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Abstract 

Background: Obesity associated hypertension is likely to be due to multiple mechanisms. 

Identification of the renin-angiotensin system (RAS) within adipose tissue does, however, 

suggest a potential causal role for it in obesity-associated hypertension. Obese patients are 

often hyperinsulinaemic, but mechanisms underlying insulin upregulation of the RAS in 

adipose tissue are unclear. TNFα, an inducer of angiotensinogen in hepatocytes, is elevated 

in hyperinsulinaemic, obese individuals, and may provide a link in mediating insulin 

upregulation of the RAS in adipose tissue. Further, thiazolidinediones lower blood pressure in 

vivo and downregulation of the RAS in adipose tissue may contribute to this effect. We 

therefore examined the effect of rosiglitazone (RSG), on the insulin mediated upregulation of 

the RAS. 

Methods and Results: Sera were obtained from the arterial circulation and from venous 

blood draining subcutaneous abdominal adipose tissue. Isolated human abdominal 

subcutaneous adipocytes (n=12) were treated with insulin (1-1000nM) and insulin in 

combination with RSG (10nM), and RSG (10nM) alone to determine angiotensinogen 

expression, angiotensin II, bradykinin and TNFα secretion. Subcutaneous adipocytes were 

also treated with TNFα (10-100ng/mL) to examine the direct effect on angiotensinogen 

expression and angiotensin II secretion. The findings showed that the arterio-venous 

difference in angiotensin II levels was significant (↑23%; p<0.001). Insulin increased TNFα 

secretion in a concentration-dependent manner (p<0.01) whilst RSG (10nM) significantly 

reduced the insulin mediated rise in TNFα  (p<0.001), as well as AGT and angiotensin II. 

TNFα also increased angiotensinogen and angiotensin II in isolated adipocytes.  

Conclusions: Our in vivo data suggest that human subcutaneous adipose tissue is a 

significant source of angiotensin II. This study also demonstrates a potential TNFα mediated 
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mechanism through which insulin may stimulate the RAS and may contribute to explain 

obesity associated hypertension. RSG downregulates the RAS in subcutaneous adipose tissue 

and this effect may contribute to the long-term effect of RSG on blood pressure. 

 

Key words: obesity, hypertension, angiotensin II, TNF-alpha, rosiglitazone  
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Introduction 

Hypertension is a heterogeneous condition that is positively linked with obesity, although the 

causative factors for this association remain unclear (1). Whilst the identification of the renin 

angiotensin system (RAS) has been documented within several tissues, its’ presence in human 

adipose tissue may offer a potential link between obesity and hypertension (2). Thus, RAS 

activation through the effector hormone, angiotensin II (ANG II), may alter vasoconstrictive 

and pro-thrombotic properties associated with cardiovascular disease (3-6).  

 

We have previously shown that insulin upregulates the RAS system in human adipose tissue 

but the underlying mechanism for it was not clear (7). TNFα is implicated in the 

development of insulin resistance because of the multitude of effects it exerts on insulin 

sensitive tissues. Numerous studies have demonstrated a positive correlation between TNFα 

and obesity, with regard to protein and mRNA expression in adipose tissue, as well as 

circulating levels of TNFα in obese and type 2 diabetic subjects (8, 9). Furthermore, an 

association between elevated TNFα expression in adipose tissue and characteristics of insulin 

resistance has been described in obese and diabetic animal models, as well as humans (8, 10). 

TNFα can also regulate expression of AGT in hepatocytes as the AGT promoter contains a 

cytokine inducible enhancer known as the acute phase response element (APRE) (11). TNFα 

induces transcription of AGT via the transcription factor NFκB, which is known to be 

involved in the production of numerous pro-inflammatory markers. This suggests a possible 

TNFα directed mechanism through which insulin may increase AGT and subsequent ANG II 

secretion.  
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Therefore, the aim of this study was to investigate the importance of the RAS in the 

pathogenesis of obesity associated hypertension both in vivo and in vitro. First, we established 

the importance of subcutaneous abdominal adipose tissue as a source of circulating ANG II and 

