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Abstract  
 

The confirmed approach to choosing the number of principal components for 

prediction models includes exploring the contribution of each principal component 

to the total variance of the target variable. A combination of possible important 

principal components can be chosen to explain a big part of the variance in the 

target. Sometimes several combinations of principal components should be 

explored to achieve the highest accuracy in classification. This research proposes a 

novel automatic way of deciding how many principal components should be 

retained to improve classification accuracy. We do that by combining principal 

components with the ANOVA selection. To improve the accuracy resulting from our 

automatic approach, we use the bootstrap procedure for model selection. We call 

this procedure the Bootstrapped-ANOVA PCA selection. Our results suggest that this 

procedure can automate the principal components selection and improve the 

accuracy of classification models, in our example, the logistic regression. 
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Introduction 
Dimensionality reduction techniques are widely used in big datasets to decrease the 

size of the dataset. Feature selection methods are a dimensionality reduction 

technique that reduces the number of features in the dataset by keeping the most 

informative ones. Feature selection methods include lasso (Tibshirani, 1996), adaptive 

lasso (Zou, 2006), nonnegative garrote (Breiman, 1995), etc. Feature selection 

methods are also known as variable selection methods. They identify the variables of 

the biggest importance for the model and discard the rest.  

 Textbooks provide another type of dimensionality reduction technique – the 

principal component analysis (PCA) (James et al., 2013). The principal component 

analysis transforms the dataset from high-dimensional space to low-dimensional 

space (James et al., 2013). PCA finds variables that have linear correlation and 

transforms them into principal components. Each principal component is a linear 

combination of the original variables in the dataset. The criterion to perform 

dimensionality reduction is often by keeping the number of principal components 

that explain the biggest percentage of the variance in the target variable. Usually, 

the first, second, or third principal component is enough to build a model (James et 

al., 2013). Principal component analysis can be used either as an exploratory data 

technique or a dimensionality reduction technique for predictive modeling. 

 The principal component analysis consists of several steps. The first step is 

standardization, which gives equal weight to the initial variables. Second, the 

covariance matrix needs to be computed. The covariance matrix helps us identify 

which variables are highly correlated and contain noise. Third, we compute the 

eigenvectors and eigenvalues of the covariance matrix to extract the principal 

components (James et al., 2013). Principal components are new variables that 

contain some of the original variables. Principal components are uncorrelated and 

contain a linearly transformed combination of original features. The first several 

features usually contain the biggest portion of the information necessary to explain 

the variability in the target variable (James et al., 2013). The issue with the standard 

approach is that the research should choose among two or three options for the 

number of principal components. As James et al. (2013) outline, in some cases, the 

researcher may need to choose between the first three and the first four principal 

components, and the choice is made based on the researcher’s experience and 

many other subjective factors. This is because the first three or four principal 

components may have almost undiscerning success in explaining a bigger 

percentage of the variance in Y. To solve this issue, we propose the ANOVA-Boot-

PCA-LR model to choose the number of principal components in the logistic 

regression. 

 The standard approach (James et al., 2013) has been applied in many research 

papers, including recent ones (Salata et al., 2021). Some researchers, however, 

propose updated PCA algorithms to solve this issue. For instance, Pacheco 

(Pacheco et al., 2013) proposes several steps to perform variable selection using the 

PCA. Thus, he avoids the direct issue of what number of principal components to 

use. Our approach is similar to his as we use the feature selection method (the 

ANOVA model). Unlike him, we perform PCA selection rather than variable selection. 

New modifications of the PCA are developed to address the lack of an automatic 

algorithm for principal components selection. For example, Kim et al. (2011) propose 

an unweighted version of principal component analysis for variable selection. Unlike 

us, they modify the equation of the PCA to get more accurate results when choosing 

the number of principal components for variable selection. Prieto-Moreno et al. 

