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A total of 111 local pollen beetle populations were collected from both winter and spring oilseed rape fields, in 
the main oilseed growing regions of Estonia between 2015−2019. The objective was to analyse the insecticide- 
susceptibility of the pollen beetle population (in the form of Brassicogethes aeneus). The pollen beetle samples 
were tested for sensitivity to lambda-cyhalothrin, thiacloprid, and chlorpyrifos. The efficacy of the tested insecti-
cides varied considerably by region. We observed a clear decrease in susceptibility to lambda-cyhalothrin and thia-
cloprid, but sensitivity to chlorpyrifos remained stable throughout the period between 2015 and 2019. Amongst the 
tested samples in that period, a total of 3% were classified as susceptible to lambda-cyhalothrin, 18% as moderately  
resistant, 70% as resistant, and 7% as highly resistant. In the case of thiacloprid, 21% of the samples were highly 
susceptible to the insecticide, 39% were susceptible, and 41% had reduced levels of susceptibility to the insecticide. 
The information which was presented tended to confirm the ongoing evolution of insecticide resistance in the B. 
aeneus population in Estonia, while also highlighting the importance of data-based decisions when optimising in-
secticide resistance management in the field.
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Introduction
Changes in climatic conditions are making it more conducive for the spreading of pathogens, pests, and weeds (in 
terms of milder and more suitable winter weather for the over-wintering of crops), which in turn will lead to more 
intensive use of pesticides (Hakala et al. 2011, Leger 2021). The pollen beetle, Brassicogethes aeneus F. syn. Me-
ligethes aeneus F. (Coleoptera: Nitidulidae), is currently the most destructive pest across Europe in oilseed rape 
of the winter (WOSR) and spring (SOSR) varieties (Brassica napus L.) (Slater et al. 2011, Zimmer et al. 2011b). The 
pollen beetles cause significant yield losses in oilseed rape growing areas (Hansen 2004, Gagic et al. 2016). Se-
vere damage is caused by beetles feeding during early budding stages, leaving podless stalks after flowering and 
reducing yields (Williams and Free 1978, Ekbom and Borg 1996, Williams 2010). The long-term intensive use of 
insecticides has led to the development of resistance in many countries, such as Germany (Heimbach et al. 2006), 
Denmark (Hansen 2003, Hansen 2008, Kaiser et al. 2018), Czech Republic (Seidenglanz et al. 2017, Stará and  
Kocourek 2018, Spitzer et al. 2020), Poland (Wegorek and Zamoyska 2008, Węgorek et al. 2009, Philippou et al. 
2011), Finland (Tiilikainen and Hokkanen 2008), and Lithuania (Makūnas et al. 2011, Šmatas et al. 2012).  

It is often the case that chemical insecticides are sprayed several times during the growing seasons. Richardson 
(2008) calculated that the number of applications was similar both for SOSR and WOSR, ranging from zero to four 
in various countries. In many European countries, pollen beetle populations had effectively been controlled by 
synthetic pyrethroids until 1999 (Hansen 2003, Zimmer et al. 2011b). The absence of insecticides with a different 
mode of action (MoA) has increased the problem of insecticide resistance in the pollen beetle population (Heim-
bach et al. 2006). This continuous selection pressure, starting at the beginning of the 1980s when pyrethroids 
were introduced into Europe, has over the years changed the susceptibility of pollen beetle sensitivity levels to 
pyrethroids in many European countries (Williams 2010, Zimmer et al. 2011b). Pyrethroids are contact insecti-
cides which act as sodium channel modulators, causing hyperexcitation and, in some cases, nerve block. Sodium 
channels are involved in the propagation of action potentials along nerve axons (Palagacheva et al. 2020, Williams 
2010, IRAC 2021b). Many resistance cases have been described in the form of a metabolic mechanism which is 
based on over-expression of cytochrome P450 monooxygenase CYP6BQ23, or on substitutions in the amino acid 
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sequence of the target protein (Zimmer et al. 2014a). The mutation in CYP6BQ23 plays a major role in resistance 
to lambda-cyhalothrin (Nauen et al. 2012). The decline in the efficacy of pyrethroids was discovered in 2007 in 
Denmark and Sweden, due to the appearance of the target-site mutation, L1014F (known as knock-down resis-
tance, or kdr) (Nauen et al. 2012). 

