
Abstract—Identifying software identifiers that implement a

particular feature of a software product is known as feature

identification. Feature identification is one of the most critical and

popular processes performed by software engineers during

software maintenance activity. However, a meaningful name must

be assigned to the Identified Feature Implementation Block (IFIB)

to complete the feature identification process. The feature naming

process remains a challenging task, where the majority of existing

approaches manually assign the name of the IFIB. In this paper,

the approach called FeatureClouds was proposed, which can be

exploited by software developers to name the IFIBs from software

code. FeatureClouds approach incorporates word clouds

visualization technique to name Feature Blocks (FBs) by using the

most frequent words across these blocks. FeatureClouds had

evaluated by assessing its added benefit to the current approaches

in the literature, where limited tool support was supplied to

software developers to distinguish feature names of the IFIBs. For

validity, FeatureClouds had applied to draw shapes and

ArgoUML software. The findings showed that the proposed

approach achieved promising results according to well-known

metrics in terms of Precision and Recall.

Index terms—feature naming, feature implementation blocks,

software engineering, word clouds.

I. INTRODUCTION

EATURE identification or location is the process of detecting

the source code elements, such as classes or methods, that

implement particular functionality in a software product [1].

Several works have been carried out on feature identification,

whether from single software or a group of software products

[2]. Feature naming is the activity of suggesting a meaningful

name for the extracted feature implementations. In this work, a

feature is a functionality provided by a software product.

Software identifier name (e.g., package, class, method, and

attribute) is one of the most significant software understanding

Manuscript received November 3, 2021; revised March 6, 2022. Date of
publication April 1, 2022. Date of current version April 1, 2022. The associate

editor prof. Dinko Begušić has been coordinating the review of this manuscript

and approved it for publication.
R. Al-Msie'deen, H. Eyal Salman and A. H. Blasi are with the Faculty of

Information Technology, Mutah University, Mutah 61710, Karak, Jordan (e-

mails: {rafatalmsiedeen, hamzehmu, ablasi1}@mutah.edu.jo).
M. A. Alsuwaiket is with the Department of Computer Science and

Engineering Technology, Hafr Al Batin University, Hafr Al Batin, Saudi Arabia

(e-mail: malsuwaiket@uhb.edu.sa).
Digital Object Identifier (DOI): 10.24138/jcomss-2021-0155

resources [3]. The identifier names of Feature Implementation

Block (FIB) need to be analyzed for feature naming. Normally,

a FIB contains many identifier names which include several

words. Software identifier names are often constructed by

mixing fragments of words, acronyms, and abbreviations (e.g.

setRectangleY). For feature identification of a legacy software

system, one main problem is to understand the FIB and name it.

The analysis of identifier names is a very helpful way in

naming decisions. Current studies support the feature

identification process in a single software [4], or in a set of

software product variants [5]. Considering the feature

identification process, the current approaches are based either

on a static code analysis or on a dynamic analysis of the

software product. Other approaches further exploit information

retrieval methods [6]. In the use of the proposed approach, we

suppose that the IFIBs exist in advance. Thus, it is important to

clarify that the feature identification process is out of the scope

of this study. This paper focuses only on the feature naming of

the identified blocks. Figure 1 presents an example of the IFIBs

from software source code.

Fig. 1. The IFIBs from software source code

Naming the Identified Feature Implementation

Blocks from Software Source Code

Ra'Fat Al-Msie'deen, Hamzeh Eyal Salman, Anas H. Blasi, and Mohammed A. Alsuwaiket

F

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022 101

1845-6421/06/2021-0155 © 2022 CCIS

Original scientific article

Figure 1 shows that the implementation of features can either

be identified from a single software system or by a group of

software product variants. Also, the given figure shows that

each block that constitutes an implementation of the feature

consists of a set of software identifiers such as package, class,

method, and attribute.

Existing contributions in the literature of feature

identification, including the work of Al-msie’deen et al. [5],

overlook the feature naming phase during the identification of

FIBs. The majority of current feature implementations

identification approaches are not focused on a feature naming

problem, and usually, this phase is carried out manually [7, 8].

The absence of support for feature naming in existing

approaches is a critical threat to their efficiency.

In this paper, we propose an approach called FeatureClouds

to support feature naming during the feature identification

process from software source code. The proposed approach

exploits the word cloud visualization technique [9] to help

software engineers to name the IFIBs. As each block include

only the implementation of a single feature. Feature naming is

based on an analysis of the content of each IFIB to propose a

feature name. Where the IFIBs can be named by selecting words

with the highest frequency from word clouds.

FeatureClouds is a generic approach, where this approach

works on the IFIBs whether from a single software product or

software product variants. FIB is a software artifact the consists

of a collection of software identifiers (i.e., packages, classes,

methods, or attributes). Thus, these code identifiers implement

a particular software feature.

In our work, we do not suppose there is domain knowledge

regarding the features of a software product. Therefore, the

domain experts cannot manually suggest feature names to FIBs

based on their knowledge about the existing software system.

Thus, there is a need to develop an approach for feature naming

without domain expert intervention and based on the

vocabulary used in the identified blocks. FeatureClouds is a

significant improvement over existing approaches, as it aims to

automatically give a name for the IFIB based on its content.

The rest of the paper is structured as follows. Section II

presents related work closest to the proposed contribution.

Section III details FeatureClouds approach. Section IV presents

FeatureClouds experimentations. Finally, Section V concludes

the paper.

II. RELATED WORK

Davril et al. [10] introduced a feature naming method as a

part of their Feature Model (FM) extraction approach. The

authors presented an approach for constructing a FM from

product descriptions in natural language. In their work, to build

the FM and present it to the human user, there is a need to assign

a meaningful name for the identified feature (cluster or block).

