polar), interfacial thicknesses (e.g., thin to thick), surface chemistries
(e.g., unreactive to reactive), physical state (e.g., solid or liquid), rheology (e.g., hard
or soft), digestibility (e.g., digestible to indigestible), and biodegradability (e.g., degradable
or not). Consequently, the packaging manufacturer must select ingredients and prepa-
ration methods that can be used to create the nanoparticle characteristics required to
obtain specific functional performance. One of the main factors impacting the selection of
a suitable nanocarrier is the nature of the active agent to be encapsulated. A few examples
of different kinds of delivery systems are highlighted here. Biopolymer nanocarriers can
be assembled from various kinds of proteins and polysaccharides such as casein, whey
protein, lactoferrin, soy protein, zein, starch, alginate, carrageenan, and pectin [17,18].
These nanocarriers typically consist of small spherical particles that contain a network
of aggregated biopolymer molecules inside. Nanogels can also be assembled from pro-
teins and polysaccharides but they have a more porous structure inside that contains
more water [23]. Nanoliposomes can be assembled from different kinds of phospholipids,
such as milk, egg, soy, or sunflower lecithin [19]. These nanocarriers usually consist of one
or more phospholipid bilayers assembled into concentric shells around an aqueous core.
Nanoemulsions consist of emulsifier-coated fluid lipid droplets suspended in water and
can be assembled from different kinds of emulsifiers and lipids [21]. Solid lipid nanoparti-
cles (SLN) and nanostructured lipid carriers (NLC) consist of emulsifier-coated solid fat
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particles that may be fully or partially crystalline, respectively [24,25]. Active agents may
be incorporated into these nanocarriers before or after their fabrication. Once prepared
the encapsulated active agents can then be incorporated into the food packaging materials
to control their functional performance [26]. The type of nanocarrier used for a specific
food packaging application depends on numerous factors, including their loading capac-
ity, encapsulation efficiency, stabilizing properties, light scattering/absorption properties,
stability, interactions, and matrix compatibility. Each kind of nanocarrier has its unique
advantages and disadvantages, which should be carefully considered. In the following
section, we consider several active compounds that can be used to modulate the properties
of packaging materials, with an emphasis on natural substances.

3. Active Compounds for the Production of Smart/Active Packaging Materials

The active compounds and agents that play an important role in improving the
functional, mechanical, barrier, and structural properties of packaging films are presented
in Figure 2.
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3.1. Antimicrobials

Natural antimicrobials can be isolated from various kinds of plant-based materials,
where they are often naturally produced by the plants as secondary metabolites to defend
against microbial contamination [27]. However, many of these antimicrobials are difficult
to incorporate into biodegradable packaging materials because they are volatile, chemically
unstable, and/or have low solubility in water. Consequently, they need to be encapsu-
lated prior to utilization [28]. Some of the most commonly used natural antimicrobials
are essential oils and phytochemicals isolated from various kinds of plants [29]. Studies
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have shown that essential oils exhibit good antimicrobial activity against a broad spec-
trum of foodborne pathogens, which has been related to their ability to disrupt microbial
cell membranes and to interfere with key biochemical pathways inside the cells [30]. As
an example, thymol, eugenol, and cinnamaldehyde are essential oils that have been used
in food packaging materials to control bacteria [31]. The most widely used phytochemical
in biodegradable packaging materials is curcumin, which is a polyphenolic compound.
Numerous studies have shown that curcumin exhibits strong antimicrobial properties
when incorporated into packaging materials [32]. For antimicrobials, it is important
that they can be incorporated into the packaging materials at a sufficiently high level,
that they remain stable during storage, and that they can diffuse to the site of action (bac-
terial cell membranes) at a sufficiently high rate and level. The many other types of essential
oils and phytochemicals that may be utilized as natural antimicrobials have been
reviewed elsewhere [33–36].

3.2. Antioxidants

Many foods contain lipids or proteins that are susceptible to oxidation, which can
reduce their shelf life, quality, and nutritional value [37]. Antioxidants can be incorporated
into biodegradable food packaging materials to inhibit oxidation reactions [38]. There is
increasing emphasis on the utilization of natural antioxidants for this purpose, especially
plant-based ones. Like antimicrobials, many of these antioxidants are secondary metabo-
lites that can be isolated from plant materials, such as essential oils and phytochemicals,
which also have health effects [39]. For instance, quercetin is a phytochemical that can
be isolated from onions that exhibits strong antioxidant activity when incorporated into
packaging materials [10]. Similarly, many kinds of essential oils have also been shown to
exhibit strong antioxidant properties when incorporated into packaging materials [38]. As
an example, oregano (which contains thymol and carvacrol) has been shown to have good
antioxidant properties when used in packaging applications [40]. The numerous kinds of
essential oils and phytochemicals that can potentially be used as natural antioxidants have
been reviewed in detail elsewhere [41–45].