TNFα using an arterio-venous approach. As our previous studies had shown that insulin 

increases expression of the RAS, we examined the effect of insulin on the secretion of 

bradykinin to determine the net effect of insulin on the RAS pathway, thus delineating the 

potential hypertensive effect of insulin through its’ effects on adipose tissue. Furthermore, we 

investigated whether insulin was regulating AGT through a TNFα directed mechanism by 

examining the effect of insulin and RSG on the secretion of TNFα from mature adipocytes. We 

then proceeded to determine the effect of TNFα on AGT protein expression and ANG II 

secretion, to elucidate a potential pathway for insulin leading to obesity associated hypertension 

through its’ effects on adipose tissue. Lastly, because the insulin sensitiser, rosiglitazone 

(RSG), has been shown to lower blood pressure in animal models, patients with impaired 

glucose tolerance, T2DM patients and non-diabetic hypertensives (12-16), we investigated the 

effect of RSG on AGT expression and ANG II secretion in human adipocytes.  
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Materials & Methods  

Subjects 

Serum samples were obtained from consenting, Caucasian, non-diabetic, female subjects (age 

42.3±16 years (mean±SD); BMI 29.8±5.4 Kg/m2 (mean±SD) n=26). Arterio-venous 

difference studies were undertaken on 18 of the subjects  All subjects were weight-stable for 

at least 2 months prior to the study, and were considered to be in good health, after 

completing a comprehensive medical evaluation including history and physical examination, 

blood tests and electrocardiogram. All subjects were taking no regular medication and pre-

menstrual female subjects were studied during the follicular phase of their cycle. All obese 

subjects had been weighed regularly prior to the study. The study was approved by the East 

London Research Ethics Committee and all subjects gave informed, written consent before 

their participation. 

  

For the purposes of tissue culture, subcutaneous abdominal adipose tissue was obtained from 

a separate cohort of female subjects (age: 49.1±9.7 years; BMI: 24.96±0.70 Kg/m2 n=12). All 

human adipose tissue was obtained through elective surgery in accordance with guidelines of 

the South Birmingham ethics committee.  

 

In vivo Assessment of the Release of ANG II and TNFα from Subcutaneous Abdominal 

Adipose Tissue into the Circulation 

ANG II and TNFα levels were assayed in sera obtained from the arterial circulation and 

directly from venous drainage of the subcutaneous abdominal adipose tissue depot, in 

accordance with a previously described method (17, 18). These measurements were made on 

18 subjects who had been requested to consume a diet containing 70 mmoles per day for at least 
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7 days prior to study. Twenty-four hour urinary collections were done to check compliance with 

the sodium restriction. Subjects were admitted to the Clinical Research Centre in the evening 

before the study. At 1800 h subjects ingested a meal containing 12 kcal/kg body weight for lean 

subjects and 12 kcal/kg adjusted body weight for obese subjects (adjusted body weight = ideal 

body weight + [(actual body weight - ideal body weight)x(0.25)]).  At 2000 h, subjects ingested 

a defined snack containing 250 kcal, 40 g carbohydrate, 6.1 g fat, and 8.8 g protein.  After 

consuming this snack, all subjects fasted until completion of the study the following day. 

On the morning of the study, 20-gauge catheters were inserted into a forearm vein for isotope 

infusion and into a radial artery for arterial blood sampling. An abdominal vein draining 

subcutaneous abdominal adipose tissue was cannulated with a 10-20cm, 22-gauge 

polyurethane catheter (Hydrocath, Viggo-Spectramed, Oxnard, CA (17-19). Blood withdrawn 

from such catheters represents drainage from adipose tissue and overlying skin. All vascular 

catheters were kept patent by continuous saline infusion. Subjects remained supine throughout 

the study and room temperature was kept constant at 23 oC during the entire study.  Blood 

samples were taken into pre-chilled syringes. Samples were kept on ice and serum was 

separated rapidly by centrifugation at 4oC and were thereafter stored at -80oC until assay. 

Commercially available ELISA based colorimetric kits were used to examine levels of ANG 

II and TNFα in the thawed serum samples (Phoenix Pharmaceuticals, USA and R&D Systems 

UK, respectively). 