Thus, the authors developed a cluster-naming process to select

the most frequent phrase from all feature descriptors in the

cluster. Meaningful names are selected for the mined features

based on the most frequent phrases discovered for each of the

clusters or blocks.

Al-msie’deen et al. [11] used the source code of the mined

FIBs to generate feature names automatically. In their work, all

identifier names found in the FIB are mined. Then, each

identifier name is divided into tokens by using a camel-case

scheme. After that, a weight is assigned to each extracted token

based on its frequency in the block. Finally, a feature name was

constructed using the highest weighted words. The number of

words used in the feature name was selected by a software

engineer. For instance, the engineer can choose the highest two

words to create the feature name. For the purpose of features

readability, the authors assigned feature names based on the

most frequent tokens of the IFIBs. They did not evaluate feature

names and they did not provide details about the feature naming

process.

Martinez et al. [12] offered a word cloud visualization

technique to support software developers in naming the IFIBs

from a collection of software product variants. This

visualization is used through the feature implementation

identification process to propose feature names to software

engineers. In their work, once FIBs are identified from software

product variants, the authors used the VariClouds approach to

visualize the code elements inside each FIB and determine

important words that assist software engineers to identify

feature names. VariClouds approach employs information

retrieval methods, like TF-IDF, to analyze the code elements

inside each FIB. Their approach is semi-automatic, where the

domain expert manually reviews words in the cloud to identify

feature names for the IFIBs. While this study presents a fully

automatic approach for feature naming based on the IFIBs in

advance, without any interventions from the domain expert. We

conducted experiments using a real FIBs to verify our intuition

that word cloud gives better results in this field.

The study presented by Martinez et al. [12] is the closest to

ours. The authors use optional filters such as camel case splitter

for words dividing. In this paper, the word processing has done

before it has presented in the final word cloud. This processing

is done via word splitting and stemming. These two steps are

the core of our approach and not an optional filter.

FeatureClouds uses two filters to filter out unwanted words

from the word clouds. The short-word filter intends to filter out

the words which have less than three letters. Also, the word-

frequency filter is used as a sign for the word frequency across

the IFIBs. In the VariClouds approach, there is no indication of

how many times a word is repeated within a block. Word cloud

layout in VariClouds approach is a typewriter. While

FeatureClouds layouts are typewriter and spiral layouts [9].

VariClouds displayed words in the word cloud in alphabetical

order (i.e., a-z). While FeatureClouds shows words in the cloud

in an alphabetical or frequency order. In frequency order, words

appear according to their importance in the cloud where the

most important words appear first in the word cloud.

VariClouds did not provide clear evaluation criteria for the

quality of the feature name obtained for each block. While we

evaluated our results with clear metrics like recall and precision.

AL-msie’deen et al. [7] assigned manually the feature names

to the IFIBs, based on the study and analysis of the content of

each block and on their knowledge of software product variants.

Where the software variants are well documented, and their

feature names are known in advance. AL-msie’deen et al. [8]

suggested feature naming process as a research direction to

suggest the feature names automatically for the IFIBs.

Consequently, that is what we have done in this study by

developing a feature naming approach called FeatureClouds.

102 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

Ziadi et al. [13] suggested an approach to find feature

implementations across software variants source code. The

authors manually proposed feature names of the IFIBs. The

names were given to feature implementations based on the

existing FM document. Thus, our work is more effective for

feature naming, where we automatically assign feature names

of the IFIBs based on the word cloud.

AL-msie’deen et al. [14] developed an approach to suggest a

name for the IFIBs based on the use-case diagrams of software

variants. In their study, FIB has given a name based on the

textual similarity between the use-case description and block

content. In our work, we rely just on the content of the FIB, and

we do not need any other artifacts of the software system.

Furthermore, our work considers the legacy software system,

which is not documented well, and usually, all software artifacts

are missing.

Adjoyan et al. [15] suggested an automatic approach for

service identification from the Object-Oriented (OO) source

code. Their paper aims to migrate the OO legacy system into

Service Oriented Architecture (SOA). For the legibility of the

identified service blocks, authors assign names based on the

most frequent words across the identified blocks. The authors

documented the resulting services by allocating a name using

the most frequent words in their class names. The authors do

not evaluate service names, and they do not offer details about

the service naming process. The proposed approach can be used

to name the identified service implementation blocks.

Kebir et al. [16] suggested a method to extract components

from software source code. The authors suggested names to the

identified components based on the source code of the identified

clusters. They provided component names based on the most

frequent tokens of the identified clusters. For each cluster, the

class names are split into words based on the camel-case

method. Then, a weight is given to each obtained token, and at

last, a component name is created using the strongest weighted

tokens. FeatureClouds approach can be used to name the

identified component implementation clusters.

Shatnawi et al. [17] proposed an approach to reverse engineer

the architecture model of a collection of software product

variants. They aimed to identify the main components and

dependencies between those components. In their work, for

comprehensibility, they named the identified components by

using the most frequent words across the identified component

implementation clusters. Each component cluster contains a

collection of software classes. Based on the most frequent

words across class names, they allocate a name for that cluster.

Their work is very similar to the study proposed by Adjoyan et

al. [15]. Also, the authors of this study do not evaluate

component names, and they do not give any details about the

component naming process. The approach proposed in this

paper can be applied to name the identified component

implementation clusters.

Table I presents a comparison between feature naming

approaches. The studied approaches have been evaluated based

on the criteria of naming method (automatic versus manual),

inputs (feature blocks, product descriptions, service blocks,

component blocks, use-case diagrams), and outputs (word

clouds, most frequent tokens, feature names).