The neonicotinoid class of insecticides were introduced onto the market in Europe in 2007 (Seidenglanz et al. 
2017). One of the most often-used systemic insecticides, thiacloprid, has been used in many European countries 
(Brandes et al. 2018, Williams 2010). Based on the ‘Insecticide Resistance Action Committee’ (IRAC), which pro-
duces the ‘Coleoptera Working Group’ reports, the majority of European populations were susceptible to neon-
icotinoid insecticides until 2014. After that, a continuous decrease was observed in susceptibility levels, with re-
porting in 2018 stating that there is a clear trend which shows an increasing number of pollen beetle populations 
with a lower level of sensitivity (<75% mortality) (IRAC 2021a). Kaiser et al. (2018) found reduced susceptibility 
levels against thiacloprid in German populations. The tolerance mechanism to neonicotinoids has not yet been 
well characterised (Kocourek et al. 2021).

Organophosphates are contact systemic insecticides which act as acetylcholinesterase inhibitors (AchE) (Williams 
2010). Organophosphate chlorpyrifos resistance or tolerance in pollen beetles has not been documented (Seiden-
glanz et al. 2017, Spitzer et al. 2020). 

In Estonia, ten years ago, Veromann and Toome (2011) carried out studies on pyrethroid resistance, finding that 
pollen beetle populations were highly susceptible. Some years later, Kovács et al. (2015) and Kortspärn et al. (2015) 
had already observed some levels of decrease in susceptibility to pyrethroids. Previous studies regarding resis-
tance to neonicotinoids and organophosphates have not been carried out in the Estonian pollen beetle population. 

The objective of this study was to describe and assess the development of resistance against lambda-cyhalothrin, 
chlorpyrifos, and thiacloprid insecticides in the pollen beetle population during a five-year period. The findings 
which are presented here also contain a cross-resistance study which compares the susceptibility levels of pollen 
beetles to lambda-cyhalothrin and thiacloprid.

Material and methods
A sample collection of pollen beetles

Pollen beetles were sampled from 111 different locations in Estonia, from both WOSR and SOSR fields in the growing 
season between 2015 and 2019 (Fig. 1 and Table 1). A total of eight Estonian counties were involved in the study: 
Lääne- Viru, Jõgeva, Tartu, Põlva, Võru, Valga, Viljandi, and Järva. Approximately 400–500 beetles per field were 
collected at the oilseed rape phenological growth stage, when between 10−50% of flowers on the main raceme 
were open (BBCH 61−65). Those beetles which were collected from an individual field were considered to be a 
single sample or a local population. The minimum distance between fields was 1.7 kilometres. Adult beetles were 
placed in perforated plastic bags along with some oilseed rape buds as a food source during transportation to 
the laboratory.

 

Fig. 1. Pollen beetle sampling sites in 2015–2019. Estonian counties: LÄ = Lääne-Viru; 
JÕ = Jõgeva; TA = Tartu; PÕ = Põlva; VÕ = Võru; VA = Valga; VI = Viljandi; JÄ = Järva
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A determination of sensitivity levels to insecticides in pollen beetles 
Bioassays were conducted by means of the IRAC test methods, No 011, No 021, and No 025 (IRAC 2015). The beetles 
were stored overnight at room temperature (18−20 ̊ C), following transportation and prior to exposure in order to 
allow them to recover. About 15−20 adult beetles were placed in glass vials which had been coated with different 
concentrations of lambda-cyhalothrin, thiacloprid, and chlorpyrifos (Table 2), and these were stored in the labo-
ratory for twenty-four hours, at room temperature, while also being protected from exposure to direct sunlight.

 

 

 

After the twenty-four hours were up, the beetles were transferred out of glass vials at the centre of a circle which 
had a diameter of 15cm. Any beetles which did not leave the circle after a period of one minute were considered 
to have been affected and were classified as having expired. When more than 20% of the beetles in the control 
treatment were affected, the sample was left out of the data analysis. 

Glass vials containing lambda-cyhalothrin (coated with an active ingredient) and thiacloprid (coated with a com-
mercial product called Biscaya®) were prepared by Bayer AG (Germany). Glass vials with lambda-cyhalothrin were 
stored at room temperature and thiacloprid at 4 °C, and for no longer than between 4−6 weeks after preparation. 
Chlorpyrifos vials were made up according to the IRAC method, No 025 (IRAC 2015), using the Estonian Crop Re-
search Institute laboratory with the addition of active ingredient chlorpyrifos (Sigma-Aldrich, Germany), subse-
quently being stored at a temperature of −20 °C for no more than one month. 

