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email: stos@math.univ-bpclermont.fr

March 16, 2005

Abstract

We prove the Boundary Harnack Principle related to fractional powers of Laplacian for
some natural regions in the two-dimensional Sierpiriski carpet. This is a natual application
of some more general approach based on the Ikeda-Watanabe formula.

Résumé

Nous présentons le principe de Harnack a la frontiere pour des puissances fractionaires
du laplacien dans les domaines naturels du tapis de Sierpinski 2-dimensionel. C’est un
exemple tres naturel d’un argument plus général basé sur la formule d’Tkeda-Watanabe.

1 Introduction

Analysis on the Sierpiriski carpet (and on a class of similar sets) has been developing
for over ten years (see [BBI], [BB2] and references therein). Barlow and Bass showed
numerous results including e.g. the construction of the analogue for the Brownian motion,
the estimates of its transition densities (the heat kernel) and the Harnack inequality. It
is natural to refer to the corresponding generator as to the Laplacian, even though this
is not known whether this Brownian motion is unique or not. In this paper we deal with
a fractional power of this Laplacian defined by means of subordination procedure (see
below). For this operator we give a proof of the Boundary Harnack Principle for some
natural regions in the fractal.

In [BSY] ([BSS1]) the Boundary Harnack Principle was established for cells in the
Sierpiniski gasket (or, more generally, simple nested fractals). The proof in that case
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resembled the one for intervals in the real line. In particular, the Boundary Harnack
Principle was a consequence of the (elliptic) Harnack inequality. This simplification was
due to the finite ramification property of the Sierpinski gasket, i.e the fact it can be
disconnected by taking away a finite number of points. In particular, the boundary of
some natural regions (e.g. small triangles) is always a set with a finite number of elements.
Certainly, the method of [BSY] can not be carried out to infinitely ramified fractals, such
as the Sierpiniski carpet.

In what follows we were influenced by [B] which solves the problem in the case of
Lipschitz domains in RY. Our contribution is a different methodology in proofs which
can be described as follows. We have no analytic tools and no exact formula for the
Poisson kernel of the ball which are used in [J] (cf. e.g. Lemma 3 or Lemma 12 in that
paper). Also, a related proof in [EW]] uses theory of smooth functions on RY. Our aim is
to present a more general approach relied on the Ikeda-Watanabe formula. The Sierpinski
carpet makes a natural opportunity for application of this argument. Certainly, the latter
depends on the geometric issues, it seems, however, not to be restricted to this particular
fractal.

2 Preliminaries

We consider the (unbounded) Sierpinski carpet F' which is defined as follows. Let Fy =
[0,1)2. Let A be the interior of the middle square of the relative size 1/3, ie. A =
(1/3,2/3)%. Set I} = Fy \ A. Then Fj consists of eight closed squares of side 1/3. To
obtain F5 we apply subsequently the above subtraction procedure to these squares in Fi,
and so on. Set

o0 o0
Fo=()F F=|J3F
n=0 n=0

We call F' the (unbounded) Sierpinski carpet.

By a natural cell (or simply cell) we mean the intersection of F' with a square of the
form [k37", (k+1)37"] x [m3™",(m + 1)37"], k,m,n € N. The family of cells with sides
37 is denoted by S,,.

In what follows D always denotes a region in F' i.e. the interior of a sum of finite
number of natural cells. Since a cell can be viewed as an union of cells of smaller size,
we may and do assume that D consists of cells which have the same size and disjoint
interiors. In other words, there exist ng,mo € N, and S; € S, ¢ = 1,2, ..., ng such that

D =int(| ] 5). (1)
=1

Note that the interior is taken with respect to the topology of F' (inherited from R?) and
since S; are closed, any two adjacent cells always make a connected set. Moreover, the
distance between any two disjoint cells in D is at least Ry = R1(D) > 0. Let Ry = 370
(i. e. Rg is the side of cells in D). Set Ry = (1/3) min(R;, Rg), the number that describes
Lipschitz character of D.

Notation and conventions. For x € F and D C F' we denote 6(z) = dist(x, D). For
A C F we write A = F'\ A. By B(x,r) we denote the Euclidean ball (with the center
x € F and the radius r > 0) intersected with F. For z,y € F, |x — y| always means the
Euclidean distance. Let d = dim(F') be the Hausdorff dimension of F. By u we denote
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the d-dimensional Hausdorff measure restricted to F'. In the sequel ¢ (without subscripts)
denotes a generic constant that depends only on F' and « (see below) and may change its
value from one instance to another. Constants are numbered consecutively within each
proof. We write f(z) =< g(z), z € F, to indicate that there are constants cj,ca > 0
(independent of z) such that ¢; f(z) < g(x) < cof (x) for all z € F.