TABLE I

SUMMARY OF FEATURE NAMING APPROACHES (COMPARISON TABLE)

ID Reference Input Output Naming method

F
ea

tu
re

 b
lo

ck
s

P
ro

d
u

ct
 d

es
cr

ip
ti

o
n

s

S
er

v
ic

e
b
lo

ck
s

C
o

m
p
o

n
en

t
b

lo
ck

s

U
se

-c
as

e
d
ia

g
ra

m
s

W
o

rd
 c

lo
u

d
s

M
o

st
 f

re
q
u

en
t

to
k
en

s

F
ea

tu
re

 n
am

es

M
an

u
al

S
em

i-
au

to
m

at
ic

A
u

to
m

at
ic

1 Davril et al. [10] x x x

2 Al-msie’deen et al. [11] x x x

3 Martinez et al. [12] x x x

4 AL-msie’deen et al. [7] x x x

5 Ziadi et al. [13] x x x

6 AL-msie’deen et al. [14] x x x x

7 Adjoyan et al. [15] x x x

8 Kebir et al. [16] x x x

9 Shatnawi et al. [17] x x x

10 Al-msie’deen et al. [FeatureClouds] x x x

The majority of the current studies manually suggest feature

names of the extracted FIBs based on existing software

documentation. In the related work, no work automatically

provides a name for the IFIBs.

Table II presents a comparison between feature naming

approaches that exploited the word cloud visualization

technique. There is only one study concerned with feature

naming based on the word-cloud in the literature, which is the

study of Martinez et al. [12]. We evaluate this closest work to

our approach based on the following criteria: granularity level

of block code, programmed method, cloud filters, evaluation

criteria of the proposed name, cloud layout, cloud arrangement,

word preprocessing.

R. AL-MSIE'DEEN et al.: NAMING THE IDENTIFIED FEATURE IMPLEMENTATION BLOCKS 103

TABLE II

SUMMARY OF FEATURE NAMING APPROACHES BASED ON WORD CLOUD TECHNIQUE (COMPARISON TABLE)

Reference Feature blocks - code
granularity level

Programmed
method

Cloud filters Evaluation
criteria

Cloud
layout

Cloud
arrangement

Word
preprocessing

P
ac

k
ag

e

C
la

ss

M
et

h
o
d

A
tt

ri
b

u
te

S
em

i-
au

to
m

at
ic

A
u

to
m

at
ic

C
am

el
-c

as
e

sp
li

tt
er

W
o

rd
s

st
em

m
in

g

S
h

o
rt

 w
o

rd

W
o

rd
-f

re
q

u
en

cy

R
ec

al
l

 P
re

ci
si

o
n

T
y
p

ew
ri

te
r

sp
ir

al

A
lp

h
ab

et
ic

al

F
re

q
u
en

cy

W
o

rd
s

sp
li

tt
in

g

W
o

rd
s

st
em

m
in

g

Martinez [12] x x x x x x

FeatureClouds x x x x x x x x x x x x x x x

III. THE FEATURECLOUDS APPROACH

An overview of the suggested method is given in Figure 2.

The inputs are the FIBs extracted from software source code.

The outputs are the most frequent words across FIBs (i.e., FIB

names).

Fig. 2. Overview of FeatureClouds process

FIB contains the source code elements (aka. block

identifiers) that implement a particular feature. Thus, from each

block, FeatureClouds extracts the block identifier names. The

block identifier names are the only source of the naming

process. Figure 3 shows an example of FIBs identified from

drawing shapes software variants by the Revpline approach

[18]. The IFIBs consist of all code granularity levels (i.e.,

package, class, method, and attribute).

In this paper, we rely on the block contents to assign a feature

name for each block. Feature implementations are blocks of the

code identifiers. Word clouds are a representation of the

identifier names that are constructed in the FIBs. These word

clouds are built with a FeatureClouds approach as detailed in

the following.

A. Extracting Identifier Names (words)

The first step of our feature naming process is the extraction

of software identifier names (aka. words) from the IFIB. Table

III shows the software identifier names for each FB in Figure 3.

Fig. 3. FIBs identified from drawing shapes software variants

 FeatureClouds accepts the IFIB as input. Then,

FeatureClouds produces a words file as output for each block.

The words file of a particular block includes all software

identifier names of this block.

TABLE III

IDENTIFIER NAMES EXTRACTED FROM FIBS IN FIGURE 3

Identifier names Identifier names

MyOval Rectangle

getOvalx RectangleSettings

getOvaly Drawing.Shapes.Rectangle

Oval setRectangley

setOvaly setRectanglex

setOvalx Rectanglex

Drawing.Shapes.Oval Rectangley

Ovalx getRectangley

Ovaly MyRectangle

OvalSettings getRectanglex

B. Splitting Words

In this step, software identifier names are split into words (or

tokens) based on the camel-case syntax [18]. For example,

RectangleSettings is split into rectangle and settings. Camel-

case method splits identifier names based on capital letters,

special characters, and numbers. This method is uncomplicated

and commonly used for software identifier splitting. Table IV

shows samples of the split words from the drawing shapes

software identifiers.

104 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

TABLE IV

WORDS OBTAINED FROM FIBS IN FIGURE 3

Words or tokens Words or tokens

my rectangle

oval rectangle

get settings

ovalx drawing

get shapes

ovaly rectangle

oval set

set rectangley

ovaly set

set rectanglex

ovalx rectanglex

drawing rectangley

shapes get

oval rectangley

ovalx my

ovaly rectangle

oval get

settings rectanglex

C. Returning Words to Their Roots

In this step, the word stemming process is performed (e.g.,

eliminating word endings) via WordNet [19]. WordNet tool is

a huge lexical database of the English language. In our work,

stemming is employed to replace English words with their

stems or roots. For instance, in drawing shapes software, the

root of the word "drawing" is "draw". Table V shows samples

of the word roots from drawing shapes software.