  

Abdominal subcutaneous adipose tissue blood flow was evaluated using the 133Xe washout 

technique (18, 19).  40-50 mCi of 133Xe dissolved in 0.1 ml of saline was slowly injected over 

60 seconds into the subcutaneous abdominal adipose tissue space.  The decline in 133Xe was 
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monitored continuously from 60 to 120 min after injection with a sodium iodide scintillation 

detector set to measure the 81 keV 133Xe photopeak. 

 

Tissue Culture 

In brief, 10-20g wet weight fresh abdominal subcutaneous adipose tissue was collected. 

Tissue was initially washed with 1X Hank’s balanced salt solution (HBSS) containing 

penicillin (100U/mL) and streptomycin (100μg/mL). Visible blood vessels and connective 

tissue were removed and the tissue finely chopped. All adipose tissue was digested with the 

same batch of collagenase class 1 (2mg/mL, Worthington Biochemical Corporation) in 1X 

HBSS (Gibco, UK) for 1 h at 37oC in a water bath and shaken at 100 cycles/min at 37oC (20). 

The disrupted tissue was filtered through a double-layered cotton mesh and pre-adipocyte 

cells and adipocytes separated by centrifugation at 360g for 5 min.  

 

Mature Adipocyte Isolation 

Following centrifugation, the upper layer of mature adipocytes was removed from the 

collagenase-dispersed preparation, washed in phenol red-free medium DMEM:F12 twice and 

centrifuged at 360g for 2 min. Adipocytes were then cultured in flasks (25cm2) in phenol-red 

free Dulbecco’s modified Eagle’s (DMEM:F12) medium containing 15mmol/L glucose, 

penicillin (100units/mL) and streptomycin (100μg/mL)). Aliquots of 1mL containing 

approximately 500,000 mature adipocytes were maintained in medium (5mL) per 25cm2 flask 

for 48 h and treated once with insulin alone (1-1000nM; Sigma UK) insulin in combination 

with RSG, (Ins: 1nM-1000nM & RSG 10nM), RSG alone (10nM) and TNFα (10ng-100ng) 

for 48 h. Adipocytes maintained in untreated medium for 48 h were used as controls. 

Following incubation of adipocytes (37oC/5%CO2) with their respective treatments, the 
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conditioned media and adipocytes were separated by centrifugation (360g for 2 min). The 

media were then removed, aliquoted and stored at -70oC. 

  

Protein Assay 

Following removal of the conditioned media, 4% SDS was added to the adipocytes. The 

suspension was then heated for 2 h at 95oC, until the adipocyte cells had dissolved. The 

resultant extracted proteins were stored at -70oC as previously described (21). Protein was 

extracted and quantified via the Bio-Rad DC (Detergent Compatible) protein assay kit (22). 

Adipocyte protein samples were assessed to determine that there was no significant statistical 

variation between control and treatment regimens, indicating secretion of ANG II was not 

due to adipocyte protein variation between samples.    

 

Western Blotting 

Western blot analysis was performed using a method previously described (23). In brief, 

equal amounts (20μg) of protein were loaded onto a 10% gel. Following gel electrophoresis 

and electroblotting, filters were incubated overnight at 4oC with continual motion, with a 

primary antibody of 1:250 for AGT. Detection of AGT (61Kda) and TNFα (16kDa) was 

achieved using horseradish peroxidase-conjugated secondary antibodies; (CalBiochem) 

diluted 1:40,000 in PBS-T (0.05%T). A chemiluminescent detection system ECL/ECL+ 

(Amersham, Little Chalfont, UK) enabled visualisation after exposure to X-ray film for 5-20 

min. Autoradiographs were quantified by densitometry using a Gelbase/Gelblot programme 

(UVP Ltd, UK).  
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ANG II, Bradykinin and TNFα Assays 

Secreted ANG II, bradykinin and TNFα levels from abdominal subcutaneous adipocytes 

were determined. For this, stored conditioned medium samples were thawed and 

commercially available ELISA based colorimetric kits were used to determine the quantities 

of ANG II, bradykinin and TNFα secreted from adipocytes (Phoenix Pharmaceuticals, USA; 

Bachem, UK and R&D Systems UK, respectively).  