To introduce the fractional power of the Laplacian in our framework, we shortly recall
the definition of the a-stable process from [§ (cf. also [KI],[FJ]). Let q(u,z,y), u > 0,
z,y € F, denote transition density (with respect to u) of the fractional diffusion ([Bd],
[BBI]) on F. Set a € (0,2) and let m(-), ¢ > 0, be a function on RT characterized by
its Laplace transform L£(n:(-))(A\) = exp(—tA®/?). (see [Bq] or [BG] for more details and a
probabilistic interpretation). For ¢ > 0 and z,y € F we define

p(t,:ﬂ,y) = /OOO q(u,x,y)m(u)du

By the general theory p(t,z,y) is a transition density of a Markov process called the
subordinate process (see [BG], p. 18]), which we denote by (X;)¢>o and call a-stable. Its
generator may be naturally labelled as the A®/2.

To simplify the notation, for the rest of the paper we let d, = d+ ad,, /2, where d,, s,
in general, a constant characteristic for the fractal. For the Sierpinski carpet d,, ~ 2.097.

For a Borel set B C F we define exit time 7p = inf{t > 0: X, ¢ B}. Let u be a
Borel measurable function v on F', which is bounded from below (above). We say that u
is a-harmonic in an open set U C F' if

u(z) = E*uw(X(7B)), r € B,

for every bounded open set B with the closure B contained in U. We say that u is reqular
a-harmonic in U if
u(z) = E*uw(X (1)), zeU.
For a Borel subset 2 C F' denote by w the harmonic measure, i. e. w§(E) = P*[X,, €
We say that Q C F has the outer fatness property (cf. [BSS]) if there are constants
c1 = c1(Q) and rg = ro(2) such that

w(Q°N B(x,r)) > errd, x €0, re(0,rg). (2)

We say that Q has the inner fatness property if there exist constants § = 6(2) € (0,1)
and 9 = ro(€2) such that for every r € (0,79) and @ € 9 there is a point A = A4,(Q) €
QN B(Q,r) such that

B(A,0r) C QN B(Q,r). (3)
Remark. Observe that (J) and (§) holds for a region D. It follows that the Carleson
estimate given in Proposition 8.5 of [BSY| applies. For the sake of convenience we state it
below (Lemma R.1)). Note that if D is a cell of size 37% (or a finite union of them) then it
satisfies (f]) with 7o = ro(k) and € which is an absolute constant, e. g. § = 1/9. We will
use this fact without further mention dropping from the notation the dependence on 6.

Lemma 2.1. Assume a < 2/d,,. Let @ C F be a set satisfying ({). There exist a
constant ¢; = c¢1(0) such that for all Q € 0Q and r € (0,79/2), and functions u > 0,
regular a-harmonic in QN B(Q,2r) and satisfying u(x) = 0 on Q°N B(Q, 2r), we have

u(z) < cru(A), r € QNB(Q,r), (4)
where A is given in ([3)



It can be seen from the proof in [BSY| (cf. also [B, (3.29)]) that () holds for z €
QN B(Q,5r/4), i.e. we have

u(@) < eru(d), e QN B, %). (5)

This fact will be invoked later.

Finally, we include the following remark which is due to Prof. Takashi Kumagai [K3].
The Harnack inequality that we apply here was proved in [BSY] for a@ € (0,2/dy) U
(2d/d,,,2). However, observe that once we have transition density estimates ([BSY, The-
orem 3.1]) then it is relatively easy to deduce the tightness, i.e. Proposition 4.1 of [[CK]
for all @ € (0,2). Actually, this result is contained in [BSY, Lemma 4.3] (note a dif-
ferent conventions: « in [[CK|] means ad,,/2 from [BSY]). Using this and [CK|, Lemma
4.7) one verifies Lemmas 4.9 - 4.13 of [CK]. Consequently, we can repeat the proof of
the parabolic Harnack inequality [[CK], Proposition 4.3]. This in turn gives our (elliptic)
Harnack inequality for all « € (0, 2).

Unfortunately, in the present paper we have to assume even stronger restrictions on
o (see Lemma B.4). However, we believe the restrictions are of the technical nature and
once we have the Harnack inequality for o € (0,2), the boundary Harnack Principle holds
for the same range of «.