TABLE V

SAMPLES OF ENGLISH WORDS AND THEIR ROOTS FROM DRAWING SHAPES

Word roots Word roots

My Rectangle

Oval Rectangle

Get Set

Ovalx Draw

Get Shape

Ovaly Rectangle

Oval Set

Set Rectangley

Ovaly Set

Set Rectanglex

Ovalx Rectanglex

Draw Rectangley

Shape Get

Oval Rectangley

Ovalx My

Ovaly Rectangle

Oval Get

Set Rectanglex

D. Identifying Words Arrangement

FeatureClouds employs typewriter-style to place words in the

word cloud from left to right side, and from top to bottom side.

FeatureClouds shows words in the word cloud in alphabetical

arrangement. Software engineer appears more capable to find

words in alphabetically ordered word clouds [9]. Table VI

displays samples of words in an alphabetical arrangement.

E. Determining Word Weights

In this step, the weight is given to the word based on its

frequencies in the IFIB. In our work, the weight of the word

shows the word frequency in a given FB. Table VII shows

samples of words and their weights from drawing shapes

software.

TABLE VI

SAMPLES OF WORDS IN AN ALPHABETICAL ARRANGEMENT

Words in alphabetical order Words in alphabetical order

Draw Draw

Get Get

Get Get

My My

Oval Rectangle

Oval Rectangle

Oval Rectangle

Oval Rectangle

Ovalx Rectanglex

Ovalx Rectanglex

Ovalx Rectanglex

Ovaly Rectangley

Ovaly Rectangley

Ovaly Rectangley

Set Set

Set Set

Set Set

Shape Shape

TABLE VII

SAMPLES OF WORDS AND THEIR WEIGHTS FROM DRAWING SHAPES

SOFTWARE

Word Weight Word Weight

Draw 1 Draw 1

Get 2 Get 2

My 1 My 1

Oval 4 Rectangle 4

Ovalx 3 Rectanglex 3

Ovaly 3 Rectangley 3

Set 3 Set 3

Shape 1 Shape 1

Word weight is a very important issue in our approach, as

repeating a given word multiple times in a FIB is a good

indication of the importance of that word. When a software

developer uses one word to name several software identifiers,

this indicates the importance of this word. Mostly, a word that

is repeated frequently within a given block reflects the

functionality that that block provides to the end-user. For

example, in the drawing shapes software, when the word “oval”

is repeated more than the rest of the words in the block (4

times), this block is named oval. The function provided by this

FB is to enable the drawing of an oval by the user of this

software. As a result, there is a close relationship between the

functionality provided by the given block and the most

frequently occurring words across it. Therefore, the word with

a higher weight is suitable for naming the given block.

F. Creating Word Cloud

FIBs are obtained using existing feature identification

approaches such as the Revpline approach [18]. Then, the

software engineers use FeatureClouds to assign a feature name

to each block. The name is assigned based on the most frequent

identifier name in each block, where the constructed word

clouds show the most frequent words across each block. The

main hypothesis of our approach for feature naming is that the

most frequent words across each block are those that make each

R. AL-MSIE'DEEN et al.: NAMING THE IDENTIFIED FEATURE IMPLEMENTATION BLOCKS 105

feature implementation unique regarding the rest of the IFIBs.

Also, in our work, we consider that the most frequent words

across each block reflect the real functionality provided by each

block to the end-user (i.e., feature). Figure 4 shows the word

clouds that are constructed from the FIBs in Figure 3. In Figure

4, the word-frequency filter can be used as a pointer for the word

frequency across FIB. This filter defines the frequency of the

word across the block as an accurate number between square

brackets after any word in the cloud.

Fig. 4. Word clouds built from the IFIBs in Figure 3

In Figure 4, FeatureClouds assigns the caption (aka. label)

"oval" to the IFIB. Also, it assigns the caption "rectangle" to

the other FIB. The number of words used in a feature name is

selected by the software developer, where he can change the

settings of the FeatureClouds approach to retrieve the highest

two (or three) words for each block.

In the drawing shapes software case study, the name of the

features is well documented through the FM [20]. The FM gives

us a ground truth to assess the feature naming process proposed

in this work, where the manual feature naming is presented in

the drawing shapes software FM [18]. The real name of the oval

feature in the FM is “draw_oval”, while the name of the

rectangle feature is “draw_rectangle”. The font size of the word

in the retrieved word cloud is the number of times the word is

repeated throughout the IFIB. In the word clouds, words that

emerge with a large font size are more critical than the rest of

the words.

IV. EXPERIMENTATION

This section presents the ArgoUML case study, evaluation

metrics, experimental results, and the threats to validity of our

approach.

A. Case Study

To evaluate the FeatureClouds approach, we selected the

ArgoUML case study, where the name of the features are well

known and documented. ArgoUML is an open-source, Java-

based program. ArgoUML variants are ten software products,

and its FM consists of nine features [21]. These features are:

class, activity, collaboration, use-case, state, sequence,

cognitive, logging, and deployment feature. We recommend

researchers use the Revpline approach to extract FIBs from a

collection of software product variants [18]. Figure 5 shows the

ArgoUML FM.