Table 1. Collection of pollen beetle samples from eight of the main oilseed rape growing counties, between 2015 and 2019

Year Crop County

LÄ2 JÕ TA PÕ VÕ VA VI JÄ Total1

2015 WOSR3 25 5 3 1 1 1 2 −6 15

SOSR4 4 6 1 1 − 1 1 1 15

2016 WOSR − 3 1 − 1 − 1 1 7

SOSR − 6 − − − − − − 6

2017 WOSR 2 6 − − − − − − 8

SOSR 1 8 − − − − − − 9

2018 WOSR 4 5 1 1 1 − − 1 13

SOSR − 3 1 2 3 − 1 2 12

2019 WOSR 2 3 4 − 1 1 1 3 15

SOSR 3 5 2 − − − 1 − 11

Total1 18 50 13 5 7 3 7 8 111
1 total number of fields; 2 LÄ = Lääne-Viru; JÕ =Jõgeva; TA = Tartu; PÕ = Põlva; VÕ = Võru; VA = Valga; VI = Viljandi; JÄ = Järva;3 WOSR 
=  winter oilseed rape; 4 SOSR = spring oilseed rape; 5 number of fields; 6 not collected

Table 2. Insecticide doses used in the bioassay

Percentage of recommended 
label application rate

Lambda-cyhalothrin a

(µg cm-2)
Thiacloprid a
(µg cm-2)

Chlorpyrifos a
(µg cm-2)

0 Only acetone Only acetone Only acetone

16 0.3

20 0.015 0.144

100 0.075 0.72

200 1.44
a The test concentrations of active ingredients being used are based on the IRAC recommendation for field applications 
of lambda-cyhalothrin (7.5g a.i. ha -1), thiacloprid (72g a.i. ha-1), and chlorpyrifos (187.5g a.i. ha-1)
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The use of insecticides by class and the active ingredient in Estonia

Those insecticides which had been registered in Estonia in 2015 for use in oilseed rape and their general use are 
described in Table 3. Chlorpyrifos was in use until 2019, and thiacloprid until 2020 (Republic of Estonia Agricul-
ture and Food Board 2021).

Statistical analysis
Statistical analyses were carried out, with figures being constructed using the statistical package, R 3.5.3 (R Core 
Team 2019). The information was analysed in order to find the levels for beetles, after having considered a total of 
13569 beetles in the lambda-cyhalothrin analysis, and 17401 beetles in the thiacloprid analysis. In both analyses, 
the response variable was the mortality of pollen beetles, with this being presented in the form of the number of 
affected and non-affected beetles per dose and population combination. The logistic models were fitted out so 
that they could be used to consider the fixed effects of dose, year, and host crop, and all pairwise and three-wise 
interaction effects. The mortality of pollen beetles at different combinations of the various involved factors was 
estimated in the form of marginal means (alias the least-square means), on a scale of the response variable (ie. in 
terms of probability scale), using the package, emmeans (Lenth et al. 2021). In pairwise comparisons of different 
years, and with SOSR and WOSR in the same year and at the same dosage rate combination, the Tukey adjustment 
was applied for multiple testing. In order to be able to study the relationships between susceptibility to different 
insecticides in the same populations, use was made of average mortalities per insecticide, doses, and population. 
With this population-level detail in place, a linear correlation analysis was carried out in order to study the rela-
tionships between mortalities in pollen beetles at different levels of dosage of lambda-cyhalothrin and thiaclo-
prid in the same populations. Those average mortalities were also used to determine population resistance levels 
against lambda-cyhalothrin, according to the IRAC method, No 011 (Table 4, IRAC 2015). In the case of thiaclo-
prid, method No 021 was used (IRAC 2015), and this was classified according to Kaiser et al. (2018). Thiacloprid 
susceptibility was defined based on mortality at a dosage rate of 200%, being classified as highly susceptible with 
a mortality rate of >95%, susceptible with mortality between 94% and 75%, and reduced susceptibility with mor-
tality levels between 74% and 50%, and reduced susceptibility with a mortality rate at <50%. The concordance 
between resistance levels against lambda-cyhalothrin and thiacloprid was tested with the Fisher exact test. All of 
the results were considered to be statistically significant at p≤0.05. 