3 Boundary Harnack Principle

The main result can be stated as follows.

Theorem 3.1 (Boundary Harnack Principle). Let o < 2(d — 1)/d,,. Suppose that
D is a region, Q@ € 0D and r € (0,Ry/2). Then for any functions u,v > 0, positive
regular a-harmonic in D N B(Q,2r) and with value 0 in D¢ N B(Q,2r), and satisfying
u(Ar(Q)) = v(Ar(Q)) we have

ey lu(z) < ux) < cov(z), x € DNB(Q,r/27),
where ¢, = co(D).

We start the proof by stating some lemmas. Their assertions have analogues in [H].
However, there are essential changes in the argument. This is required at least for a key
step of comparison of the harmonic measure and the Green function for a region (Lemma
B.4). Moreover, the proofs we provide are more elementary in the sense they rely on basic
properties of the process. In particular, we make use of Ikeda-Watanabe formula and the
transition densities estimates (Proposition 6.1 and Theorem 3.1 in [BSY]). The price we
pay at the moment is the restriction on « (see Lemma B.4).

Lemma 3.2. There exist ¢cg > 0 such that for any D, all Q € 0D and r € (0, Ry) we
have
w%(B(QaT)) > €o, T € B(Q,T) nD.

Proof. Fix x € B(Q,r) N D. Recall that y — Pp(z,y) is the Poisson kernel for a region



D, i.e. the density of w”*(-). By [BSS, Proposition 6.4] and (f]) we get

wh(B(Q,7)) = PU[Xrp, 502 € B(@,7) N D"
> / PB(:B,(S(:B)/?) (x’ y)d:u(y)
B(Q,é(x))NDe
> cba)r? [ 2~y du(y)
B(Q,é(x))ND¢e
> cd(x)* P (26(x)) " w(B(Q, 5(w)) N D)
> €o,
which completes the proof. O

Recall that for a region D, (B) and (f) hold with some constants Ry and 6.

Lemma 3.3. Let a < 2d/d,,. There exists a constant ¢y such that for any region D, all
Q€ 0D, re (0,Ry) and x € D\ B(Q,r) we have

Tdfadw/2GD(x’Ar/2(Q)) < cwh(B(Q,1)).

Proof. First we show
wp(B(Q,r)) = cP*[Tp, < Tp], (6)

where y = A, »(Q) and B, = B(y, ). For x € D we have

wp(B(@Q,7))

Y

Ex[]-B(Q,T)(XTD); TBy < TD]
Ex[EX(TBy)[lB(Q,r) (XTD)]; TBy < TD]
inf Ew]—B(Q,r)(XTD)Px[TBy < TD]

wWE By

v

Y

inf  W4(B(Q,r) P [Ts, <
wegl(w)wp( (Q,r))P*[T, < Tp]

coP*[Tp, < 1p],

Y

where ¢y comes from Lemma B.9.
Now fix x € D\ B(Q,r). We claim that there exist ¢y such that

2Gp(z,y)d(y)*—od/? < P*[Tp, < 1p]. (7)

To prove our claim observe that Gp(z,-) is a-harmonic on D \ {z} (for a # 2d/d,,
see e. g. [BSY]). Note that B(y,d(y)) C B(y,r/2) C B(Q,r). Hence = ¢ B(y,d(y)) and
B(y,6(y)) € D\ {x}. By the Harnack inequality for the ball B(y,(y)) we get

¢;'Cplx,2) < Gple,y) < esCple,2), = € Bly,o(y)/2). ®)

Since 0r/2 < §(y) we have B, C B(y,d(y)/2) and hence, by (§) and the strong Markov



property,

c0~Gp(z,y)u(By)

c / Gp(e, 2)du(2)
By

cGplp,(z)

D
cE® |:/ IBy(XS)dS; TBy < TD:|
0

Gp(z,y)d(y)?

Il INIA

™
_ CEm[EX(TBy) [/0 IBy(Xs)ds} ; Tp, < D]

TD
< cP*[T', < 7p| sup Ew[/ 1p,(Xs)ds].
weBy 0

It is easy to see that for w € B(y, s) we have

dp(z) / dp(2) dw/2
— < — T < /2 > 0,
/B(%S) ‘w _ Z‘d—adw/Z — B(w,2s) ’w _ z’d_adw/Z =~ Cs s

cf. [BSY, Lemma 2.1]. It follows that for w € B, we have

™ 00
Ew/ 1p,(Xs)ds < / E"1p,(Xs)ds
0 0

= [ [ sswvidsdnto
By Jo
dp(v)
< P\
= c/;y ’U—W‘d_adw/Q

ady /2
< . (6’5(2/)) ’
- 4

where the last but one inequality is justified by [BSY, Lemma 5.3]. Note that this is the
only place where we used o < ds. The claim follows.