Fig. 5. ArgoUML FM [21]

B. Evaluation Metrics

The effectiveness of our approach is determined by their

recall, and precision [18]. For the named feature by

FeatureClouds, a precision metric is the proportion of correctly

retrieved words from the word cloud to the total number of

retrieved words from the word cloud (cf. Equation 1). Recall

metric is the proportion of correctly retrieved words from word

cloud to the total number of relevant words from the manual

feature name (cf. Equation 2). All FeatureClouds metrics have

values between zero and one. If the recall is equal to one, all

relevant feature name words are retrieved. However, some

retrieved words might not be relevant to the manual feature

name. If precision is equal to one, all retrieved feature name

words are relevant. However, relevant words might not be

retrieved from a word cloud. The evaluation metrics of

FeatureClouds approach for a feature name are defined as

follows:

Precision =
∑ correctly retrieved words

∑ words that are retrieved
 (1)

Recall =
∑ correctly retrieved words

∑ words that are relevant
 (2)

C. Experimental Results

Figure 6 shows the IFIB, at class level, of activity diagram

feature from ArgoUML variants. The real name of this feature

is “activity”. FeatureClouds retrieves two words for this block

as feature name, which are activity and diagram. Our

implementation of FeatureClouds is available at the main

author website [22].

Figure 7 shows the word cloud extracted from the activity

diagram implementation block. The most frequent word across

this block is activity and diagram. Software engineers might not

use meaningful vocabularies to name the software identifiers.

In this case, the FeatureClouds approach will fail to provide a

meaningful name for the identified FB. For example, the

retrieved feature name “class diagram” has more meaning than

the “action model” name.

106 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

Fig. 6. The IFIB of the activity diagram feature

Fig. 7. A word cloud of the IFIB In Figure 6

FeatureClouds gives a “collaboration” name for the IFIB of

the collaboration feature in ArgoUML. Also, FeatureClouds

assigns a “state” name for the IFIB of the state feature from

ArgoUML. In our work, when naming all FIBs, it is impossible

that two or more FIBs have the same name. All the named

features from ArgoUML have a unique name.

Table VIII shows the feature names named by the

FeatureClouds approach and shows the manual names of

ArgoUML features as described in the ArgoUML FM. Results

show that the FeatureClouds approach can retrieve a feature

name for the IFIB. The feature name suggested by the approach

is too close to the real or manual name, as described in the FM.

Moreover, the experimental results in Table VIII show that

the word clouds are useful for assigning the names for FIBs.

Especially when manual feature names were not available,

word clouds consider a unique method and perfect technique

toward feature naming. Results also proved that the word clouds

worked as confirmation for the feature naming decision. Based

on the obtained results, we can say that word clouds minimize

software engineers' understanding time and assist them to be

more reliable with the feature naming decisions.

Depending on the results obtained from the presented case

study, we should state here that the words that formed the

manual name of the class and cognitive support features are not

retrieved by the suggested approach as the feature name. On the

other hand, these words appear undoubtedly on the word cloud

(e.g., class and cognitive). These words appear less frequently

than the other words in the block. Thus, the approach doesn't

assign it as the feature name of the IFIBs.

TABLE VIII

FEATURE NAMING RESULTS IN ARGOUML

Feature Naming Findings in ArgoUML

Variants

Evaluation

Metrics

Feature naming

via the FM

Feature naming via

FeatureClouds approach

Recall Precision

State State 100% 100%

Collaboration Collaboration 100% 100%

Activity Activity & diagram 100% 50%

Use case Use & case 100% 100%

Sequence Fig & sequence & diagram

& message

100% 25%

Deployment Fig & deployment &

diagram

100% 33%

Class Action & m & u & l &
model & list

0% 0%

Cognitive support Cr & to & name & do 0% 0%

Logging Log & info 100% 50%

In ArgoUML, there is a mismatch between the manual names

and the implementation details of some features. For example,

in the case of the cognitive support feature, there is a full

mismatch between the manual name and the words (or

vocabulary) arising from FIB. The most frequent words of the

cognitive support block are: cr, to, name, and do (cf. Table

VIII). Moreover, there is a full mismatch between the manual

name and the words appearing from FIB of a class diagram. The

most frequent words of the class block are: action, m, u, l,

model, and list (cf. Table VIII).

In the ArgoUML case study, findings show that recall

appears very high for the majority of retrieved feature names by

FeatureClouds (cf. Table VIII). This means that all words

formed the manual feature name are retrieved via word cloud.

For the class and cognitive support features, the recall metric is

equal to zero. This means that the approach was unable to

retrieve the feature name (or the words that make up the feature

name) from the word cloud for these two features. Considering

the precision metric, it is also quite high thanks to our

FeatureClouds approach that identifies feature names based on

the vocabulary of the IFIBs. Figure 8 shows the precision and

recall for state feature. For cognitive support and class features,

the precision metric is equal to zero. This means that our

approach was unable to retrieve the feature names for these

blocks, where the relevant words are not retrieved from the

word cloud.

For qualitative analysis of our approach, we evaluated

FeatureClouds with three software engineers familiar with

ArgoUML. Software engineers performed a feature naming

process for the IFIB by using word clouds. We asked to report

their feedback for FB naming. Engineers found that feature

naming using the word clouds consider an excellent method

where the retrieved cloud represents all words and their

frequencies for each block. Also, engineers found that the use

of the word cloud visualization technique has proven helpful in

supporting domain experts with feature naming, especially

when domain knowledge is missing. In addition, engineers

stated that the word cloud visualization paradigm is an effective

technique for feature naming and very helpful in the naming

decisions and accelerating the feature naming process.

