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Abstract 
In this study, genetic parameters of test-day (TD) somatic cell score (SCS) and lactation average (LA) 
clinical mastitis (CM) were estimated using a random regression model (RRM) that combine two different 
data models. A multitrait RRM (mt-RRM) was then developed for the genetic evaluation of mastitis. 
Estimates of breeding values (EBVs) from the mt-RRM were compared to corresponding multitrait LA 
model (biv-LAM) and univariate LA models (univ-LAM). A total of 147500 and about 5.6 million records 
from 27500 and 1.4 million Finnish Ayrshire cows were used for estimation of genetic parameters and 
prediction of breeding values, respectively. Heritabilities of CM1 and CM2 traits: (CM1, -7 to 30 and 
CM2, 31 to 300 DIM) were 0.026 and 0.016, respectively, while for TD SCS they ranged from 0.06 to 
0.11. During first lactation, the genetic correlations between TD SCS and CM1 and between TD SCS and 
CM2 varied from 0.40 to 0.77 and from 0.34 to 0.71, respectively. In genetic evaluation of mastitis, model 
comparisons have showed that mt-RRM has high model predictive ability and high standard deviation of 
breeding values. Moreover, it has added advantages of making efficient use of available TD SCS 
information and offers proofs for bulls and cows. Therefore, mt-RRM can be used as best practical model 
in the future evaluation of animals for mastitis resistance.  
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1. Introduction
Clinical mastitis evaluation benefits from multi-trait analyses with a correlated trait such as SCS and udder
conformation traits (Negussie et al., 2006a). The efficiency of these traits in increasing the accuracy of
CM evaluation depends on the genetic and environmental associations between the traits, and wide range
of values have been cited in the literature.

So far most studies on genetic correlations between CM and SCS, and between CM and other traits have 
generally been from lactation average models. A genetic analysis based on lactation average model does 
not utilize all information in the data, as it does not allow simultaneous estimation of stage of lactation 
effects (Ødegård et al., 2003; Negussie et al., 2006b). Moreover, since SCS vary with stage of lactation 
and with a test-day, the genetic association between CM traits and SCS may also differ during lactation.  

Currently, most mastitis evaluations are based on multi-trait sire models and lactation average records. 
With a lactation average sire model, available information on udder health traits, particularly information 
on test-day SCS may not be effectively utilised and only proofs for sires can be calculated. The objective 
of the present study was to estimate the genetic association between test-day SCS and CM traits during 
lactation and subsequently to develop genetic evaluation model that combine information from both traits 
using random regression model. 

2. Material and methods
Data were from the Finnish animal health and production database. Records of CM and test-day SCS from
1.6 million first-lactation Finnish Ayrshire cows with first calving from 1988 onwards were used. SCS
was expressed as loge-transformed somatic cell count (logeSCC) from bi-monthly test days measured in
1000cells/ml. All cases of veterinary treated clinical mastitis in first lactation from early (CM1: -7 to 30
DIM) and late stages of lactation (CM2: 31 to 300 DIM) were considered. Within these intervals, the
absence or presence of mastitis was scored as “0” or “1”, respectively. Finally, information on CM cases
extracted from the database was merged with TD SCS records for analyses. A subset of data, including
cows with first calving from 1995 to 2000 and with an average of 5 cows in herd-3-year classes was
sampled for estimation of covariance components. The data was from 27500 cows and a multi-trait RR
sire model was used for estimation of the covariance components.

2.1. Data Analysis 
2.1.1 Covariance components 
A multi-trait random regression sire model (mt-RRM) that combines information from two different data 
models was used for estimation of covariance components of test-day SCS, CM1 and CM2 traits. Initially, 
univariate RRM analyses of the TD SCS were made to determine appropriate order of polynomials that 
are needed to describe the variance structure in the data sufficiently. In addition, eigenvalues of the 
covariance matrices were analysed to assess the importance of adding further parameters. Consequently, 
in the mt-RRM, the additive genetic and permanent environmental effects for test-day SCS were modeled 
by second-order orthogonal Legendre polynomials. Whilst for CM, only the intercept term was fitted.  

The general description of the mt-RRM including test-day SCS, CM1 and CM2 traits was: 
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where ySCS, yCM1 and yCM2 are test-day SCS, CM1 and CM2 observations, respectively, recorded in herd h, 
on TD o, in month k, of the year j, on a daughter m of sire n belonging to the calving age class i, 
year×calving season class l and measured on DIM d. Fixed effects were age at calving (f), year×calving-
month (ym), herd×3-year calving period (hy) and regression coefficients (b) describing the shape of the 
lactation curve within year×calving-season classes. The modeling of fixed effects was the same for all 
traits with the exception of the lactation curve, which was modeled only for test-day SCS.  