(2015) use the discriminant information contained on the principal components for 
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their selection. This is a different approach for identifying the principal components 

analysis in academic literature. Rather than using the percentage of variance 

explained, Prieto-Moreno et al. (2015) introduce a “separability measure between 

multiple failures” to select the number of principal components. He tests his 

approach in the chemical industry. His approach, however, was devised to meet the 

needs of a specific industry but still improves the results from the standard PCA 

approach. 

 Sharifzadeh et al. (2017) propose a sparse PCA method called SSPCA for data 

pre-processing and dimensionality reduction. Their PCA version modifies the way 

eigenvectors and eigenvalues are computed. Their modification is applicable in 

large datasets where the noise coming from many variables should be reduced. 

Their modification represents another possible direction for improving the PCA and 

making it automatic. Unlike them, we do not introduce modifications in the 

eigenvectors and eigenvalues. Gajjar et al. (2017) propose a novel method to select 

non-zero loadings in sparse PCA. He proposes a genetic algorithm to identify the 

number of non-zero loadings instead of using eigenvalues and eigenvectors as in the 

classical version (James et al., 2013). This is also a modification of the PCA that 

makes the number of principal components automatically selected. But this 

algorithm is relatively complicated.   

 In 2021 Rahoma et al. (2021) propose a new way to estimate the loading factors. 

Their algorithm is similar to that in Gajjar et al. (2017) as they both work with the 

loading factors. Rahoma’s algorithm differs from Gajaar in the bootstrap methods 

used to evaluate the distribution information of the elements of loading vectors in 

principal component analysis (Efron, 1979). The elements of loading vectors are then 

used to obtain a sparse loading structure for the loading vectors of the PCA. As a 

result of their experiments, Rahoma et al. (2021) propose two novel PCA algorithms – 

the Bootstrap SPCA and the Sparse IPCA, both based on the bootstrap. Although all 

these examples proposed have improved PCA, none offers an automatic algorithm 

for principal components selection. 

 Like Rahoma et al. (2021), our research examines the bootstrap procedure and its 

use in the principal component analysis. We propose a novel PCA method called 

the ANOVA-Bootstrap-PCA. Unlike Rahoma et al. (2021) and existing academic 

literature, we use the bootstrap procedure to split data into training and test set. We 

directly identify the number of principal components necessary for building a 

classification model using ANOVA and PCA transformation. Thus, we do not use the 

eigenvectors and eigenvalues to extract the important principal components. 

Instead, we propose an automatic algorithm for principal components’ selection for 

classification models. 

 

Methodology 
Our methodology consists of two types of models – the classical PCA and the new 

approach we propose. We compare the results from the two approaches in terms of 

accuracy, precision, recall, and f1-score. We call the classical PCA approach 

Classical Principal Component Analysis (Classical PCA). It is described in (James et 

al., 2013). This approach follows the steps usually recommended by machine 

learning books to determine the number of principal components (James et al., 

2013; Prieto-Moreno et al., 2015). 

Classical PCA 
The topic of determining the number of principal components in the model is central 

to machine learning. The general approach (James et al., 2013) consists of several 
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steps. We conduct our experiments in Python 3.6. To run the classical PCA, we use 

the built-in functions in scikitlearn in Python. These include LogisticRegression(), 

sklearm.decomposition.PCA() and sklearn.model_selection.kFold(). 

1. The input variables should be standardized to attribute equal weight to each 

variable. 

2. Then the covariance matrix should be inspected to identify and remove 

highly correlated variables that contain noise. 

3. The input variables can then be transformed into principal components. Each 

principal component is a linear combination of input variables. The principal 

component is a new variable. Each principal component is formed in a way 

that contains as much information as possible. The number of the principal 

components is equal to the number of the input variables. However, only a 

few principal components contain the most important information in the 

model. Identifying those leads to dimensionality reduction as only the 

important principal components participate in the final model. To compute 

the principal components, eigenvectors and eigenvalues are computed. 

They provide information about the percentage of variance explained by 

each principal component. 

4. We use tenfold cross-validation to divide the input data into training and test 

set to evaluate logistic regression using the principal components instead of 

the original variables. 