3.3. Light Blockers

Light blockers are compounds that can block light, thereby protecting food compo-
nents from photodegradation [46]. They may do this by scattering light waves (particles)
and/or absorbing light waves (chromophores). Typically, there is a range of wavelengths
where specific particles or chromophores are able to effectively block light. Many re-
searchers are trying to increase the performance of food packaging materials by incorporat-
ing light blockers into them [47]. These light blocks are especially important for preventing
UV light waves from penetrating into foods and promoting oxidative damage [48]. For
example, bixin is a carotenoid found in annatto seeds (Bixa orellana L.), which has been used
in packaging materials due to its ability to absorb light [49]. Many other natural substances
exhibit the ability to absorb light at specific wavelengths, including proteins, carotenoids,
and curcumin. In addition, nanoparticles can scatter light waves strongly in the UV region,
which can help protect foods from photodegradation.

3.4. Plasticizers

Plasticizers are compounds used in biopolymer-based packaging materials to increase
their flexibility and reduce their fragility [50]. Plasticizers function by reducing the inter-
molecular attractive forces and increasing chain mobility in the biopolymer matrix [51].
Polyols are often used as plasticizers in biopolymer films, such as glycerol, mannitol, sor-
bitol, and xylitol [52]. Other active compounds that have numerous hydroxyl groups can
also be used as plasticizers in these films. For instance, tannins have been shown to act as
plasticizers in these films due to the high number of hydroxyl groups [53].
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3.5. Crosslinkers

The functional performance of biopolymer-based packaging materials, such as their
mechanical, thermal, and barrier properties, can be improved by crosslinking the biopoly-
mers [54]. The efficacy of crosslinking depends on the nature of the crosslinking agents
and biopolymers present, particularly their type and concentration [55]. Crosslinks may
involve physical interactions, such as electrostatic, hydrogen, hydrophobic, and van der
Waals bonds, or covalent interactions such as disulfide bonds. A number of analyti-
cal methods can be used to characterize the bonds formed in biopolymer films, includ-
ing X-ray diffraction, electrophoresis, Fourier transform infrared spectroscopy (FTIR),
and nuclear magnetic resonance (NMR) spectroscopy [56]. Some natural phytochemi-
cals are able to crosslink proteins and polysaccharides through hydrophobic or hydrogen
bonding. For example, catechins have been shown to crosslink methylcellulose-based
biopolymer films [57]. Crosslinking has been shown to improve the mechanical, stabil-
ity, and barrier properties of biopolymer-based foods, thereby increasing their potential
applications in foods [58].

3.6. Diffusion Blockers and Film Strengtheners

The barrier and mechanical properties of biopolymer packaging materials can be
increased by adding inorganic or organic nanomaterials, such as titanium dioxide (TiO2),
zinc oxide (ZnO), silver (Ag), nanocellulose, zein nanoparticles, starch nanoparticles,
and other particulate substances [59]. These nanomaterials are usually spheroids, cuboids,
or fibers. Inorganic nanoparticles are mostly used to fill the pores in the structure of
biopolymer matrices. For example, TiO2-Ag nanoparticles were shown to fill in the pores in
a gelatin matrix, which modulated the physicochemical properties of the gelatin films [60].
Organic nanoparticles are often incorporated into packaging materials to increase the
strength and cohesion of the biopolymer networks. For instance, chitin nanofibers have
been used to strengthen methylcellulose films [61]. Similarly, chitosan nanoparticles (CNPs)
have been used to modulate the gas barrier properties, tensile strength, and thermal stability
of biopolymer films [62,63]. The incorporation of silver nanoparticles into polylactic acid
(PLA) films has been shown to increase biodegradation [64].

3.7. Sensors/Indicators

Smart sensors/indicators are being developed for use in biodegradable food pack-
aging materials to provide information about the quality, spoilage, and safety of food
products [65,66]. Natural pigments, such as anthocyanins and carotenoids, are often used
for this purpose [67]. These pigments are selected because they change color in response
to a specific environmental trigger, such as pH, oxygen exposure, temperature, or gas
concentration. These natural pigments can often be extracted from plants and their by-
products such as tomato peel, citrus fruit, potatoes, and soybean meal pulp. Anthocyanins
change color in response to alterations in the pH of their environment, which are often
indicative of changes in food quality or safety [46,68]. For instance, food spoilage often
leads to the release of gases such as nitrogen, which changes the pH of the environment and
leads to changes in the color of the pigments in the packaging materials, thus informing
consumers about the status of the product [69]. As an example, barberry anthocyanins have
been incorporated into biodegradable films comprised of methylcellulose and chitosan
nanofibers, which were useful for monitoring changes in the freshness of meat by changing
color during storage [12].