The covariables for coefficients b..r (r=0,…,4) were: 
(d)πφ  = [c0  c1 c2  c3  exp(wd)]T,  

where c0 c1 c2 c3 represent coefficients of the third-order orthogonal Legendre polynomial at DIM d and w 
=-0.09 is coefficient of the exponential term of the Wilmink function (Wilmink, 1987). The calving 
seasons were October to February, March to June, and July to September. The herd effect was modeled by 
a fixed herd-3-year and random herd-test-day (htd) effects. The number of hy and random htd classes are 
in Table 1. 

Table 1. Description of the alternative analyses. 
mt-RRM 
(millions) 

mt-LAM 
(millions) 

No. animals 1.62 1.57
No. observations 7.61 1.62
Htd 1.92 ---
Hy 0.33 0.33
No. animal equations 10.62 6.37
No. total equations 20.85 6.76

Random genetic effects were aSCSn, aCM1n and aCM2n. The aSCSn had random regression genetic effects for 
test-day SCS with coefficients from a second-order orthogonal Legendre polynomial at DIM d as in 

)(dφπ
. Random effects pSCSm were non-genetic animal effects for a cow m with )(dφπ

as in above for 

test-day SCS; and pCM1m and pCM2m were for CM1 and CM2, respectively. Random eSCS, eCM1 and eCM2 
were measurement errors.  

The residual covariances between CM traits and test-day SCS had to be assumed zero, because daily 
residuals between test-day SCS and CM traits can not be estimated. In addition, with the mt-RRM it was 
only possible to estimate permanent environmental variance for the longitudinal trait. To ameliorate this, 
the residual variance of CM traits was set to operationally low value (about 10%) so that part of this 
variance entered the permanent environmental component. This facilitated estimation of a permanent 
environmental correlation between CM and the longitudinal trait. The resulting covariance components of 
the random regression coefficients for additive genetic and permanent environmental effects were then 
used for estimation of the necessary parameters. The covariance components were estimated using DMU 
package (Madsen and Jensen, 2006).  

2.1.2 Genetic evaluation  
Multi-trait sire and animal RRMs were developed for the genetic evaluation of udder health traits. These 
models combine information from TD SCS with CM traits from early and late lactation stages (CM1 and 
CM2). Animal model parameters were derived from sire model estimates to calculate mt-RRM animal 
model EBVs for all animals. Estimates of breeding values from the mt-RRM were then compared to the 
corresponding mt-LAM. Model predictive abilities, correlation between and standard deviations of EBVs 
were assessed.  

Parameters for mt-LAM BLUP analyses were derived from the mt-RRM estimates by summation over 
305 days. For comparison, mt-LAM parameters were also directly estimated from the lactation average 
performance records. These estimates were in general found to be similar to those derived from the mt-
RRM estimates. The system was solved by preconditioned conjugate gradient (PCG) method (Strandén 
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and Lidauer, 1999), using a 2.6 GHz AMD Opteron CPU with 4 Gb of RAM. For each model, solving 
time and random access memory (RAM) requirements for solving the mixed model equations were 
monitored. 

Finally, from mt-RRM, an animal gets 3 RRM SCS breeding value coefficients from which 305-breeding 
values can be computed. Corresponding EBVs for TD SCS and CM1 and CM2 traits of animal i were 
calculated as: 

idSi dEBV ∑ =
Τ= 312

8 )( âφα and EBVC1i=âi and EBVC2i=âi, respectively. Estimated breeding values of 
CM traits: CM1 and CM2 were combined into an index (CMcom) by giving equal weight to the traits. 

3. Results and discussion
3.1 Genetic parameters
Heritabilities of CM1 and CM2 from the mt-RRM were 0.026 and 0.016, respectively (Table2). The
estimates fall within the range of most reported values (0.02-0.03) from analyses with traditional linear
models based on data from the Nordic health-recording systems (Heringstad et al., 2000; Negussie et al.,
2006a).

Heritability of test-day SCS during first-lactation ranged from 0.06 to 0.11 (Table 2). The estimates were 
slightly lower in early lactation and increased gradually towards the late part of mid lactation. A possible 
explanation could be a large environmental variation during the early stages of lactation, or a low genetic 
variance. The estimates are in line with earlier studies (Koivula et al., 2005; Negussie et al., 2006b). 

Table 2. Estimated heritabilities (diagonal), genetic (below diagonal) and phenotypic correlations (above 
diagonal) for selected DIM of test-day SCS, CM1 and CM2 traits by mt-RRM in first lactation 
Traits SCS CM1 CM2

DIM  30 60 110 160 210 260 310

30  0.07 0.62 0.58 0.53 0.48 0.43 0.38 0.02 0.19 
60  0.99 0.08 0.64 0.61 0.57 0.52 0.45 -0.01 0.20 
110  0.96 0.99 0.09 0.67 0.65 0.61 0.52 -0.03 0.20 

SCS 160  0.93 0.97 0.98 0.09 0.68 0.65 0.56 -0.05 0.19 
210  0.90 0.94 0.97 0.99 0.10 0.68 0.60 -0.05 0.17 
260  0.85 0.90 0.94 0.97 0.98 0.11 0.64 -0.04 0.15 
310  0.78 0.83 0.87 0.91 0.95 0.98 0.10 -0.02 0.11 