1 According to IRAC; 2 Plant protection products which have been authorised in Estonia according to the Republic of Estonia Agriculture and 
Food Board; 3 The use of pesticides in agricultural holdings by active substance and crop, according to Statistics Estonia: https://www.stat.ee/; 
4 AI = active ingredient; 5 Active ingredients, thiacloprid and deltamethrin; 6 Deleted from the register by the end of the 2019 growing period

Table 3. Insecticides which have been authorised in Estonia for use against pollen beetles in oilseed rape and turnip rape, and the 
utilisation of such insecticides in 2015

Commercial 
product 2 Field treatment2

MoA1 Chemical subgroup1 AI4 Name AI, g l-1 l ha-1 AI, g ha-1 Total use AI, kg3

3A Pyrethroids 
Pyrethrins

lambda-
cyhalothrin Kaiso 50 EG 50 0.15 7.5 9.10

Karate Zeon 50 0.10–0.15 5–7.5

   Karis 10 CS6 100 0.05–0.75 5–75  

1B Organophosphates chlorpyrifos Hel 250 CS6 250 0.5–0.75 125–187.5 16.01

Pyrimex 250 CS6 250 0.5–0.75 125–187.5

   Pyrimex 
Supreme6 262 0.75–1.25 196.5–327.5  

4A Neonicotinoids thiacloprid Proteus OD5 100 0.6–0.75 60–75 2177.50

   Biscaya 240 0.3 72  
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Results
The susceptibility of pollen beetles to lambda-cyhalothrin

There were significant effects in terms of dose and year, and in host crop by year, host crop by dose, dose by year, 
and host crop by year by dose interactions, in terms of mortality levels of lambda-cyhalothrin (all p<0.001). How-
ever, there was no significant difference in general between SOSR and WOSR (p=0.077). This indicates that, in ad-
dition to the effect of dose rate, there were also differences between years which depended both upon dose rate 
and host crop, but on average mortality rates were no different for pollen beetles which had been collected from 
SOSR and WOSR fields. However, in terms of susceptibility to lambda-cyhalothrin, a clear decrease was discov-
ered in terms of mortality over time. In 2015, in terms of the mortality levels of pollen beetles in relation to lamb-
da-cyhalothrin at the recommended dose of 100% (7.5g a.i ha-1), the rate was approximately 90% both in SOSR 
and WOSR populations. By 2017 that mortality rate had significantly decreased, down to between 65−69% (for 
both of the host crops, p<0.001), remaining within the same range or slightly lower in subsequent years (Table 5). 

 

The susceptibility of pollen beetles to thiacloprid
Similarly to the case with lambda-cyhalothrin, there were significant effects in terms of dosage and year, and in 
terms of host crop by year, host crop by dose, dose by year, and host crop by year by dose interactions in terms of 
mortality in the use of thiacloprid (all p<0.001). There was no significant difference in general between SOSR and 
WOSR (p=0.523). In the use of thiacloprid, changes in the mortality rates for pollen beetles were partially similar: 
the mortality rate decreased in time, in pollen beetles from both SOSR and WOSR fields. The decrease in mortality 
was faster in pollen beetles from WOSR fields in comparison to the situation in SOSR fields. The mortality rates 
with a thiacloprid dose of 200% (72g a.i. ha-1) were significantly lower in pollen beetles from SOSR fields in 2015 
when compared to the results for those from WOSR fields (90.2% and 97.8% respectively, p<0.001). A significant 
decrease (in both of the host crops p<0.001) in mortality rates for pollen beetles was observed between 2016 
and 2018. In 2018 the mortality rates for pollen beetles from SOSR fields decreased, and was significantly higher 
when compared to that of pollen beetles from WOSR fields (67.8% and 56.7% respectively, p<0.001). However, 
mortality rates increased significantly in pollen beetles from both host crops (going up by 9.6% in SOSR fields and 
by 21.6% in WOSR fields, both p<0.001), and reaching a comparable level of between 77−78% in 2019 (Table 6). 

1 SOSR: spring oilseed rape; 2 WOSR: winter oilseed rape; 3 Number of populations tested. Those means without a common small superscript 
letter in the same row per year and dose rate combination, and means with different capital superscript letter are statistically significantly 
different (pairwise comparisons followed by Tukey adjustment for multiple testing). The absence of capital superscript letters indicates an 
absence of any significant difference between SOSR and WOSR in the same year and at the same dosage rate combinations.