4. Impact of Bioactive Compounds on Packaging Properties
4.1. Physical Properties

The optical properties of packaging materials affect the appearance of foods, as well
as the transmission of ultraviolet and visible light into the product. The incorporation of
nanoparticles into foods can alter their optical properties by altering the absorption and
scattering of light waves. The absorption of light depends on the absorption spectra of



Polymers 2021, 13, 4399 7 of 21

the different components included in the packaging material, whereas the scattering of
light depends on the size, concentration, and relative refractive index of the nanoparticles
and any other inhomogeneities. Consequently, the color, opacity, and light-blocking
properties of packaging materials can be altered by controlling the type and concentration
of chromophores and nanoparticles used. Many kinds of food-grade nanoparticles can be
used to alter the light scattering properties of films, including nanoemulsion droplets, SLNs,
NLCs, protein nanoparticles, chitin and cellulose nanofibers, and inorganic nanoparticles.
In addition, many kinds of natural chromophores can be used to modulate the absorption
properties, such as anthocyanins, carotenoids, and curcuminoids.

The thickness of packaging materials influences their optical, mechanical, and barrier
properties. Various factors impact film thickness, including the film-forming method
used and the nature of the forming solution used, such as its density, viscosity, surface
tension, and the presence of nanoparticles. Typically, films should have thicknesses below
about 0.25 mm (250 µm) for practical applications. Previous studies have shown that the
incorporation of active agents usually increases film thickness, which has mainly been
attributed to the increase in the total solid content of the system [70,71].

Water solubility (WS) and moisture content (MC) are important functional properties
of biopolymer-based films. It is usually desirable that these films have a low solubility
in water, otherwise, they may lose their integrity when exposed to humid environments
or when they come into contact with moist foods [72]. Most biopolymer-based films
are hydrophilic; therefore, they can absorb moisture and decompose, which limits their
application [73]. To overcome this problem, hydrophobic active agents (such as lipid
droplets or fat particles) are often incorporated into the film matrix to reduce the WS
and MC [74]. In some applications, the ability of a film to dissolve when it comes into
contact with a food surface may be useful for releasing active agents, such as antimicrobials
or antioxidants [75].

Li and Yang [76] incorporated thymol nanoemulsions (0, 0.5, or 1.0% w/w) into gelatin
films, which increased their thickness and reduced their water content. Similarly, Chu and
Cheng [77] reported an increase in film thickness and reduction in moisture content when
cinnamon oil nanoemulsions (4, 8, and 12%) were introduced into pullulan films. Behjati
and Yazdanpanah [78] reported an increase in thickness, decrease in moisture content,
and reduction in water solubility when vitamin D nanoemulsions were incorporated into
quince seed gum films.

4.2. Mechanical Properties

The mechanical properties of packaging materials, such as their tensile strength (TS),
elongation at break (EB), and elastic modulus (EM), play an important role in their functional
performance [79]. In particular, the mechanical properties of packaging materials are important
for protecting foods during storage and distribution. Several factors impact the mechanical
properties of biodegradable films, including the type, number, and strength of the interactions
between the biopolymer molecules [80,81]. In addition, the incorporation of certain kinds of
active compounds into these films may either increase or decrease their mechanical properties
depending on how they interact with the biopolymer network (Table 1).

As a specific example, the tensile strength of whey protein films has been reported
to decrease from 10.8 to 3.3 MPa, the elongation at break to increase from 29.4 to 48.6%,
and the elastic modulus to decrease from 2.4 to 48.6 MPa after adding 2% α-tocopherol
nanoemulsion [82]. In another study, it was reported that adding α-tocopherol nanocap-
sules reduced the TS from around 37 to 23 MPa, and the YM from around 114 to 41 MPa in
carboxymethyl cellulose films when the nanocapsule concentration was increased from
0 to 70%, while the elongation at break (EAB) significantly (p < 0.05) increased from around
32% to 53% [83]. These changes can at least be partially attributed to the surfactants used
during nanocapsule fabrication, since the presence of surfactants can reduce intermolec-
ular attractive forces and increase polymer mobility. Lecithin-based nanocapsules have
been reported to result in softer materials with lower TS by causing discontinuities in the



Polymers 2021, 13, 4399 8 of 21

biopolymer films. Fattahi and Ghanbarzadeh [84] reported that incorporating a cinnamon
oil nanoemulsion into a carboxymethyl cellulose matrix reduced the TS and increased the
EB of the films. Incorporating essential oils probably weakened the network structure
through interruption of the intermolecular interactions between the biopolymer molecules.
Aziz and Almasi [85] reported that incorporating thyme extract nanoliposomes (0, 5, 10,
or 15% wt.) into whey protein films altered their mechanical properties. The TS and
YM values decreased from around 7.1 to 2.1 MPa and 83 to 13 MPa, respectively, as the
concentration of the extract increased. This phenomenon may again be due to interruption
of the biopolymer–biopolymer interactions by the nanoparticles. Conversely, Ranjbaryan
and Pourfathi [14] reported that the addition of 5% cinnamon oil nanoemulsion had no
significant effect on the EB of sodium caseinate films, but increased their TS and EM.