Since Or/2 < §(y) < r/2 (ie. 6(y) < r), () and ([) imply the assertion of the
lemma. U

Lemma 3.4. If o < 2(d — 1)/d,, then there exists a constant ¢i such that for any D, all
Q € 0D and r € (0,Ry/2) we have

wh(B(Q,r) < err ™/ 2Gp(w, 4,5(Q)), =€ D\B(Q,2r).

Proof. Fix x € D\ B(Q,2r). It can be observed that the harmonic measure does not
charge OD. Indeed, it is enough to adapt Lemma 6 of [J] with outer cone property
replaced by (f]). For the sake of reader’s convenience we sketch the argument. Denote
Te = TB(z,8(x)/3)- Lhen, by the strong Markov property,

wph(0D) = P*[X,, € 0D] + E”C[wg”; X, € D] =:po(z) + ro(x).

Define inductively
Pr+1(z) = E¥[pr(Xr,); Xr, € D],



res1(z) = E*[ri(Xe,); Xr, € DI
Then ry = pr+1 + 741, £ =0,1, .., and
whH(0D) = po(z) + p1(x) + ... + pr(z) + ri(x), € D, k=0,1,.. 9)
Let zp € 9D be such that |zg — z| = §(x). By [BSS, Proposition 6.4] and (f) we get

PIX,. € DY > PU[X,, € B(xo,8(z)) N D
> c5(.%')adw/2/ d:u(y)d
B(wo,6()nDe |T — Y%
cd(z)dw /2
(25(z))d "

€o,

(B(xo,6(x)) N D)

Y

for each x € D. Consequently,

k+1

sup rg41(z) < (1 —co) suprg(z) < (1 =)™ — 0, k — 0.

zeD zeD

From (9) it follows that

wh(0D) =) pi().
k=0

Since p does not charge 9D we immediately get pip(z) = 0, x € D, k = 0,1,.. (see also
the remark after Corollary 6.2 in [BSS]). This gives our claim.

Now, since w},(0D) = 0, from the Ikeda-Watanabe formula (see also [BSY, (51)]) we
have

SHB@r) = [ e
Gp(z,z)
/B(Q,r)mpc /D T2 = g W) (y)

- </D\B(Q,%)+/DmB(Q,§TT)) Gp(@;2) /B M] du(2)

@.nnpe |2 = y|de
= J1+ J.

X

First we deal with the integral Ji. Let Ag = A, /2(Q). Then we have |z —y| > r/4 and so
|2 = Aol <[z —yl+[y— Aol < [z —yl+ (3/2)r < |z —y[ + 6]z — y| = 7|z — y|. It follows
that

dﬂ(y) c crd
< w(B(Q,r)) x ———————
/B(Q,r)ch [z = ylde ™ |z = Ag|% (B@r) |2 — Ap|de
and el )
X,z
Jp < crd/ TP qu(z). 10
D\B(Q,5r/4) |2 — Ag|de (2) (10)

Denote By = B(Ay, 0r/2). For the Poisson kernel of the ball By by [BSS, Proposition 6.4]
we have

(Or /2)0 /2

Pp, (A >
Bo (Ao, 2) 2 ¢ |2 — Ag|da

z € Bg.
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By rearranging and putting this into ([[(J) we obtain

Jy < epi-adu/2 / Piy (Ao, 2)Gp (, 2)dp(2).
Bg

Since z — Gp(w,z) is regular a-harmonic on By, the last integral does not exceed
Gp(z,Ap). Remark that the integral is not necessarily equal to Gp(x, Ap), since we
do not know whether the process hits the boundary of By; however, we do not need this
fact and the equality. Finally,

Ji < er et RGp (A (Q)), (11)
as desired.
To deal with the integral Jo observe that
d, d
/ u(y)d < / u(y)d < d(z) o 2,
BQ.NDe 12 = Yl% T JBs(z))e 12—yl

where the last inequality is justified by Lemma 2.1 of [BSY. Since z — Gp(z, z) is regular
a-harmonic on D N B(Q, 2r), from (f) it follows that

5o< e / G (e, 2)8(=) " 2du(z)
DNB(Q,5r/4)

IN

Gz, Asr4(Q)) /D oy SO ), (12)