CM1  0.77 0.66 0.60 0.55 0.50 0.45 0.41 0.026 0.09 
CM2  0.34 0.49 0.54 0.58 0.63 0.68 0.71 0.51 0.016 

During lactation, genetic correlations between test-day SCS and CM1 and between test-day SCS and CM2 
ranged from 0.40 to 0.77 and from 0.34 to 0.71, respectively (Table 2). The difference in the genetic 
association between TD SCS and CM traits during the different stages of lactation (early vs. late) suggest 
that the two CM traits measure different aspects of mastitis. Hence, combining information from both 
sources is needed in the genetic evaluation of animals for mastitis resistance. The practical implication of 
this study is therefore the development of a test-day evaluation model that combines test-day SCS 
information with CM traits from different stages of lactation. This will lead to a better use of udder health 
information. In addition, the test-day model allows the calculation of different selection criteria, which 
enables the testing of young bulls at an early age offering an early prediction of animals genetic merit. 

3.2 Genetic evaluations 
Standard deviations (SD) of EBVs for CMcom from mt-RRM and mt-LAMs are in Table 3. For the 
different groups of animals, the SD of EBVs from the mt-RRM was higher than that from mt-LAM. This 
could be explained by better utilization of information by the test-day model which in turn revealed more 
genetic variation. The increase in the SD of EBVs was relatively higher for old bulls and cows than for 
young bulls and cows. 
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Table 3. Standard deviations (SD) of EBVs for CM traits (CMcom)† from mt-RRM and mt-LAM for 
different groups of bulls: old bulls (born from 1992-94, with at least 100 daughters), young bulls (born 
from 1996-98, with at least 50 daughters), and old and young Ayrshire cows (born in 1995 and 1999, 
respectively). 

Bulls/cows 
No. 

Model 
Groups 

mt-RRM mt-LAM
Bulls

Old 437 0.042 0.030
Young 441 0.041 0.029

Cows
Old 88474 0.031 0.019
Young 80857 0.029 0.018

† Values for CMcom are based on combining EBVs for  
CM1 and CM2 

Correlations between EBVs from mt-RRM and mt-LAM were assessed for different groups of bulls. For 
TD SCS, correlations between EBVs were ~0.98 for older group of sires and ranged from 0.95 to 0.97 for 
young cows and bulls, respectively. Correlations between EBVs for CMcom were also higher for older 
groups of bulls (~0.91) than for young cows and bulls (0.82 – 0.89). One of the reasons for this could be 
the use of test-day model (test-day SCS), which allows better modeling of the herd environment and 
thereby improves the accuracy of young cow and bulls EBVs. Older bulls with large numbers of 
daughters, however, receive relatively accurate EBVs from both models. Thus, the apparent advantage of 
mt-RRM comes from better evaluation of cows and young bulls with less numbers of daughters. As a 
consequence, some changes would be expected in the ranking of young bulls and cows 
The predictive ability of models for CMcom was assessed using data splitting method. In this analysis, a 
slightly higher correlation between EBVs from split data sets was found for mt-RRM (0.73) than for mt-
LAM (0.71) indicating better model prediction performance.  

3.3 Computational aspects 
Details of computation, i.e. solving time and random access memory (RAM) requirements for solving 
mixed model equations for the mt-RRM and mt-LAMs are in Table 4. The shortest and longest computing 
time was required by mt-LAM sire and by mt-RRM animal models, respectively. The mt-RRM animal 
model required 3.5 hrs of solving time, which is twice the computing time required for solving a 
corresponding mt-LAM (Table 4). The relatively slow convergence when solving RRM could probably be 
due to the complexity of the covariance matrices. Nevertheless, in view of fast computers and efficient 
algorithms this would not be prohibitive to the large-scale routine application of mt-RRM.   

Table 4. Number of total equations (Neq), iterations until convergence (Nconv), solving time† and RAM 
requirements (Mb) for the multi-trait random regression (mt-RRM) and lactation average models (mt-
LAM) 
Model Neq 

(milj.) 
Nconv Solving time  

(Min) 
RAM 
(Mb) 

mt-LAM (sire) 0.436 174 16 22 
mt-LAM(animal) 6.76 1189 73 215
mt-RRM (sire) 10.31 502 48 323 
mt-RRM(animal) 20.85 1300 205 644
† AMD Opteron CPU 2.6 Ghz running Linux 

4. Conclusions
This study showed that genetic correlations between TD SCS and CM traits varied during lactation. In CM
evaluation, the comparison between models showed that the mt-RRM is better than the corresponding mt-
LAM. Moreover, mt-RRM has added advantages of a) making efficient use of available information on
TD SCS and offers accurate evaluation; b) derivation of different selection criteria which would allow
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early testing of bulls and c) as a by-product of mt-RRM evaluation, herd-test day solutions can be utilized 
for herd management and decision-making purposes. 
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