4.3. Microstructural Properties

The microstructure of biodegradable films influences their functional properties,
such as their optical, mechanical, and barrier properties. Microscopic techniques,
such as scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM),
and atomic force microscopy (AFM), are commonly used to evaluate the microstructures
of films. The incorporation of certain kinds of active agents can affect film microstructure,
owing to their ability to form covalent and non-covalent interactions with the reactive
groups on the biopolymer chains [86,87]. For example, Ghasempour and Khodaivandi [88]
showed that incorporating betanin nanoliposomes into films made from Persian gum
and whey protein increased the roughness of their microstructure. However, Najafi and
Kahn [89] showed that saffron nanoliposomes could be incorporated into pullulan films
without impacting their smooth homogenous structure. Li and Yang [76] also showed
that uniform films could be produced by incorporating thymol nanoemulsions (0, 0.5,
or 1.0% w/w) into gelatin films. Conversely, the incorporation of α-tocopherol nanocap-
sules into carboxymethyl cellulose led to the formation of a heterogenous structure with
high porosity and many cracks [83]. Kong, Wang [90] showed that incorporation of car-
vacrol nanoemulsions into corn starch-poly(vinyl alcohol) (PVA) films led to a dense
uniform microstructure. Chen, Ma [87] showed that eugenol-loaded gelatin nanofibers
could be deposited on the surfaces of poly (lactic acid) films, which led to the formation of
smooth uniform surfaces. Overall, these studies show that different kinds of nanoparti-
cles have different effects on different biopolymer films. Consequently, it is important to
examine these effects for specific combinations of nanoparticles and films.

4.4. Thermal Stability

The resistance of films to thermal degradation is important to maintain the integrity
and performance of the packaging material through processing, storage, distribution,
and utilization, as well as determining its suitability for disposal using thermal combus-
tion methods. Mirzaei-Mohkam and Garavand [83] evaluated the thermal properties of
carboxymethyl cellulose films containing vitamin E nanocapsules. Different scanning
calorimetry (DSC) showed that incorporation of the nanocapsules slightly reduced the
melting temperature of the films, which was attributed to their effect on the interactions
of the carboxymethyl cellulose chains. Najafi and Kahn [89] reported that the addition of
nanoliposomes reduced the glass transition temperature (Tg) of pullulan films from around
100 to 78 ◦C, which was attributed to a plasticizing effect by lecithin. In a recent study,
pH-sensitive films were prepared by incorporating curcumin nanocapsules (0.03% w/v)
into soy protein-cellulose nanocrystals films [91]. Thermogravimetric analysis showed
that the maximum degradation temperature of the films increased after the addition of
the curcumin nanocapsules, which was mainly attributed to the ability of the curcumin
to crosslink the biopolymers in the films. de Carvalho and Noronha [92] showed that
loading α-tocopherol SLNs into PVA films increased their thermal stability and reduced
their crystallinity. These studies show that the thermal stability of biopolymer-based films
can be modulated by incorporating different kinds of nanoparticles.
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4.5. Barrier Properties

The shelf life, safety, and quality of foods are influenced by the transfer of water vapor
and other gases between the internal and external environments of the packaging materials,
as well as by the diffusion of other substances through the film, such as liquid water,
oils, and nanoparticles. Controlling the flow of oxygen is often important in biopolymer
packaging materials because it can influence the oxidation of foods [93]. Controlling the
flow of water vapor is important because it influences the texture and water activity of
foods, which in turn influences chemical reactions and microbial growth. The permeability
of biopolymer films depends on their porosity, thickness, and rheology. Hence, it can be
controlled by adding different kinds of active agents into the films, such as nanoparticles,
nanofibers, plasticizers, or crosslinking agents [94]. These substances may either increase or
decrease the permeability of the films depending on their effects on biopolymer interactions
and porosity (Table 1) [95].

The water vapor permeability (WVP) of edible films was shown to increase from
12.1 to 19.4 × 10−10 g s−1 m−1 Pa−1 when 5 to 15% rutin nanoemulsions were added
but then decreased to 18.7 × 10−10 g s−1 m−1 Pa−1 when 20% of these nanoemulsions
was added [6]. Presumably, the nanoemulsions acted as a plasticizer of the biopolymer
molecules in the films, which facilitated the transfer of water vapor through the films.
Similarly, Ji and Wu [96] and Sun and Wang [97] reported that the addition of cinnamalde-
hyde and lavender oil nanoemulsions increased the WVP of gelatin films, which may have
been because the essential oil reduced the number of hydrogen bonds between the protein
molecules. In contrast, the addition of 3% caraway seed extract-loaded nanoliposomes was
reported to reduce the WVP of nanochitosan-based films from 14.2 × 10–12 g/m·s·Pa to
11.9 × 10–12 g/m·s·Pa [98]. Similarly, Liu and Dang [99] showed that incorporating
curcumin-loaded Pickering emulsions into corn starch-PVA films decreased their per-
meability to oxygen and water vapor. Sun and Li [100] also reported a decrease in water
vapor and oxygen permeabilities when cinnamon oil Pickering emulsions were added
of modified starch films. In another study, Bi and Qin [101] showed that adding a lu-
teolin nanoemulsion to a chitosan film reduced the WVP and oxygen permeability [83].
Most of these effects can be attributed to the presence of hydrophobic particles within
the biopolymer films that made the diffusion pathway for oxygen and water molecules
more tortuous.