R. AL-MSIE'DEEN et al.: NAMING THE IDENTIFIED FEATURE IMPLEMENTATION BLOCKS 107

Fig. 8. FIB, word cloud, manual feature name, named feature by

FeatureClouds, recall and precision metrics for state feature of ArgoUML

software

The results found that the best straightforward method for

extracting the feature name from a block of identifier names is

to split identifier names into fundamental words (e.g.,

OvalSettings → Oval + Settings). Also, to make the feature

name more clear, fundamental words must be returned to their

roots or stems (e.g., Logging → Log). In our work, when a

software identifier name is developed of partial mixed words,

the camel-case splitting algorithm is no longer useful and

should be enhanced with other methods. For instance,

gET_OptimizeN is split into “g”, “E”, “T”, “Optimize”, and

“N”.

To evaluate the performance of our approach, we selected a

large software system as a case study where the names of the

software features are well documented. FeatureClouds shows

excellent performance during the feature name process based

on the execution times. Also, the results show the scalability of

our approach to dealing with large, medium, and small systems.

The ArgoUML case study is considered a large software

system, where it is consists of 120,348 Lines of Code (LoC).

Table IX presents feature naming results of the ArgoUML case

study in more detail. The findings are characterized by metrics

NoC (Number of Classes), NoW (Number of Words), ET

(Execution Times) in ms, and MFW/R (Most Frequent Words/

Repetition).

TABLE IX

FEATURE NAMES DETAILS FOR ARGOUML SOFTWARE BASED ON FEATURECLOUDS

ID Feature name NoC NoW ET MFW/R

1 State 35 50 1303 State (32) Fig (15)

2 Collaboration 16 25 963 Collaboration (12) Diagram (9)

3 Activity 18 26 980 Activity (8) Diagram (8)

4 Use case 39 33 1019 Use (17) Case (17)

5 Sequence 38 47 1091 Fig (16) Sequence (12)

6 Deployment 20 23 990 Fig (8) Deployment (7)

7 Class 1494 581 10340 Action (317) Model (260)

8 Cognitive support 205 198 3279 Cr (86) To (35)

9 Logging 0 6 668 Log (2) Info (2)

FeatureClouds can be used to name the identified feature,

component, and service implementation blocks. Thus,

FeatureClouds is a general approach and applicable to naming

software features, components, and services. Also,

FeatureClouds can be used to name the concepts extracted from

the artifacts of the software system [23]. Moreover,

FeatureClouds can be used to get the important vocabulary of

the obtained evolution scenarios of the software system [24].

Comparing our approach to the work of Martinez et al. [12],

which is the only work in the literature that addresses the feature

naming process for the IFIBs based on the word cloud, we

found the performance of our approach is better than their work.

The proposed approach deals with all code granularity levels,

while their approach deals with software classes only. The work

of Martinez et al. [12] is a semi-automatic approach, where the

engineer manually analysis the words of the cloud to identify

feature names for the IFIB, while our work is an automatic

approach, where the suggested approach automatically retrieves

feature name to the IFIB without the intervention of domain

experts.

Also, the work of Martinez et al. [12] doesn’t show the

repetition for each word in the given block. While our work

shows the repetition for each word across a given block.

Moreover, our approach includes preprocessing of software

identifiers such as word splitting and stemming, while Martinez

et al. [12] deal with software identifiers as it without any

preparation process. Furthermore, the mined word clouds in the

work of Martinez et al. [12] are missing cloud filters, while our

clouds include unique filters such as short word and word-

frequency filters.

D. Threats to Validity

The threat to validity of FeatureClouds approach is that

software developers might not use a good vocabulary to name

software identifiers (i.e., identifiers are not properly named).

This means that word cloud may not be trustworthy in all cases

to assign a meaningful name to the IFIBs. Also, naming the

feature using the identifier names of the IFIB is not always

dependable. In the FeatureClouds approach, we rely on the most

frequent words in the word cloud to suggest the name for each

FIB. The proposed name may not be appropriate to the feature

108 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

role or functionality. This means that identifier names are not

suitable in all cases to retrieve feature name and should be

enhanced with other techniques. Moreover, when a software

engineer makes use of mixed words to label software identifiers

(such as MyRecTanGle) the camel-case splitting method can’t

handle these identifiers and should be improved with other

splitting algorithms. Furthermore, WordNet may not be

trustworthy in all cases to return the word root and should be

enhanced with other methods. Finally, a word cloud is missing

important filters such as search filter and the cloud should be

enhanced with other filters.

V. CONCLUSION AND PERSPECTIVES

FeatureClouds is an approach that employs a word cloud

visualization technique to provide feature names for the IFIBs

from a set of product variants or single software. It is

constructed for assisting software engineers in feature naming.

We evaluated it in numerous case studies such as ArgoUML

and drawing shapes software. The findings show its soundness

in feature naming. The findings of FeatureClouds have shown

some limitations for the feature naming process. For instance,

the suggested approach has returned irrelevant names to some

blocks, and this occurs when identifiers are not properly named

by software programmers. Thus, the retrieved feature name may

not be appropriate or reflect feature role or functionality in the

software system. Also, WordNet or camel-case method may not

be trustworthy in all cases to return the word root or to split

identifier name. Thus, these methods should be enhanced and

improved with other methods. In the current approach, we give

the same weights for all software identifiers types that make up

the IFIB. As future work direction, we plan to assess the use of

word weights for different software identifier types (i.e.,

package, class, method, and attribute). For instance, in the IFIB,

the word that belongs to the class name has more importance

(i.e., weight) than the word that belongs to the attribute name.

REFERENCES

[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in

source code: a taxonomy and survey,” J. Softw. Evol. Process., vol. 25,
no. 1, pp. 53–95, 2013. [Online], doi: 10.1002/smr.567.