Table 5. Marginal means of pollen beetle mortality (%; ±standard error) at different lambda-cyhalothrin doses

Dose rate Host crop Year

2015 
(n=30)3

2016 
(n=13)

2017 
(n=17)

2018 
(n=25)

2019 
(n=26)

0% SOSR1 0.3±0.3 a 8.5±1.4 b 2.7±0.8 a 1.9±0.6 a 1.0±0.5 a

WOSR2 0.2±0.2 a 0.0±0.0 ab 5.4±1.2 b 1.7±0.6 a 1.3±0.5 a

20% SOSR 73.7±2.2 a, A 65.2±2.5 a 33.9±2.4 b 48.8±2.0 c 30.1±1.9 b, A

WOSR 81.3±1.6 a, B 65.2±2.9 b 32.5±2.4 c 45.2±2.2 d 40.9±2.0 cd, B

100% SOSR 90.1±1.4 a 96.7±0.9 b, A 69.1±2.3 c 63.4±1.9 c 65.6±2.2 c

WOSR 89.9±1.2 a 78.3±2.5 b, B 65.2±2.5 c 58.1±2.1 c 61.2±2.0 c

Table 4. IRAC classification for pyrethroids according to IRAC No 011 (IRAC 2015)

Concentration 
(% of label rate) Affected (%) Classification

100%
20%

100%
100%

Highly susceptible

100%
20%

100%
<100%

Susceptible

100% <100% to ≥ 90% Moderately resistant

100% <90% to ≥ 50% Resistant

100% < 50% Highly resistant
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The susceptibility of pollen beetles to chlorpyrifos
The pollen beetle’s mortality rates with a test of chlorpyrifos of 16% of the recommended field dose rate (187.5 
g a.i. ha-1) came out constantly at 100% in all fields, years, and host crops, and no further statistical analyses were 
carried out in terms of this particular area of information.

Monitoring resistance levels to lambda-cyhalothrin in pollen beetle populations 
The analysis of resistance levels in pollen beetle populations revealed similar differences and changes as for the 
analysis of mortalities. While in 2015 pollen beetle samples were susceptible or moderately resistant against 
lambda-cyhalothrin in more than 60% of fields, only resistant or highly resistant samples were found in 2017. The 
increase in the proportion of resistant populations was faster in WOSR fields in comparison to SOSR fields (Fig. 2).

 

 

Monitoring resistance levels to thiacloprid in pollen beetle populations 
In addition, resistance levels in pollen beetles against thiacloprid were low in 2015, with mortality rates at a dos-
age of 200% being ≥75% in all of the tested fields. The samples were highly susceptible, at 86.6% in WOSR fields 
and at 40.0% in SOSR fields. Even just two years later there were no highly susceptible samples to be found. SOSR 
fields samples in 2018 were classified as having a reduced susceptibility (mortality rate 50−74%) of 91.7%, and 
in WOSR fields the samples were found to be of reduced susceptibility of 92.3%, respectively (38.5% of samples 
from WOSR fields found a mortality rate which was below 50%). The pollen beetles population’s susceptibility 
rates increased again in both types of host crop in the last study year. Among the tested pollen beetles 45.5% of 
the samples from SOSR fields and 46.7% of the samples from WOSR fields were susceptible to thiacloprid (Fig. 3).

1 SOSR: spring oilseed rape; 2 WOSR: winter oilseed rape; 3 number of populations tested. Those means without a common small superscript 
letter in the same row and means with a different capital superscript letter for each year and dose rate combination are statistically significantly 
different (pairwise comparisons followed by Tukey adjustment for multiple testing). The absence of any capital superscript letters indicates an 
absence of significant difference between SOSR and WOSR in the same year and with the same dose rate combination.

Table 6. Marginal means of pollen beetle mortality (%; ±standard error) at different thiacloprid doses

Dose rate Host crop Year

2015 
(n=30)3

2016 
(n=13)

2017 
(n=17)

2018 
(n=25)

2019 
(n=26)