4.6. Antioxidant Properties

Lipid and protein oxidation are important chemical reactions that result in quality
loss during food processing, storage, and distribution. Natural antioxidants and scav-
engers can be incorporated into packaging materials to inhibit or prevent these reactions.
The susceptibility of packaged foods to oxidation is often assessed using in vitro assays,
such as the DPPH, ABTS, and FRAP assays [102].

Mirzaei-Mohkam and Garavand [103] showed that adding α-tocopherol nanocapsules
to carboxymethyl cellulose (CMC) increased their radical scavenging activities in a dose-
dependent manner. Various other kinds of antimicrobial nanoparticles have also been used
to increase the antioxidant activity of packaging films, including carvacrol nanoemulsions
in corn starch/PVA films [90], rutin nanoemulsions in gelatin films [6], α-tocopherol
nanoemulsions in whey protein films [82], clove oil nanoemulsions in pullulan-gelatin
films [104], and clove oil Pickering emulsions in gelatin/agar films [105]. The observed
increase in antioxidant activity has mainly been attributed to the presence of numerous
hydroxyl groups in the encapsulated active agents, which act to donate electrons to reactive
free radicals during oxidation, thus converting them into more stable non-reactive species,
which breaks the free radical chain reaction [106,107].

4.7. Antimicrobial Properties

Some active agents exhibit strong antimicrobial properties and can therefore be in-
corporated into packaging materials to inhibit the growth of spoilage and pathogenic
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microorganisms, thereby improving food quality and safety, and reducing food waste [108].
As mentioned earlier, many natural antimicrobials (like essential oils and phytochemicals)
are strongly hydrophobic substances and must therefore be incorporated into nanocarriers
before they can be introduced into biopolymer-based films [109]. Encapsulation improves
the dispersibility, matrix compatibility, and stability of the antimicrobials, as well as allows
control of their release profiles [110]. Various kinds of natural active agents have been
investigated for their ability to increase the antimicrobial activity of biopolymer films.
For instance, Kong and Wang [90] showed that the antifungal properties of corn starch-
PVA films were increased by incorporating carvacrol nanoemulsions. Similarly, Chen and
Ma [87] found that the incorporation of eugenol-loaded gelatin nanofibers into biopolymer
films increased their ability to inhibit E. coli and S. aureus. In another study, Beikzadeh
and Akbarinejad [111] reported that lemon myrtle essential oil-loaded cellulose acetate
nanofibers increased the antibacterial properties of biopolymer films against B. cereus
and E. coli. The incorporation of thyme oil nanoemulsions into chitosan films enhanced
their antimicrobial activity against E. coli and Bacillus subtilis [112]. Lee and Garcia [70]
reported that the introduction of oregano oil nanoemulsions into hydroxypropyl methyl-
cellulose (HPMC) films improved their antimicrobial activity against S. aureus, B. cereus,
L. monocytogenes, E. coli, S. typhimurium, P. aeruginosa, and V. parahaemolyticus. These an-
timicrobial effects are mainly attributed to the ability of the active agents to diffuse out
of the nanoparticles, through the films, and to the surfaces of the microorganisms. Once
there, they damage the cell walls and interfere with critical biochemical pathways, thereby
deactivating the microorganisms.



Polymers 2021, 13, 4399 11 of 21

Table 1. Impact of bioactive compounds on film packaging material characteristics.

Polymer Bioactive
Compound Type

Bioactive
Compound (wt%)

Tensile
Strength (MPa)

Elongation at
Break (%)

Water Vapor
Permeability Antimicrobial Antioxidant Thermal Microstructural Reference

Cassava starch Lycopene

0% 3.09 ± 0.10 134.59 ± 2.69 0.36 ± 0.05

- -

residual
mass = 6% Uniform and compact

[113]
2% 2.81 ± 0.06 233.13 ± 1.07 0.57 ± 0.02 -

Porous and
Non-uniform5% 2.92 ± 0.07 190.73 ± 0.96 0.55 ± 0.04 residual

mass = 7%

8% 2.66 ± 0.04 166.03 ± 0.93 0.55 ± 0.03 -

Cassava starch Bixin

0% 12.13 ± 0.95 6.05 ± 0.72 0.207 ± 0.014

- -
High thermal

stability at least up
to 270 ◦C

Compact
and uniform structures

[114]

