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émanant des établissements d’enseignement et de
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Inclusive Measurement of the Charmless
Semileptonic Branching Ratio of B-hadrons

The ALEPH Collaboration 1

Abstract

From the study of the kinematic properties of the �nal state produced in the semilep-
tonic B decays B! `�`X, the inclusive charmless semileptonic branching ratio of
B-hadrons has been measured. Using the data collected between 1992 and 1995,
one gets: BR(B! `�`Xu) = (1:6 � 0:4stat � 0:4syst) � 10�3, where Xu represents any
charmless hadronic state.

1 The Method

Charmless semileptonic B meson decays have already been studied in both the exclu-
sive and inclusive channels at the �(4S) (see for instance [1]). The case of exclusive
searches is somewhat easier from an experimental point of view because there are

more constraints on the �nal state and because a signal peak can be searched for

directly in a mass distribution. The drawback is the large theoretical uncertainties

which exist on the knowledge of the hadronic matrix element of the process under

consideration. These uncertainties lead to model dependent measurements of the
CKM matrix element jVubj. Inclusive measurements have been made by looking for

an excess of events at the end point of the lepton momentum distribution where the

1Paper contributed to Warsaw Conference, July 1996
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contribution from b! `�`c vanishes (2:3 < p < 2:6 GeV=c). Starting from this small

region of the lepton phase space, an extrapolation to the low momentum region is

needed in order to extract the value of jVub=Vcbj, leading to model dependant mea-

surements.

A possible solution to reduce this model dependence is to use an inclusive mea-

surement with no kinematics cut on the �nal state `�`Xu to ensure a high selection

e�ciency for b! u transitions. Starting from all these considerations, an inclusive

method based on the di�erent kinematics properties of the `�`Xu and `�`Xc �nal

states has been developed.

2 Reconstruction of the boost of the B-hadrons

To reduce the sensitivity of the measurement to the b-quark fragmentation, the anal-

ysis is performed in the B-hadron rest frame. This requires to select with a good

e�ciency all the tracks produced in the �nal state `�`X, and to reject, also with a

high e�ciency, the tracks coming from fragmentation.

� The lepton (e + �) identi�cation (with p > 3 GeV/c) and the estimation of the
background (from misidenti�ed hadrons, decays, conversions, ...) used in this analysis
follow the standard method used in ALEPH for b-physics [2].
� The 3-momentum of the neutrino is determined by using the method given in
Ref. [4]. A typical resolution on the neutrino direction of 280 mrad and of 2 GeV on
the energy can be obtained.

� The selection of the tracks coming from the hadronic part X is based mainly on the
di�erent kinematics properties of tracks from fragmentation and from the B (like the
momentum of the track, its rapidity with respect to the lepton axis, etc). It has been
done separately for charged tracks and photons by using two neural networks. The
two outputs NN and NNc for photons and charged tracks are shown in Fig. 1. The

better rejection of tracks from fragmentation in the case of charged tracks is due to

the additional information given by the impact parameter.
Then, the tracks coming from the hadronic system X are selected by cutting on the
NNc and NN output with typical e�ciencies of 80% and purities of 70% and 60% for

b! c and b! u transitions respectively. By using the 3-momenta of the lepton, of

the neutrino and of the selected tracks, the boost of a B-hadron decaying into `�`X

can be computed. The resolutions �� and �pB obtained on the direction and on
the energy of the B-hadron are : < �� > = 70 mrad, < �pB > = �0:1 GeV/c and
�(�pB) = +4:5 GeV/c.

3 Data analysis

Data events have been selected as follow :

� q�q events from 1992 to 1995 are selected; this leads to 3:6�106 hadronic Z decays.
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� The cut j cos �thrustj < 0:7 is applied on the polar angle of the thrust axis to select

only events well contained in the detector (this is important to properly calculate the

shape variables).

� Events with at least one lepton candidate with p > 3 GeV/c are selected. A

pure sample of b-hemispheres is obtained by using a b-lifetime tag in the hemisphere

opposite to the lepton [5]. 47675 hemispheres with a lepton (19806 with an electron

and 27869 with a muon) satisfy this selection with a b-purity better than 98%.

The simulation of signal b! u`�` transitions has been done by using the hybrid

model of [6] : at low hadronic recoil (below 1.6 GeV), only resonant �nal states

are produced, while for large recoil energy, non-resonant �nal states are expected

to dominate. In this last case, the inclusive ACCMM model is used to predict the

invariant mass distribution of the hadronic system X, the q2 distribution of the W

and the lepton momentum spectrum [7].

The separation between the B! `�`Xu signal decays and the background from

b! c transitions has been achieved with the help of a multivariate analysis using

a neural network. Since the c quark is heavy compared to the u quark, the Xc

(Xc = D; D�; D�; D��; D��), and Xu (Xu = �; �; !; �; f1; n�; :::) hadronic �nal

states have di�erent shape properties which will be the basis of the de�nition of the
variables used as input of the neural network called in the following NNbu. In order
to get the best possible separation between the b! u and b! c semileptonic tran-
sitions, the information from the lepton, the neutrino and from the hadronic system
are used. The main physics quantities used to build the input variables are : spheric-

ities, track multiplicity, the energy, invariant masses, the momenta and transverse
momenta of tracks, etc. All these quantities are de�ned from the tracks selected with
NNc and NN and computed in the reconstructed B-hadron rest frame. One ends up
with 20 variables used as input of a 20-15-10-1 multi-layered neural network. The
neural network output obtained on simulated events is shown in Fig. 2.