 

Statistical analysis 

For assessment of protein expression and secretion, statistical analysis was undertaken using 

ANOVA for comparison of control versus treatments. The threshold for significance was 

p<0.05. Data in the text and figures are presented as mean ± SD or mean ± SEM. SPSS 

version 12 was used to examine correlations. 

 

For comparison of arterial and venous drainage for each subject, data were analysed using a 

paired t-test. Correlations were determined using a Pearson correlation. All statistics were 

performed on SPSS, version 12. 
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Results 

Subcutaneous Abdominal Adipose Tissue Production of ANG II 

In these subjects (age: 43±15.3 years (mean±SD); BMI: 30.70±4.83 Kg/m2 (mean±SD); 

insulin: 8.1± 3.5 uU/mL (mean±SD); glucose: 5.3 ± 0.9mmol/L; blood pressure – systolic: 

129.3±19.5mmHg; diastolic: 83.2±9.5mmHg, n=18) abdominal venous ANG II levels were 

significantly higher than levels in the arterial circulation. ANG II levels were 23% greater in 

the subcutaneous abdominal venous drainage than the artery (p<0.001***; Table 1). The 

arterio-venous concentration difference across adipose tissue showed a similar trend for 

TNFα, although this did not achieve statistical significance (p<0.083; data not shown). The 

mean adipose tissue plasma flow across this depot was 1.46±0.91 ml/100g-1/min-1. The 

production rate for ANG II was 54±56.68 pg/100g adipose tissue/min (mean±SD), whereas 

TNFα was 14±26.24 pg/100g adipose tissue/min (mean±SD). Whole body ANG II adipose 

tissue production rate was 1626 ± 390.7 pg/mL (mean± SE). 

 
Correlation Between Plasma ANG II Levels and BMI  

Increasing BMI showed a positive correlation with increasing circulating ANG II levels in 

these subjects (age 42.3±16 years (mean±SD); BMI 29.8±5.4 Kg/m2 (mean±SD) n=26; r2 = 

0.142; p=0.057, Figure 1), although this was not significant. ANG II levels from subcutaneous 

venous drainage showed no correlation with increasing BMI (data not shown). Increasing BMI 

also showed a significant positive correlation with increasing diastolic blood pressure ((r2 

=0.414; p<0.01, data not shown). However, no such association was observed with systolic 

blood pressure (data not shown). 

 

 

 11



Correlation Between Venous Adipose Tissue TNFα and ANG II Levels 

TNFα and ANG II from subcutaneous adipose tissue venous drainage demonstrated a 

significant positive correlation with increasing levels (r2 =0.491; p<0.01**, Figure 2). 

 

The Effect of Insulin and Insulin with RSG on Secretion of TNFα 

 
In human subcutaneous adipose cells, insulin increased TNFα secretion in a concentration-

dependent manner (p<0.01) whilst RSG (10nM) significantly reduced the insulin mediated 

rise in TNFα (Control: 3.8±(SEM) 0.60ng/mL; Ins 10M: 5.2±0.3pg/mL; Ins 10nM + RSG: 

0.9±0.4ng/mL, p<0.001***, Figure 3.). RSG alone (10nM) significantly reduced TNFα  

secretion compared to control, (Control: 3.8±(SEM) 0.60ng/mL; RSG: 0.9±0.4ng/mL, 

p<0.001, data not shown). 

 

The Effect of TNFα on AGT Protein Expression 

Western blot analysis confirmed a concentration dependent increase in AGT protein 

expression in subcutaneous adipocytes treated with increasing concentration of TNFα 

compared with control (Control: 1± 0.0; (mean ± SE), 3.7± 0.5, p<0.001*** at 100ng TNFα, 

Figure 4). 

 

The Effect of TNFα on ANG II Secretion 

Human subcutaneous abdominal adipocytes treated with TNFα for 48h showed a 

concentration dependent increase in ANG II secretion with maximal stimulation at 100ng 

TNFα compared to control (Control: 237.0± 52; (mean ± SE), TNFα 100ng: 398±61 pg/mL, 

p<0.05*;  Figure 5). 
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The Effect of Insulin in Combination with RSG on AGT Protein Expression 

Western blot analysis demonstrated that the presence of the insulin sensitiser, RSG, 

significantly reduced the insulin-mediated increase in AGT protein expression at all 

concentrations of insulin (Control: 1.0±0.0; (mean±SE), protein expression measured relative 

to control; Ins 1nM: 2.64±0.32↑***; Ins 10nM: 3.52±0.48↑***, 100nM Ins: 4.37±0.57↑***; 

1000nM Ins: 6.50±0.97↑***; p<0.001***; Figure 6). 