[2] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of

product variants,” in 19th Working Conference on Reverse Engineering,
WCRE 2012, Kingston, ON, Canada, October 15-18, 2012. IEEE

Computer Society, 2012, pp. 145–154. [Online], doi: 10.1109/

WCRE.2012.24.
[3] P. Warintarawej, M. Huchard, M. Lafourcade, A. Laurent, and P.

Pompidor, “Software understanding: Automatic classification of software

identifiers,” Intell. Data Anal., vol. 19, no. 4, pp. 761–778, 2015.
[Online], doi: 10.3233/IDA-150744.

[4] A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,

“Using IR methods for labeling source code artifacts: Is it worthwhile?”
in IEEE 20th International Conference on Program Comprehension,

ICPC 2012, Passau, Germany, June 11-13, 2012, D. Beyer, A. van

Deursen, and M. W. Godfrey, Eds. IEEE Computer Society, 2012, pp.
193–202. [Online], doi: 10.1109/ICPC.2012.6240488.

[5] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H.

E. Salman, “Feature location in a collection of software product variants
using formal concept analysis,” in Safe and Secure Software Reuse - 13th

International Conference on Software Reuse, ICSR 2013, Pisa, Italy, June

18-20. Proceedings, ser. Lecture Notes in Computer Science, J. M.
Favaro and M. Morisio, Eds., vol. 7925. Springer, 2013, pp. 302–307.

[Online], doi: 10.1007/978-3-642-38977-1_22.

[6] H. E. Salman, A. Seriai, C. Dony, and R. Al-Msie’deen, “Recovering
traceability links between feature models and source code of product

variants,” in Proceedings of the VARiability for You Workshop -
Variability Modeling Made Useful for Everyone, VARY ’12, Innsbruck,

Austria, September 30, 2012. ACM, 2012, pp. 21–25. [Online], doi:

10.1145/2425415.2425420.
[7] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H.

E. Salman, “Mining features from the object-oriented source code of a

collection of software variants using formal concept analysis and latent
semantic indexing,” in the 25th International Conference on Software

Engineering and Knowledge Engineering, Boston, MA, USA, June 27-

29, 2013. Knowledge Systems Institute Graduate School, 2013, pp. 244–
249.

[8] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and S. Vauttier,

“Mining features from the object-oriented source code of software
variants by combining lexical and structural similarity,” in IEEE 14th

International Conference on Information Reuse & Integration, IRI 2013,

San Francisco, CA, USA, August 14-16, 2013. IEEE Computer Society,
2013, pp. 586–593. [Online], doi: 10.1109/IRI.2013.6642522.

[9] R. Al-Msie’deen, “Tag clouds for object-oriented source code

visualization,” Engineering, Technology & Applied Science Research,
vol. 9, no. 3, pp. 4243–4248, 2019. [Online], doi: 10.48084/etasr.2706.

[10] J. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P.

Heymans, “Feature model extraction from large collections of informal
product descriptions,” in Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, B. Meyer, L. Baresi, and M.

Mezini, Eds. ACM, 2013, pp. 290–300. [Online], doi:

10.1145/2491411.2491455.
[11] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,

“Automatic documentation of [mined] feature implementations from

source code elements and use-case diagrams with the REVPLINE
approach,” Int. J. Softw. Eng. Knowl. Eng., vol. 24, no. 10, pp. 1413–

1438, 2014. [Online], doi: 10.1142/S0218194014400142.

[12] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. L. Traon, “Name
suggestions during feature identification: the variclouds approach,” in

Proceedings of the 20th International Systems and Software Product Line

Conference, SPLC 2016, Beijing, China, September 16-23, 2016, H. Mei,
Ed. ACM, 2016, pp. 119–123. [Online], doi: 10.1145/2934466.2934480.

[13] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identification
from the source code of product variants,” in 16th European Conference

on Software Maintenance and Reengineering, CSMR 2012, Szeged,

Hungary, March 27-30, 2012, T. Mens, A. Cleve, and R. Ferenc, Eds.
IEEE Computer Society, 2012, pp. 417–422. [Online], doi:

10.1109/CSMR.2012.52.

[14] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and S. Vauttier,
“Documenting the mined feature implementations from the object-

oriented source code of a collection of software product variants,” in the

26th International Conference on Software Engineering and Knowledge
Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013, M.

Reformat, Ed. Knowledge Systems Institute Graduate School, 2014, pp.

138–143.
[15] S. Adjoyan, A. Seriai, and A. Shatnawi, “Service identification based on

quality metrics - object-oriented legacy system migration towards SOA,”

in the 26th International Conference on Software Engineering and
Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada, July

1-3, 2013, M. Reformat, Ed. Knowledge Systems Institute Graduate

School, 2014, pp. 1–6.
[16] S. Kebir, A. Seriai, S. Chardigny, and A. Chaoui, “Quality-centric

approach for software component identification from object-oriented

code,” in 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture,

WICSA/ECSA 2012, Helsinki, Finland, August 20-24, 2012. IEEE,

2012, pp. 181–190. [Online], doi: 10.1109/WICSA-ECSA.212.26.
[17] A. Shatnawi, A. Seriai, and H. A. Sahraoui, “Recovering architectural

variability of a family of product variants,” in Software Reuse for

Dynamic Systems in the Cloud and Beyond - 14th International
Conference on Software Reuse, ICSR 2015, Miami, FL, USA, January 4-

6, 2015. Proceedings, ser. Lecture Notes in Computer Science, I. Schaefer

and I. Stamelos, Eds., vol. 8919. Springer, 2015, pp. 17–33. [Online], doi:
10.1007/978-3-319-14130-5_2.