2% 14.40 ± 1.69 2.19 ± 0.35 0.202 ± 0.008

5% 8.95 ± 1.32 15.55 ± 1.14 0.216 ± 0.007

8% 2.06 ± 0.34 28.57 ± 3.44 0.243 ± 0.010
Cracks surface

10% 1.94 ± 0.37 34.34 ± 3.40 0.273 ± 0.018

Cassava starch β-carotene

0% 3.09 ± 0.10 134.59 ± 2.69 0.36 ± 0.05

- - No effect on
thermal stability

Non-uniform structure

[115]

2% 2.74 ± 0.19 237.81 ± 7.49 0.45 ± 0.02 -

5% 2.56 ± 0.15 311.82 ± 6.73 0.44 ± 0.05 Smooth surface
with pores

8% 2.63 ± 0.18 319.74 ± 3.35 0.44 ± 0.03 Heterogeneous and
cracks structure

HPMC Nisin

0% 59.0 ± 6.8 6.0 ± 3.3 0.77 ± 0.03
Antimicrobial activity

against Listeria
monocytogenes

- -

Smooth surface

[116]
100% 37.0 ± 2.5 2.6 ± 0.7 0.95 ± 0.10

Non-uniform surface
with dome-shaped

zones and holes

Pullulan Lysozyme

0% 35.0 ± 4.4 6.63 ± 1.11

- Antimicrobial activity
against Staphylococcus aureus

High antioxidant
activity (77%) for

15% LNFs

High thermal
stability at least up

to 225 ◦C

Homogeneous, smooth,
compact surface [117]

1% 33.2 ± 3.7 2.57 ± 0.36

3% 35.6 ± 2.2 2.24 ± 0.27

5% 37.6 ± 2.2 1.84 ± 0.29

10% 34.1 ± 1.0 1.64 ± 0.61

15% 31.3 ± 2.3 1.34 ± 0.10

Chitosan
Epigallocatechin

gallate

0% 6.44 ± 0.28 22.5 ± 4.3

- - Higher DPPH
scavenging activity

-

Smooth

[118]
2.5%, 10.4 ± 3.2 24.1 ± 4.6

Rough and
uneven surface4.5% 19.2 ± 1.2 20.6 ± 3.5

6.0% 18.10 ± 4.10 3.9 ± 2.6
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Table 1. Cont.

Polymer Bioactive
Compound Type

Bioactive
Compound (wt%)

Tensile
Strength (MPa)

Elongation at
Break (%)

Water Vapor
Permeability Antimicrobial Antioxidant Thermal Microstructural Reference

Chitosan Cinnamaldehyde

0% 98.26 ± 5.69 4.16 ± 0.47 1.42 ± 0.29

Better antifungal than
antibacterial activity

- -

Bubble-like surface

[81]

0.1% 62.29 ± 3.47 16.1 ± 2.6 1.31 ± 0.36

Uniform and smooth

0.2% 51.78 ± 4.70 24.5 ± 0.6 1.15 ± 0.09

0.4% 44.90 ± 4.11 12.2 ± 3.5 1.69 ± 0.05

0.6% 37.42 ± 4.02 14.5 ± 2.9 1.74 ± 0.14

0.8% 38.84 ± 4.74 14.6 ± 2.5 2.01 ± 0.27

1.0% 29.57 ± 4.21 11.4 ± 2.6 2.24 ± 0.17

1.5% 17.44 ± 3.48 14.9 ± 3.7 3.33 ± 0.47

2% 7.57 ± 1.34 12.6 ± 2.2 3.91 ± 0.59

Soy protein
isolate

Cinnamaldehyde/
Carvacrol

0 2.61 ± 0.54 172 ± 46 2.89 ± 0.24

- - - - [119]Carvacrol 1.97 ± 0.11 418 ± 37 2.79 ± 0.28

Cinnamaldehyde 2.52 ± 0.21 374 ± 50 2.83 ± 0.09

Low pectin Cinnamaldehyde

0 5.36 ± 0.42 246 ± 23 3.10 ± 0.10

Good antimicrobial
activity

- - -

[120]

7 6.34 ± 0.71 174 ± 40 2.92 ± 0.09

12 5.99 ± 0.14 139 ± 29 2.15 ± 0.10

16 6.53 ± 0.68 146 ± 17 2.90 ± 0.10

High pectin Cinnamaldehyde

0 4.84 ± 0.29 192 ± 39 3.26 ± 0.02

- - -
7 7.70 ± 1.17 155 ± 30 3.02 ± 0.02

12 7.62 ± 0.2 170 ± 36 2.70 ± 0.02

16 8.36 ± 0.15 180 ± 14 2.95 ± 0.02

Quinoa pro-
tein/chitosan

Thymol

0 4.4 ± 0.7 116 ± 22 0.35 ± 0.05

- - -

Homogeneous

[121]
10% 2.9 ± 0.5 98 ± 11 0.40 ± 0.04 Porous and

heterogeneous surface
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5. Application of Active-Loaded Packaging Materials in Foods

In this section, we give several examples of studies where active-loaded packaging
materials have proved useful for improving the quality, safety, or shelf-life of foods. The
results of many of these studies are also summarized in Table 2 for convenience.