 

The Effect of Insulin and RSG on ANG II Secretion 

ANG II secretion was regulated by insulin in a concentration dependent manner, with maximal 

stimulation occurring at 1000nM (Figure 7).  However, in the presence of RSG the insulin 

mediated rise in ANG II secretion was significantly reduced at all insulin concentrations 

(p<0.001***; Figure 7). RSG alone (10nM) significantly reduced ANG II secretion compared 

to control, (Control: 214.33±(SEM)12.34 pg/mL; RSG: 104.44±14.35pg/mL, p<0.01; data 

not shown). 

 

The Effect of Insulin and Insulin with RSG on Bradykinin Secretion 
 
Subcutaneous abdominal adipocytes treated for 48 h showed no significant change in 

bradykinin secretion with insulin treatment (1nM-100nM) or insulin (1-100nM) in 

combination with RSG (10nM) (Data not shown). RSG alone (10nM) did not alter bradykinin 

secretion (data not shown). 
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Discussion 

 
Many studies have implicated a role for the adipose tissue RAS in the development of obesity 

associated hypertension. Rodent studies comparing blood pressure levels in obese Zucker rats 

versus genetically lean Zucker rats have shown that blood pressure is significantly higher in 

the obese rodents. Furthermore, the administration of an ANG II receptor antagonist to these 

animals significantly lowered blood pressure, thus demonstrating that ANG II contributes to 

the elevated blood pressure observed in these animal models (24). However, studies by Faloia 

and colleagues did not demonstrate a difference in circulating components of the RAS 

between obese hypertensive, obese normotensive subjects and lean controls (25). Our 

findings indicate a positive correlation between increasing BMI and circulating ANG II 

levels, although this was not significant. The present study also revealed a positive 

association between BMI and diastolic blood pressure, whilst systolic blood pressure 

exhibited no correlation with BMI. These findings support the association between obesity, 

hyperinsulinaemia, increased ANG II production and elevated blood pressure. Furthermore, 

in addition to its’ systemic effects, recent studies have highlighted the importance of 

resistance vessels within adipose tissue depots with regard to hypertension. Both structural 

and functional abnormalities have been identified in arterial resistance vessels extracted from 

adipose tissues depots in type 2 diabetic and hypertensive patients (26, 27). Therefore the 

local RAS may also be acting in a paracrine fashion to have a significant effect on blood 

pressure, as well as being a potential mediator in the observed vascular remodeling of these 

vessels.  

 

Whilst the positive correlation between obesity and hypertension is apparent, the molecular 

mechanisms that underlie its’ pathogenesis remain unclear. Hypertension and 
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hyperinsulinaemia/insulin resistance form part of the diagnostic criteria for the metabolic 

syndrome, a condition that is strongly associated with obesity. We have previously 

investigated the effect of increasing insulin concentration on the RAS in subcutaneous human 

adipocytes and subsequently demonstrated that insulin concentration increases both 

expression and secretion of AGT and ANG II, respectively (7). These data suggested that 

chronic exposure to elevated insulin levels might induce upregulation of the RAS in 

subcutaneous adipocytes, thus proffering a potential mechanism mediating obesity associated 

hypertension. Furthermore, the importance of the RAS pathway is not limited to hypertension 

as ANG II, the effector molecule in the pathway, has also been identified as a pro-

inflammatory factor. Studies have shown that it activates expression of early response and 

inflammatory genes in vascular smooth muscle cells (28, 29) and regulates the production of 

PAI-1, which inhibits fibrinolysis (4). Obesity is associated with a state of sub-clinical 

inflammation so the pluripotent nature of ANG II has implications for other facets of the 

condition. Therefore, understanding the mechanisms through which AGT and hence ANG II 

are regulated may provide additional insights into the pathogenesis of the metabolic 

syndrome and new approaches to reducing the risk of cardiovascular disease. 