0% SOSR1 0.3±0.3 a 8.5±1.4 b 2.7±0.8 a 1.9±0.6 a 1.0±0.5 a

WOSR2 0.2±0.2 a 0.0±0.0 ab 5.4±1.2 b 1.7±0.6 a 1.3±0.5 a

20% SOSR 64.9±2.4 a, A 53.5±2.6 b 29.0±2.6 c 42.9±2.2 d 29.4±2.1 c, A

WOSR 80.9±1.6 a, B 51.0±3.1 b 26.7±2.4 c 40.8±2.1 bd 37.9±2.2 d, B

100% SOSR 85.4±1.8 a, A 75.3±2.2 b 54.5±2.9 c 64.2±2.0 d, A 58.7±2.2 cd, A

WOSR 95.7±0.8 a, B 74.3±2.5 b 50.1±2.6 c 55.0±2.2 c, B 65.3±2.0 d, B

200% SOSR 90.2±1.5 a, A 96.9±0.8 b, A 81.5±2.3 c, A 67.8±1.9 d, A 77.2±1.9 c

WOSR 97.8±0.6 a, B 81.7±2.5 b, B 65.4±2.5 c, B 56.7±2.1 c, B 78.3±1.8 b

Fig. 2. The distribution of pollen beetle populations according to resistance levels against lambda-
cyhalothrin by years and host crops, classified according to IRAC No 011 (IRAC 2015) and Table 2. 
(SOSR: spring oilseed rape; WOSR: winter oilseed rape)
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The correlation between lambda-cyhalothrin resistance and thiacloprid resistance
A correlation analysis revealed strong positive relationships between mortalities in pollen beetles at lambda- 
cyhalothrin dosage rates of 20% and 100%, both from SOSR and WOSR fields (r=0.70 and r=0.74, both p<0.001, 
respectively). The results were also similar in the case of thiacloprid: there existed intermediate positive relation-
ships between mortalities in pollen beetles at dosage rates of 20%, 100%, and 200% in SOSR fields (r=0.62, r=0.55, 
and r=0.57, all p<0.001, for dosage pairs of 20% to 100%, 20% to 200%, and 100% to 200% respectively), and there 
are strong positive relationships in WOSR fields (r=0.80, r=0.68, and r=0.81, all p<0.001, for dosage pairs of 20% 
to 100%, 20% to 200%, and 100% to 200% respectively). 

Also discovered was a relatively strong correlation in terms of resistance against lambda-cyhalothrin and also  
resistance against thiacloprid. In the fields and across those years which had lower mortality rates for a 100%  
dosage rate of lambda-cyhalothrin, lower mortality rates were also measured, at a 200% dosage rate of thiacloprid 
(Fig. 4a), and this relationship did not differ remarkably between SOSR and WOSR (the correlation coefficients were 
at 0.74 and 0.66, both p<0.001, respectively). A similar relationship was revealed in the analysis of resistance levels 
of populations. Populations which were highly resistant against lambda-cyhalothrin were also not susceptible to 
thiacloprid, and vice versa, while at the same time entire populations which were indeed susceptible to thiacloprid 
were also susceptible to lambda-cyhalothrin (Fig. 4b).

 
Fig. 3. The distribution of pollen beetle populations against thiacloprid according to resistance 
levels by years and host crops, classified according to IRAC No 021 (IRAC 2015), and Kaiser et 
al. (2018). Mortality rates at a dose level of 1.44 µg cm-2 (SOSR: spring oilseed rape; WOSR: 
winter oilseed rape)

 

 

Fig. 4a. The relationship between mortalities at a 100% dosage rate of lambda-cyhalothrin 
and a 200% dosagerate of thiacloprid; presented numerically is a linear correlation coefficient 
with p-value. Fig. 4b. The concordance between resistance levels in populations against 
lambda-cyhalothrin and thiacloprid; level 4 denotes highly resistant populations and level 1 
denotes susceptible, according to IRAC No 011, while level 4 shows reduced susceptibility 
populations and level 1 shows highly susceptible populations according to IRAC No 021 (IRAC 
2015) and Kaiser et al. (2018).  

(a) (b)
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Discussion

The increasing cultivation of oilseed rape and prevailing milder climatic conditions have created favourable condi-
tions for the spread of pollen beetles which, in turn, leads to the increased use of insecticides in Estonia (Skellern 
et al. 2017, Leger 2021, Statistics Estonia 2021b). 

A retrospective study has been carried out for this paper, covering the years 2015−2019 in order to evaluate changes 
in insecticide sensitivity in Estonian pollen beetle populations, with collections from those populations having been 
made from commercial oilseed rape fields. The information which has been provided in this paper has revealed 
that, after continuous treatment with lambda-cyhalothrin, beetle sensitivity levels to this ingredient have gradually 
decreased. This is in accordance with details which were presented by Slater et al. (2011), who demonstrated 
that, in Estonia in the years 2008−2009 pollen beetle populations which had been collected were shown to be 
mainly susceptible or highly susceptible to lambda-cyhalothrin, but even then there were a few moderately 
resistant beetles present in the populations. The development of lambda-cyhalothrin resistance has evolved 
somewhat later in Estonia when compared to other parts of Europe, and this is probably partially due to the 
less intensive cultivation of oilseed rape and the later authorisation and less intensive use of the insecticides in  
question (Statistics Estonia 2021a,b). Although the results of this study have revealed fluctuations in mortality 
rates for pollen beetles which have been treated with lambda-cyhalothrin, a decrease in mortality has been  
observed across the years 2015−2016 (except SOSR susceptibility increased in the year 2016). Between 2017−2019, 
those mortality rates stabilised and remained almost at the same level (Suppl. Fig. S1). Similar fluctuation has been 
detected in Sweden also, where resistance to pyrethroids began in 2001 and peaked in the year 2010, caused 
by increased usage of different MoA of insecticides and reduced usage of other pyrethroids (cypermethrin, del-
tamethrin) (Riggi et al. 2016). It indicates that the adaptation of pollen beetles to lambda-cyhalothrin is a time- 
consuming and complicated process.