We have |As,/y — Ao| < [Aspys — Q +|Q — Ag| < 51/4 +17/2 < ¢(0r/2). By BSS,
Lemma 7.6] with 71 = As, /4 and z9 = Ag = A, /2(Q) we obtain

GD(xaAST/Zl(Q)) < CGD(xaAT/Q(Q))' (13)

Now, it is enough to estimate

/ 5(2) "% 2 ().
DNB(Q,5r/4)

Let k, € N be such that 37%~1 < 5r/4 < 37k, Then, clearly, r =< 37%. Let Hy be
the union of cells S that satisfy
(a) S e Sk,
(b) SCD,
(¢) 9SNAD # 0,
(d) SN B(Q,5r/4) # 0.

In other words Hy is a covering of D N B(Q,5r/4) by smallest cells adjacent to 9D.
Define Hy, k = 1,2,..., in the same way as Hp but with (a) replaced by S € Sj, 1 and
(d) replaced by S C Hy. Thus, Hy, is a layer of cells of side 37%=*% adjacent to 9D N dH,.
Then, there is at most hj, = 2.3% + 1 cells in Hy, k = 1,2,... (this may happen when H



consists of three cells, i.e. Q € JD is a corner point). Let Ry = Hy \ Hx11. Then z € Ry,
implies §(z) > 3~ (Fotk+1) > 3=k Tt follows that

/ 5(z) o dp(z) < Y / 5(z) 0k 2dp(2) (14)
DNB(Q,5r/4) k=0 Bk
< Y (3Rl (Ry)
k=0
< Crfadw/Z Z 3kadw/2(37k,’n)dhk
k=0
< epdade/? Z gk(adw /2—d+1)
k=0

S Crdfadw/Z’
provided a < 2(d — 1)/d,,. Combining (1), (12), (13) and ([4) we get the assertion. [
Remark. In our particular case 2(d — 1)/d,, =~ 0.851.

Proof of Theorem [5.]. This is based on a general idea of the proof of Lemma 13 from [B].
Since the context is different, we present a version adapted to our needs. The argument
goes the following way. First, we introduce the basic geometrical objects and notations.
Then, the first step of the proof is to establish the comparability of the harmonic measures
of the region A and of its propper subset By (see below). This is given in ([[d) which is a
key ingredient in the proof. Then we decompose the functions to be compared into two
parts ([[7). In Steps 2 and 3 we prove the inequality for each of these parts: ([[9) and (24)
respectively. Step 2 is the crucial one and it uses ([L§); Step 3 is covered by the Poisson
kernel estimates and the (usual) Harnack inequality.




Let N € N be such that 37V < r < 37N+ For Q € 9D let S¥(Q), i = 1,2, be cells
from Sy such that @ € S7(Q) € D. There can be one, two or three such cells indexed

by v. Define
Q; = int <U S;(Q)) . i=1,2

If the union above consists of the single S1(Q) then we set

2
Q; = int (S}(Q) vl N;’(Q)) . i=1,2.
v=1

where N} are the neighbours of S}(Q), i.e. cells satisfying
(i) N/ € Syt and N} C D,
(ii) ONY NAD NdSHQ) # 0 (recall that cells are closed).

Finally, denote Q2 = ;.

Set # = 37V =3 and let A € Q2 be a point such that dist(A4, D¢) = 37 and dist(A, Q) = 7
(clearly, A is not unique).
Remark. In the course of the proof it is convenient to identify A with A,(Q) from the hy-
pothesis of our theorem. Note that there is no loss of generality; indeed, by [BSY, Lemma

7.6] we have u(A4,(Q)) < u(A4,(Q)) for any harmonic function u satisfying hypothesis of
Theorem 3.1 and points A,(Q), A,(Q) of the inner fatness property. Actually, this is the
reason we can use our our definition of A and A,(Q) without determining uniquely the
points.

Let B; € Syys, i = 1,2,..,n9(Q), are cells satisfying B; € D N Q¢ and B; N IQ # (.
Since 18 < ng(2) < 54, we drop the dependence ny on  without further mention. Set
B; to be one of B; satisfying additionally dist(Bl, 0D) > 8. Let S; be the mid-point of
the line segment 9 N dB;; if the set consists of one point {z,} then let S; = z,( a vertez
point). Let B; = B(S;,7v/2) and

A:UBmDmQC.