5.1. Seafood

Seafood products are highly perishable because they are rich in nutrients and moisture
that microorganisms can use to grow and multiply. Moreover, they often contain sensitive
components (such as polyunsaturated lipids and proteins) that are prone to chemical
degradation. Microorganisms generate several degradation products when they grow on
seafood, including dimethylamine (DMA), trimethylamine (TMA), and ammonia. Similarly,
oxidation products, such as peroxides, conjugated dienes, TBARS, and aldehydes are
produced when polyunsaturated lipids degrade. These degradation products can therefore
be measured to monitor the quality and freshness of these products.

Nanoparticles loaded with active agents can be incorporated into biodegradable
packaging materials to help protect seafood by inhibiting microbial growth and chemical
degradation. For instance, Sharifimehr and Soltanizadeh [122] incorporated eugenol
nanoemulsions into aloe vera coatings on pink shrimp and showed that the formation of
lipid oxidation products, as well as drip losses and color changes, were reduced. Nazari and
Majdi [123] showed that incorporation of cinnamon oil nanophytosomes into PVA coatings
increased their antimicrobial activity against P. aeruginosa on shrimp. Homayonpour and
Jalali [124] showed that incorporation of cumin oil nanoliposomes into nanochitosan-
based coatings improved the quality and shelf life of sardine fillets during storage under
refrigerator conditions. Xiao and Liu [91] created pH-sensitive films by incorporating
curcumin nanocapsules into soy protein-cellulose nanocrystal films and showed they could
be used to monitor changes in the freshness of shrimp during refrigerated storage. The
color of the films turned from bright yellow to reddish-brown, which was attributed to the
deterioration of the shrimp.

5.2. Meat

Like seafood, meat is also rich in nutrients and moisture, which makes it susceptible
to microbial and chemical spoilage. Poultry meat is easily spoiled by various kinds of
bacteria and yeast during cold storage [125]. The incorporation of Trachyspermum ammi
oil nanoemulsions into alginate edible coatings was shown to inhibit the growth of
Listeria monocytogenes on turkey fillets during refrigerator conditions [126]. Kamkar and
Molaee-Aghaee [9] showed that adding garlic oil nanoemulsions to chitosan films inhibited
the growth of aerobic, psychrotrophic, and coliform bacteria on the chicken breast during
refrigerated storage, which improve their quality attributes and shelf life.

Fresh meat is also easily spoiled by microbial growth and chemical reactions [127].
Xavier and Sganzerla [128] showed that incorporation of cinnamodendron dinisii oil-loaded
zein nanoparticles into chitosan films increased the storage stability of refrigerated ground
beef, which was attributed to the antioxidant and antimicrobial activity of the encapsulated
essential oil. In another study, Amjadi and Nazari [129] incorporated chitosan nanofibers,
ZnO nanoparticles, and betanin nanoliposomes into gelatin films, which improved the
quality and extended the shelf life of refrigerated beef meat. Xiong and Li [130] reported
that incorporating oregano oil- and resveratrol-loaded nanoemulsions into pectin coatings
improved the quality and shelf life of pork loin during refrigerated storage. In another
study, Zhang and Liang [131] reported that incorporating tarragon oil-loaded nanoparticles
into chitosan-gelatin coatings applied to pork slices improved their quality and shelf
life. Overall, these effects can mainly be attributed to the antimicrobial and antioxidant
properties of the additives in the films.
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5.3. Cheese

Cheese is another nutrient-rich food that is susceptible to microbial and chemical
spoilage [132]. Al-Moghazy and El-sayed [133] assessed the effect of thyme oil-loaded
nanoliposomes incorporated into chitosan coatings on the quality of Karish cheese. The
coatings did not affect the initial quality attributes of the cheese, but they did extend
its shelf life by inhibiting the growth of spoilage microorganisms. Incorporating nisin-
loaded nanoparticles within polyethylene oxide nanofibers was also shown to inhibit
L. monocytogenes growth on cheese [134].

5.4. Bread

Lei and Wang [135] prepared carboxymethyl cellulose films containing carvacrol
nanoemulsions. These films were shown to extend the shelf life of wheat bread stored at
25 ◦C, which was mainly attributed to the antioxidant and antimicrobial activity of the
essential oil. Indeed, these films inhibited the growth of E. coli and S. aureus, as well as
aerobic bacteria, molds, and yeast. In another study, Otoni and Pontes [136] incorporated
clove bud and oregano oil nanoemulsions into methylcellulose films, which were then
shown to increase the shelf life of sliced bread during storage by reducing the growth of
yeasts and molds.