[18] R. Al-Msie’deen, “Reverse engineering feature models from software

variants to build software product lines: REVPLINE approach.(
Construction de lignes de produits logiciels par rétro-ingénierie de

modèles de caractéristiques à partir de variantes de logiciels: l'approche

R. AL-MSIE'DEEN et al.: NAMING THE IDENTIFIED FEATURE IMPLEMENTATION BLOCKS 109

https://doi.org/10.1002/smr.567
https://doi.org/10.1109/WCRE.2012.24
https://doi.org/10.1109/WCRE.2012.24
https://doi.org/10.3233/IDA-150744
https://doi.org/10.1109/ICPC.2012.6240488
https://doi.org/10.1007/978-3-642-38977-1_22
https://doi.org/10.1145/2425415.2425420
https://doi.org/10.1145/2425415.2425420
https://doi.org/10.1109/IRI.2013.6642522
https://doi.org/10.48084/etasr.2706
https://doi.org/10.1145/2491411.2491455
https://doi.org/10.1145/2491411.2491455
https://doi.org/10.1142/S0218194014400142
https://doi.org/10.1145/2934466.2934480
https://doi.org/10.1109/CSMR.2012.52
https://doi.org/10.1109/CSMR.2012.52
https://doi.org/10.1109/WICSA-ECSA.212.26
https://doi.org/10.1007/978-3-319-14130-5_2
https://doi.org/10.1007/978-3-319-14130-5_2

REVPLINE),” Ph.D. dissertation, Montpellier 2 University, France,
2014. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01015102

[19] G. A. Miller, “Wordnet: A lexical database for English,” Commun. ACM,

vol. 38, no. 11, pp. 39–41, 1995. [Online], doi: 10.1145/219717.219748.
[20] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,

“Reverse engineering feature models from software configurations using

formal concept analysis,” in Proceedings of the Eleventh International
Conference on Concept Lattices and Their Applications, Kosice,

Slovakia, October 7-10, 2014, ser. CEUR Workshop Proceedings, K.

Bertet and S. Rudolph, Eds., vol. 1252. CEUR-WS.org, 2014, pp. 95–
106. [Online], http://cla.inf.upol.cz/papers/cla2014/paper8.pdf.

[21] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software

product lines: A case study using conditional compilation,” in 15th
European Conference on Software Maintenance and Reengineering,

CSMR 2011, 1-4 March 2011, Oldenburg, Germany, T. Mens, Y.

Kanellopoulos, and A. Winter, Eds. IEEE Computer Society, 2011, pp.
191–200. [Online]. Available: https://doi.org/10.1109/CSMR.2011.25

[22] R. Al-Msie’deen, “Featureclouds prototype,”

Available: https://sites.google.com/site/ralmsideen/tools, April 2022.
[23] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier, and A.

Al-Khlifat, “Concept lattices: A representation space to structure

software variability,” in 2014 5th International Conference on
Information and Communication Systems (ICICS). IEEE, 2014, pp. 1–6.

[Online], doi: 10.1109/IACS.2014.6841949.

[24] R. Al-Msie’deen and A. Blasi, “Software evolution understanding:
Automatic extraction of software identifiers map for object-oriented

software systems,” Journal of Communications Software and Systems,

vol. 17, no. 1, pp. 20–28, 2021. [Online], doi: 10.25138/jcomss.
v17i1.1093.

Ra'Fat Al-Msie'Deen is an Associate Professor in
the Software Engineering department at Mutah

University since 2014. He received his PhD in

Software Engineering from the Université de
Montpellier, Montpellier – France, in 2014. He

received his MSc in Information Technology from

the University Utara Malaysia, Kedah – Malaysia,
in 2009. He got his BSc in Computer Science from

Al-Hussein Bin Talal University, Ma'an – Jordan,

in 2007. His research interests include software
engineering, requirements engineering, software

product line engineering, feature Identification, word cloud, and formal

concept analysis.

Hamzeh Eyal Salman is an Associate Professor
at Mutah University since 2014. He received his

PhD in Software Engineering from the Université

de Montpellier, Montpellier – France, in 2014. He
received his MSc in Computer Science from the

University of Jordan, Amman– Jordan, in 2010.

He got his BSc in Computer Information Systems
from Al-Hussein Bin Talal University, Ma'an –

Jordan, in 2006. His research interests include

software engineering, software product line
engineering, and formal concept analysis. He has

published several papers in reputed journals and conferences.

Anas H. Blasi is an Associate professor in the

Data Science department at Mutah University. He

earned the MSc in Computer Science from
University of Sunderland (UK) in 2010, and the

Ph.D. in Computer and systems Science from the

State University of New York at Binghamton
(USA) in 2013. Dr. Blasi research area is focusing

on AI, Data Mining, Data Science, Machine
Learning, Optimization algorithms, Fuzzy logic,

and EDM. He has published several papers in

reputed journals and conferences.

Mohammed A. Alsuwaiket is an Assistant

professor in the Computer Science and
Engineering Technology department at

University of Hafr Al-Batin. He earned the MSc

in Computer Science from University of
Hertfordshire (UK) in 2012, and the Ph.D. in

Computer Science from Loughborough

University (UK) in 2018. Dr. Alsuwaiket research
area is focusing on AI, Data Mining, Machine

Learning, Fuzzy logic, and EDM. He has

published several papers in reputed journals and conferences.

110 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

https://tel.archives-ouvertes.fr/tel-01015102
http://doi.acm.org/10.1145/219717.219748
http://cla.inf.upol.cz/papers/cla2014/paper8.pdf
https://doi.org/10.1109/CSMR.2011.25
https://sites.google.com/site/ralmsideen/tools
https://doi.org/10.1109/IACS.2014.6841949
https://doi.org/10.24138/jcomss.v17i1.1093
https://doi.org/10.24138/jcomss.v17i1.1093