A comprehensive study by Hansen (2003) showed that pollen beetle populations in Danish WOSR fields were more 
resistant than were pollen beetle populations in SOSR fields. No significant correlation was found in resistance 
between SOSR and WOSR fields in our results across the five year period being studied. This decreasing suscep-
tibility loss in the years 2015−2016 within Estonian pollen beetle WOSR populations may be related to the fact 
that in countries in which both WOSR and SOSR are cultivated, pollen beetles first attack the winter variety for 
the purposes of reproduction and later migrate to spring-type host crop fields in order to oviposition (Hokkanen 
1993, Ekbom and Borg 1996, Hansen 2003). Pollen beetles often with the same generations are exposed to insec-
ticides in both WOSR and SOSR fields, thereby increasing the selection pressure for resistance (Richardson 2008, 
Stratonovitch et al. 2014, Riggi et al. 2016).

Thiacloprid, an insecticide which belongs to the neonicotinoids group, was authorised in Europe in 2007, and has been 
a very effective insecticide with which to control pollen beetles until 2020, and were an important part of insect re-
sistance management strategies (Republic of Estonia Agriculture and Food Board 2021). Zimmer et al. (2011a, 2014b) 
found that thiacloprid is effective, and no reduction in susceptibility has been recorded. Šmatas et al. (2012) demon-
strated that in field conditions those insecticides which have different MoAs (pyrethroids, neonicotinoids, and or-
ganophosphates) revealed the same levels of efficacy against pollen beetles which were collected across the growing 
seasons for 2009−2010 in Lithuania. It should be noted that amongst those insecticides which were tested, 
the least effective was thiacloprid (Šmatas et al. 2012). According to the IRAC ‘Coleoptera Working Group’ and  
Kaiser et al. (2018), pollen beetle populations with lowered susceptibility to thiacloprid started to appear in  
Europe from 2018 (such as in Germany, Poland, and Sweden) (IRAC 2021a). Additionally, several subpopulations with  
reduced susceptibility to thiacloprid were identified in the Czech Republic two years later (Spitzer et al. 2020). And 
according to Hovorka et al. (2021) only 43.2 % of analysed Czechia populations were found to be highly susceptible 
to thiacloprid in the years 2017−2020. These findings are in accordance with our study which shows insensitivity 
loss for thiacloprid in Estonia. The sensitivity towards thiacloprid has gradually decreased between 2015 and 
2018. All existing populations were either susceptible or highly susceptible in 2015, and 92% of the total number 
of populations had reduced susceptibility in 2018 (Fig. 3). Similar to our own findings, a decrease in susceptibility 
levels to thiacloprid has also been reported in Poland (Seidenglanz et al. 2017). Over a relatively long period now, 
the Estonian pollen beetle population has been exposed to insecticides, but a systematic resistance testing of the 
pollen beetle population had not been carried out prior to 2015. 

As a result of the intensive use of thiacloprid, insecticide resistance has gradually evolved in Estonia’s pest popu-
lation. Thiacloprid, the active ingredient in Biscaya®, has been registered in Estonia for pollen beetle control in  
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oilseed rape since 2014, while another insecticide named Proteus OD which contains two classes of MoA (thiacloprid 
and deltamethrin) has been in use since 2006. This situation regarding oilseed rape fields explains a stepwise  
decrease in sensitivity levels to thiacloprid in Estonia (Suppl. Fig. S2). A proteogenomic study which was car-
ried out by Kocourek et al. (2021) showed that the continuous presence of pyrethroid and/or neonicotinoid  
insecticide in the environment can be involved in pathogenesis-related protein 5 resemblances (PR5; up-regulated 
by insecticides) and RNA (DEAD-box) helicases (down-regulated by insecticides) in pollen beetles. Which may be 
employed to survive as a response to the presence of insecticides and has led to those changes which have been 
observed in the genome of the resistant populations.