5.5. Fruit and Vegetables

The perishable nature of fruits and vegetables results in a short life and loss of qual-
ity. The main causes of spoilage are transpiration and respiration, ethylene production,
and fungal growth [137]. β-carotene nanoparticles have been incorporated into xanthan
gum coatings that were applied to fresh-cut melon [138], which improved the firmness
and juiciness of the melon. Ansarifar and Moradinezhad [139] applied thyme oil-loaded
zein nanofibers to strawberries and showed that they inhibited the growth of fungi and
yeast, as well as reduced lipid oxidation. Again, these results can mainly be attributed to
the antioxidant and antimicrobial properties of the additives in the films.

Table 2. Application of bioactive packaging films loaded with bioactive agents on food samples.

Active
Agent Matrix Natural Compounds Nanocarrier Food Model Condition Storage Ref.

Ph
en

ol
ic

co
m

po
un

ds

Aloe vera Eugenol essential oil (EO) Nanoemulsion Shrimp - [122]

Aloe vera Eugenol EO Nanoemulsion Shrimp - [140]

Gelatin-Carrageenan
Curcumin
Gallic acid
Quercetin

Nanoemulsion Raw broiler meat 20 days at 4 ◦C [141]

Alginate-CMC Vanillin
Ascorbic acid Nanoemulsion Fresh cut kiwi slices 7 days at 5 ± 1 ◦C [142]

Pectin Resveratrol Nanoemulsion Pork 15 days at 4 ◦C [130]

Chitosan Thymol or thyme EO Nanoemulsion Pork 12 days at 4 ◦C [143]

Es
se

nt
ia

lo
il

Chitosan Cinnamodendron dinisii
Schwanke Nanoparticle Ground beef 12 days at 6 ± 2 ◦C [128]

Chitosan Paulownia Tomentosa Nanoparticle Pork chop 16 days at 4 ◦C [144]

Chitosan-gelatin Tarragon Nanoparticle Pork 16 days at 4 ◦C [131]

Corn starch Zataria multiflora EO Nanoemulsion Chicken meat

PVA Cinnamon Nanophytosome Shrimp 7 days at 4 ◦C [123]

Pullulan Cinnamon Nanoemulsion Strawberries 6 days at 20 ± 2 ◦C [145]

Nanochitosan Cuminum cyminum EO Nanoliposome Sardine 16 days at 4 ◦C [124]

Chitosan Ferulago angulata EO Nanoemulsion Rainbow trout fillets 16 days at 4 ◦C

Gelatin/Hydroxypropyl Mustard Nanoemulsion Turkey 20 days at 4 ± 1 ◦C [146]

Chitosan Garlic Nanoliposome Chicken breast fillets at 4 ◦C [9]

Alginate Oregano EO Nanoemulsion Tomatoes 14 days at 14 days at
24 ± 1 ◦C [147]

Alginate Trachyspermum ammi Nanoemulsion Turkey fillets 12 days at 4 ± 1 ◦C [126]
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Table 2. Cont.

Active
Agent Matrix Natural Compounds Nanocarrier Food Model Condition Storage Ref.

C
ar

ot
en

oi
d

Xanthan gum β-carotene Nanocapsule Fresh cut melon - [138]

Pe
pt

id
e Soy Protein Isolate Star anise essential oil

Polylysine Nisin Nanoemulsion Yao meat 20 days at 4 ◦C [147]

Poly (ethylene oxide) Nisin Nanoparticle Cheese - [134]

O
th

er
s

Gelatin Betanin Nanoliposome Beef 16 days at 4 ◦C [129]

6. Conclusions and Future Directions

A broad range of nanoparticle-based delivery systems are available to incorporate
active agents into biodegradable packaging materials, including nanoemulsions, nano-
liposomes, SLNs, NLCs, biopolymer nanoparticles, and nanogels. These active-loaded
nanoparticles can be used to improve the physicochemical and functional attributes of
the packaging materials, including their optical properties, mechanical strength, barrier
properties, and stability, as well as to provide indications of the quality, safety, or age of the
packaged product. The selection of an appropriate nanoenabled delivery system depends
on the nature of the active agent, food product, and film matrix. Many different kinds of
food-grade active ingredients can be incorporated into biodegradable packaging materi-
als, including phytochemicals that exhibit antioxidant, antimicrobial, light blocking, film
strengthening, and indicator properties. The delivery system used should be designed to
improve the dispersibility, matrix compatibility, stability, and efficacy of these active agents,
as well as to improve or extend the functional performance of the packaging material.
These delivery systems can also be designed to control the release of the encapsulated
active agents from the film matrix during storage, which may be advantageous for some
applications. For instance, extended release of antioxidants or antimicrobial agents from
the packaging materials into the food product may extend the shelf life of some foods. In
the future, it will be important to test these fortified packaging materials under real-life
conditions, as well as to establish the economic feasibility of their mass production. In
addition, it will be important to test their safety and environmental impact.
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