Let A; € Q, i = 1,2,..np, be the point such that |4; — S;| = dist(4;,5(Q)) = 7/3,
provided S; is not a vertex point of €, and |A4; — S;| = 7/2/3 in the opposite case.
dist(A;, 6(€)) = 7/3. Since dist(By, D) > 8 then there exists a cell, denoted by T, such
that ' € Syya, T C D\ (QU A), dist(T, D¢) > 8 and dist(T, By) < 7.

STEP 1. Let § = 1/9. Then if 2 € B(A;,07v/2/2) then |z — S;| < |z — As| +|A; — S| <
7V2/18 + 7/2/3 < 7v/2/2, which yields B(A4;,07/2/2) C QN B(S;,7v/2/2). In other
words, A; can be regarded as A; ;5 /2(Si) in the inner fatness property (f) for Q. It follows
that by Lemmas B.J and B.4 applied to  and B; we get

(7V/2)47 0w /2Go (2, As) = wi (B;), 2 € Q\ B(S;,27V?2).
For the rest of the proof fix z € Q3. Then |z — S;| > 67, i = 1,2, ...,n9, and hence

Fade/2Ga (2, Ay) = wi(By).
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Recall dist(A, D¢) = 37. Since dist(4;,00) = 7/3, |4; — A] < diam(Q2) < ¢(7/3) and
Gq(w,-) is regular a-harmonic in B(A;,7/3) U B(A,7/3), by Harnack inequality ([BSS,
Lemma 7.6]) we obtain

Ga(z, A;) < Go(x, A). (15)
It follows that .
wh(A) < 300 wh(Bi)
= jpd-adw/2 anoo Ga(x, A;)
d—adw /201 (16)
= e/ 2Gg(z, Ay)
= wé(Bl)
STEP 2. Let w1, us be functions such that
_July),  yeA, [ 0, yeA
uly) = { 0, yeo\A, ualy) = { uly), year\a, U7

and u; and wg are regular a-harmonic in €2. Note that ui,us > 0 and u; + us = u.
Analogously we define v and vs.

By (H) and ([Ld) we obtain

Erfu(Xr); Xrg € 4
sup{u(z); » € Ak (A)
cu( Aty (A)
cu(A)w§(Br).

up(x)

(18)

ININIA I

Since dist(AU B1,0D) > 7 and for y € B; we have dist(A4,y) < diam(2) +diam(B;) <
ci, from [BSS, Lemma 7.6] it follows that

vi(y) =v(y) = cw(4), ye B

Consequently, we have

vi(z) = Ew(Xn,); X € A
= E$[’U(X7—Q); XTQ € Bl]
> cv(A)ws(By).
Combinig this and ([L§) we get
ui(x) < cvi(z) < cv(z). (19)

STEP 3. Now, let K = QUAU(DNB(Q, 2r)). Clearly, |J; B; C A. Soif z € D\(QUA)
then dist(z,Q) > 7. Hence, for z € Q and y € K¢ we have |y — z| < |y — Q|. Therefore,
by the Tkeda-Watanabe formula

w@) = [ Pa@yu)du)
= [ ([ Gate 2~ sl au)) uiauto)
= [ ([ Gate.1ne) ) utly ~ @1 dut)
= B [l - QI du(y)
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From this and the analogous relation for vs it follows that

ug () Jug(A) =< E*rq/EA7q = va(x) Jua(A). (20)
We claim that
v2(A) > cv(A). (21)
Indeed, recall that TN A = () and we have
0(A) 2 BA(Xey): Xy €T] > inf o()(T). (22)

Since dist(A U T,9D) > 37 and dist(A,T) < cr, by the Harnack inequality we have
v(z) < v(A), zeT. (23)

Moreover, diam(Q2) =< diam(7T") =< dist(Q2,T) < 7 yields |y — z| < 7, y € Q, z € T. Hence,
by [BSS, Proposition 4.4]

b = [ [ Galdv) ) yau(z)

ly — z|de

Fda z
/T/QGQ(A,y)du(y)du( )
= ,u(T)f_d“EATQ

> o PR g4 = c,

X

where ¢ is independent of Q, T', r, etc. Putting this and (J) into () we get our claim.
Denote the last quotient in (B{) by ¢,. Then, by (Rd), definition of us, the assumption

u(A) = v(A) and (E1),

uz(z) < eqouz(A) < cqou(A) = cqov(A) (24)
< cqov2(A) = cvg(x) x € (.
Together with ([9) and the symmetry this ends the proof. O

Remark. Although the proof relies on particular geometric properties of the Sierpinski
carpet, we believe that this argument can be carried out to a slightly wider context, e.g.
to generalized Sierpinski carpets.
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