There turned out to be quite a strong correlation in our study between resistance against lambda-cyhalothrin 
and thiacloprid. However, contrasting reports have emerged of cross-resistance between lambda-cyhalothrin and  
thiacloprid insecticides. Seidenglanz et al. (2017) referred to their observation that cross-resistance may exist,  
although Zimmer et al. (2011a) and Spitzer et al. (2020) could see no cross-resistance between lambda-cyhalothrin 
and thiacloprid. However, according to Hovorka et al. (2021) there is resistance between those active ingredients. 
These contrasting results could be caused by different environmental conditions during insecticide application, and 
different regional selective pressures in terms of insecticide application. Since we have not conducted any molec-
ular or log dose probity mortality studies with our own data, we have to assume that there may be a high prob-
ability of pollen beetles being able to adapt to inappropriate conditions, especially since the action mechanisms 
are different for different insecticides. According to the available literature, it is possible that a metabolic  
mechanism which is based on enhanced oxidative detoxification due to the over-expression of different  
monooxygenases can confer cross-resistance to pyrethroids and neonicotinoids (Nauen and Denholm 2005). 

We found a spatiotemporal pattern of evolution in regards to lambda-cyhalothrin and thiacloprid, spreading in 
time from northern Estonia to southern Estonia (Suppl. Figs. S3, S4). In the southern region, the cultivation of 
oilseed rape is less intensive, and accordingly insecticides are therefore less intensively used (Statistics Estonia 
2021b). With the increased use of such insecticides, the further equalisation of resistance possibly occurs both 
against lambda-cyhalothrin and thiacloprid. Even though it is difficult to predict the emergence and the selection 
of insecticide resistance, it will occur and will compromise pest control activities. 

The susceptibility of pollen beetles to chlorpyrifos was stable. Mortality rates for tested pollen beetles were at 100% 
throughout the test period. The results from other studies also suggest that chlorpyrifos was highly effective in the 
control of pollen beetles, and resistance to chlorpyrifos was not detected (Wegorek and Zamoyska 2008, Węgorek 
et al. 2009, Spitzer et al. 2020, Hovorka et al. 2021). Chlorpyrifos has been banned in Estonia since the year 2019.

Knowledge about the susceptibility of pollen beetles to insecticides would help farmers to adapt their spray pro-
grammes before insecticide resistance reaches a fixation level in the population, and insecticide field performance 
declines as a result. Better insecticide resistance management strategies with the use of insecticides which have 
different MoAs during the oilseed rape growing season may have resulted in the better control of insects, while 
integrated pest management with the promotion of beneficial insects into oilseed rape fields are both also neces-
sary. Crop rotation and, whenever possible, growing WOSR are recommended in order to minimise the need for 
spraying in the cropping season. Furthermore, it is essential to continue with resistance monitoring in the pollen 
beetle population, ensuring the assessment of sensitivity/resistance dynamics as pollen beetles are major pests 
which can cause substantial yield losses, especially in SOSR fields.

Conclusions

The resistance of pollen beetles to lambda-cyhalothrin has spread and increased rapidly across Estonia during 
the survey period of 2015−2019. A clear decrease of susceptibility in time has been discovered in 2015−2016, 
and this has remained within the same range across subsequent years (2017−2019). Amongst lambda-cyhalothrin 
treated samples, a total of 3% were classified as susceptible in the years 2015−2019, while 18% were moderately 
resistant, 70% were resistant, and 7% were highly resistant. There was no significant difference in susceptibility 
levels in beetle populations from SOSR and WOSR fields. A shift towards reduced susceptibility to thiacloprid was  
detected in the years 2015−2018, with 21% of samples being highly susceptible to the insecticide in those years 
being studied, 39% being susceptible, and 41% having reduced susceptibility. In contrast, the population remained 
highly susceptible to chlorpyrifos, with a pollen beetle mortality rate of 100% throughout the period. Since 2021 
only eleven commercial insecticide products (pyrethroids and indoxacarb) have been available in Estonia. The ex-
pected restrictions on the number of insecticides available in the EU presents a challenge to future oilseed rape 
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production both in Europe in general and Estonia in particular. Resistant management strategies should be advo-
cated in order to prolong the field efficacy of all MoAs which are being used against pollen beetles. The increas-
ing and/or continuous adaptation of pollen beetles to those pesticides which are currently being used, highlights 
the need to include different IPM-related means of managing this pest.
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