4 Results, systematics and checks

The comparison between the data and Monte Carlo is shown Fig. 3 and Fig. 4. In

the b! c region (i.e. NNbu < 0:5), the agreement obtained between data and Monte

Carlo is very good. In the signal region (i.e. NNbu > 0:5), there is an excess of
(267 � 90) events. This excess of events (the points in Fig. 4) is compatible both
in rate and in shape with a b! u probability of the order of 1% (triangles) but is

inconsistent with 3% (squares). A �t is made to the region NNbu > 0:5 (this cut leads

to the smallest total error and has an e�ciency of 60% for b! u`�`). The result is
BR(B! `�`Xu) = (1:6� 0:4stat)� 10�3, where the statistical error has a �0:3� 10�3

contribution from the data and �0:2� 10�3 from the limited Monte Carlo statistics.

The sources of the systematic errors and their e�ects on BR(B! `�`Xu) are listed

in Table 1, leading to the �nal result :
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Source �BR(B! `�`Xu)� 103

�
p
lepton

?
��t

stat �0:25

b! ` model �0:04
B! D model �0:02

c! ` model �0:08

D topological BR's �0:21
b!  �0:02

b! � �0:00
b!W �0:01

b! u model �0:20

Electron id + background �0:02
Muon id + background �0:16

b and c lifetime e�. �0:04

Total syst. error �0:43

Table 1: Estimated contributions to the systematic uncertainty on BR(B! `�`Xu).

The contribution called �
p
lepton

?
��t

stat is the error due to the statistical uncertainties on
BR(b! `), BR(b! c! `) and < Xb > from Ref. [3].

BR(B! `�`Xu) = (1:6� 0:4stat � 0:4syst)� 10�3

Some checks have been made of the analysis :

� Since this analysis is based on the comparison of the NNbu distribution between
data and Monte Carlo, it is important to see how data and Monte Carlo agree in the
signal region for background b! c hemispheres, in order to be able to attribute the
observed excess of events to b! u`�` transitions. This can be done by selecting

hemispheres with a lepton and a fully reconstructed D meson into K�, K�� and
K���. A very good agreement between the data and the simulation is observed in

the signal region giving con�dence that the background b! c`�` transitions are well

simulated in the region where an excess of events is observed (see Fig. 5).

� The values of BR(B! `�`Xu) obtained for di�erent cuts on NNbu are displayed

in Fig. 6. All the points are compatible with the result obtained for the cut NNbu > 0:5
within the statistical and systematic uncorrelated error bars. The range of selection
e�ciencies for B! u`�` covered by the points is from 100% to 24%.

� Even if data and Monte Carlo agree well for the 20 input variables used, pos-
sible systematic e�ects due to the choice of the method used to select the tracks and

to the choice of the input variables have been studied. The standard analysis has

been changed in the following way : a di�erent algorithm has been used to select the
tracks which enter in the de�nition of the input variables [8]; 15 new variables among
the 20 used in the standard analysis have been introduced; the new set of input vari-
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ables has been computed in the laboratory frame. This introduces a sensitivity of

our result to b-fragmentation which allows for a 2 parameter �t of BR(B! `�`Xu)

and of < Xb > as a consistency check. As for the standard analysis, the comparison

between the data and the simulation without b! u transitions shows an excess of

events in the region NNbu > 0:7. The one parameter �t (i.e. �b �xed at 0.0035)

gives : BR(B! `�`Xu) = (1:5� 0:4stat)� 10�3, and the two parameter �t leads to :

BR(B! `�`Xu) = (1:5 � 0:7stat) � 10�3; �b = (3:4 � 0:5stat) � 10�3. The results are

in very good agreement with the standard analysis.

5 Conclusion

Using an e�cient tag based on the kinematic properties of the �nal states B! `�`Xu

and B! `�`Xc, the inclusive charmless semileptonic branching ratio of B hadrons

has been measured. The analysis of 1992 to 1995 data leads to :

BR(B! `�`Xu) = (1:6� 0:4stat � 0:4syst)� 10�3

with a little model dependence for the B! `�`Xu transitions.
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Figure 1: Neural network output for charged tracks (upper plot) and photons (lower

plot). The solid histogram is for tracks coming from B decays and the dotted one
is for tracks produced in the fragmentation. The two Monte Carlo distributions are

normalized to the same area.
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Figure 2: Neural net. output of NNbu for signal b! u`�` transitions (solid lines) and
background b! c transitions (dotted lines). The two Monte Carlo distributions are

normalized to the same area.
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Figure 3: Neural net. output NNbu; comparison between data (points) and Monte
Carlo (histogram). The two contributions are normalized to the same number of

entries.
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Figure 4: Points : ratio between data and Monte Carlo with no b! u transitions;
triangles : ratio between Monte Carlo with the �tted value of b! u and Monte Carlo
with no b! u transitions; squares : ratio between Monte Carlo with an arbitrary

b! u probability of 3% and Monte Carlo with no b! u transitions.
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Figure 5: Neural network output NNbu for hemispheres with a lepton and a recon-
structed D meson (D0

! K��+ plus D0
! K����+�+ plus D+

! K��+�+). a) :

comparison between data (points) and Monte Carlo (histogram); the �rst bin is not

used to normalize data and simulation since it is dominated by combinatorial back-

ground which does not contribute in the signal region; b) : ratio data/Monte Carlo

as function of the neural network output NNbu.
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Figure 6: Stability of the measurement of BR(B! `�`Xu) with respect to changing

the cut on NNbu. The error bars are the uncorrelated statistical and systematic errors
with respect to the cut NNbu > 0:5.
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