 

In the present study we have demonstrated that subcutaneous adipose tissue is a significant 

site of AGT and angiotensin II production via arterio-venous measurements and through in 

vitro protein studies. Previous rodent studies have indicated the importance of adipose tissue 

RAS as contributing to plasma levels of AGT and ANG II, but no study to date has examined 

the importance of subcutaneous, abdominal, human adipose tissue (30). Our findings revealed 

a significant increase in ANG II levels in the subcutaneous abdominal adipose tissue effluent 

 15



of 23% (p<0.001), thus affirming the relevance of studying this tissue with regard to obesity 

associated hypertension. 

 

We also determined that insulin did not influence bradykinin secretion. Consequently, the 

possible mechanisms through which insulin increased AGT, and hence ANG II protein 

secretion, were examined. A potential mechanism for regulation of adipose tissue RAS was 

suggested by the observation that, in hepatocyte cells, the AGT promoter contains a cytokine 

inducible enhancer known as the acute phase response element (APRE) (11). One cytokine 

known to induce transcription of AGT is TNFα - a multifunctional cytokine produced by a 

variety of cells that include monocytes/macrophages, muscle cells and adipose tissue (11). 

TNFα is implicated as a pathogenic factor in the development of obesity-associated insulin 

resistance, as elevated levels of this cytokine in adipose tissue are associated with features of 

the metabolic syndrome (10). Therefore, we initially examined the levels of TNFα produced 

by subcutaneous adipose tissue. TNFα demonstrated a similar increase in the arterial versus 

venous drainage to ANG II, although this was not significant (p=0.083). This finding is in 

agreement with previous observations by Mohammed-Ali and co-workers (19), but does not 

completely discount the importance of adipose tissue TNFα, as levels may be lower due to 

the local uptake of this cytokine. Furthermore, our findings show that increasing TNFα levels 

from venous drainage of the subcutaneous adipose tissue depot strongly correlated with ANG 

II levels, thus supporting the possibility of a regulatory role for TNFα in the RAS pathway. 

 

In order to determine if the effects of insulin on the RAS were a result of a TNFα mediated 

pathway, the effects of insulin on TNFα secretion from human adipocytes were examined. 

The present study demonstrated that insulin stimulates TNFα secretion in a concentration 
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dependent manner in isolated subcutaneous adipocytes, following the same trend as 

previously observed for ANG II with increasing insulin concentration. In addition, we further 

examined the direct effect of TNFα concentration on AGT and ANG II stimulation. TNFα 

stimulated both AGT expression and ANG II secretion in a concentration dependent manner, 

with higher levels of TNFα (100ng) significantly stimulating ANG II. As such, our results 

support a TNFα mediated mechanism for the induction of AGT in human adipocytes, as 

observed in hepatocytes. The previously described insulin-mediated increase in AGT and 

ANG II may therefore be a result of TNFα activity.  

 

Previous data have demonstrated that rosiglitazone (RSG) reduces blood pressure in animal 

models, type 2 diabetics and obese patients (12-16). RSG has been shown to reduce oxidative 

stress, thus ameliorating endothelial dysfunction and improving blood vessel elasticity (31). 

However, no study to date has examined the effects of RSG on the RAS in human adipocytes 

and obesity associated hypertension. Our present study showed that the introduction of RSG 

into this system dramatically reduced the insulin-mediated effect on the RAS. This is an 

interesting finding as the insulin sensitising action of RSG, through transactivation of 

responsive genes, would suggest that AGT and ANG II would increase further in the 

presence of this agent. These findings, however, are in accord with in vivo data, with RSG 

inducing downregulation of TNFα and the RAS in adipocytes, in vitro. In addition, RSG also 

negated the insulin mediated increase in TNFα secretion, further supporting the possibility of a 

TNFα regulated effect on the RAS. However, the effects of insulin and RSG were limited to the 

vasoconstrictive pathway in the RAS cascade, as bradykinin secretion remained unaltered by 

insulin in the presence of RSG. 
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In conclusion, exposure of adipose tissue to a hyperinsulinaemic environment may produce 

increased ANG II through the actions of TNFα, which is also elevated in obese and type 2 

diabetic subjects (7). Our findings demonstrate the potential of this mechanism and the 

contributory role that the adipose tissue RAS may have in obesity associated hypertension.  

RSG mitigates the insulin mediated increase in the adipose tissue RAS and therefore this 

finding may help to explain the long-term anti-hypertensive effects of RSG. RSG has already 

been shown to improve endothelial dysfunction and hence may offer additional benefits in 

terms of the adipose tissue RAS (31). As yet, it remains unclear as to how RSG is producing 

its’ effects. Within liver cells it is apparent that the TNFα mediated induction of AGT 

involves the nuclear transcription factor NFκB - a protein linked to the regulation of many 

pro-inflammatory cytokines (11). This pathway has not been examined in the adipocyte with 

regard to the RAS. It may be the key transcription factor involved in this pathway and 

therefore requires further investigation.  
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Table 1. The individualised subject data points of arterial and venous drainage and the net 

arterio-venous concentration differences for ANG II, as well as the mean ± SD for each 

grouping (n=18, p-value: p<0.001***). 

 

Figure 1.  The relationship between circulating ANG II levels and BMI (n=26, p=0.057). 

 

Figure 2. The relationship between subcutaneous venous drainage TNFα and ANG II levels 

(n=15; p<0.01**) as demonstrated by Pearson Correlation, 

 

Figure 3. TNFα secretion (mean ± SEM ng/mL) from untreated (control) and treated 

adipocytes, comparing the effect of insulin (Ins: 1-1000nM) vs insulin in combination with 

RSG (10nM) on the secretion of TNFα in adipocyte cells over 48 h (n=12; p-values: 

p<0.001***). 

 

Figure 4. The mean relative protein expression of AGT (± SEM) with TNFα treatment 

(TNFα : 10, 50 and 100ng/mL) compared to control (untreated cells) in isolated mature 

subcutaneous adipocytes (n=3, p-value: p<0.001***).  

 

Figure 5. The mean levels of ANG II (± SEM) secreted from untreated subcutaneous 

adipocytes (control) and adipocytes treated with increasing TNFα concentration (10, 50 and 

100ng/mL; n=12, p-value : p<0.05*).  

 

Figure 6. The mean relative protein expression (± SEM) of AGT (61kDa) in isolated mature 

adipocytes compared to control (untreated cells). Statistical analysis compared expression of 
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AGT in cells treated with insulin alone (Ins: 1-1000nM) to adipose cells treated with insulin 

(Ins: 1-1000nM) in combination with RSG (10nM) (n=3, p-values, p<0.01**, p<0.001***).  

 

Figure 7. The release of ANG II (mean ± SEM pg/mL) from insulin and RSG treated 

adipocytes (n=12). The statistical analysis compared the effect of insulin (Ins: 1-1000nM) 

versus insulin in combination with RSG (Ins: 1-1000nM & RSG: 10nM) on the secretion of 

ANG II (p-value: p<0.001***).  
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Subcutaneous Venous 
Drainage ANG II 
Levels (pg/mL) 

Arterial Circulation 
ANG II Levels 

(pg/mL) 

Individualised arterio-venous 
differences in ANG II Levels 

(Subcutaneous Venous – 
Arterial Circulation; pg/mL) 

194.300 126.200 68.100 

345.100 258.900 86.200 

140.000 121.400 18.600 

281.300 181.100 100.200 

96.500 106.100 -9.600 

115.900 113.100 2.800 

174.300 141.000 33.300 

145.000 101.500 43.500 

197.000 168.400 28.600 

205.500 206.400 -0.900 

397.100 395.000 2.100 

283.400 209.700 73.700 

216.600 150.300 66.300 

165.800 133.000 32.800 

359.100 358.000 1.100 

205.200 177.200 28.000 

160.900 100.000 60.900 

212.289 177.922 34.367 

Mean ± SE =216.4 ± 19.99 Mean ± SE =179.2 ± 19.74 Mean ± SE = 37.2±7.67*** 

Table 1. 

 
p<0.001*** 
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