5. We explore what number of principal components leads to the highest 

variance explained. We choose that number of principal components and 

record the accuracy and classification scores of the model. 

 We follow this approach to identify the principal components following the 

classical procedure in the textbooks (James et al., 2013). 

 We also test a new approach to determine the number of important principal 

components. We test both algorithms with logistic regression. 

Proposed approach: ANOVA-Boot-PCA-LR 
We call the novel approach we propose ANOVA-Boot- PCA. As we test the model 

with the logistic regression will denote the new approach as ANOVA-Boot-PCA-LR. It 

consists of the following steps. 

1. We standardize the input data. 

2. We apply PCA transformation to the standardized data. 

3. We normalize the PCA transformed data between 0 and 1 to avoid negative 

values in the principal components. 

4. We divide the input space into percentiles – 10,20,30, 40, 50,60,70,80,90 and 

100. This is necessary for the tenfold bootstrap procedure. 

5. For each percentile, we divide the data into training and test set in proportion 

70/30 using the tenfold bootstrap described in Vrigazova (2020). 

6. For each percentile, we perform ANOVA. We evaluate ten logistic test 

regressions for each percentile of principal components and average their 

accuracy and classification scores. We choose the percentile of principal 

components that results in the highest accuracy. 

7. We then compare the number of principal components chosen, the 

accuracy and classification scores from the ANOVA-Boot-PCA-LR, and the 

classical approach. 

 To run the new approach we propose, we use a script that we build. For running 

ANOVA, PCA, and the logistic regression, we use existing functions in Python 

(LogisticRegression(), sklearm.decomposition.PCA() and sklearn.Pipeline (anova)). At 
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the same time, we create a script for running the tenfold bootstrap. The tenfold 

bootstrap we use in step 5, and its software realization in Python 3.6 can be found in 

our previous study (Vrigazova, 2020).  

Datasets 
Table 1 shows the size of the datasets we work with. We denote the number of 

observations by N, the number of variables by p. The target variable is marked by Y. 

Table 2 presents the results of the classical PCA on all three datasets. For example, 

the classical PCA approach identifies the first four or five principal components as 

the most informative in the glass dataset. The first four principal components explain 

83% of the variance in y at an accuracy rate of 54%. At the same time, the first five 

principal components can explain 91% of the variance of y at an accuracy rate of 

53%.  

 

Table 1 

Dataset size 

Dataset N p Y 

Glass dataset 175 9 Type 

Leafshape dataset 286 7 arch 

Wells dataset 3020 4 association 

Source: Author’s calculations 

 

Table 2 

PCA: all three datasets 

  % of var explained 

   Glass 

dataset 

Leafshape 

dataset 

Wells 

dataset 

PC 1  30.2% 67% 30.1% 

PC 2  28.1% 18% 28.8% 

PC 3  14.0% 7% 24.3% 

PC 4  10.4% 4% 16.8% 

PC 5  8.7% 2%   

PC 6  4.6% 1%   

PC 7  3.2% 0%   

PC 8  0.7%     

PC 9  0.0%     

Source: Author’s calculations 

 

Results 
Glass dataset 
The glass dataset contains nine features. Applying the classical PCA approach 

described in the previous section, we identify the first four principal components as 

the most informative ones. Table 3 contains information about the percentage of 

variance explained by the accuracy and the error rate at each level of principal 

components. We define the error rate as a 1-accuracy rate. 
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Table 3 

PCA: the glass dataset 

 Classical approach var explained accuracy error rate 

PC1+PC2 58.3% 39% 61% 

PC1+PC2+PC3 72% 51% 49% 

PC1+PC2+PC3+PC4 83% 54% 46% 

PC1+PC2+PC3+PC4+PC5 91% 53% 47% 

Source: Author’s calculations 

  

 Figure 1 illustrates the outcome from the ANOVA-Boot-PCA-LR we propose. Our 

algorithm identifies the first three principal components as the most appropriate 

ones, resulting in a 72% accuracy score. In contrast, the ANOVA-Boot-PCA-LR would 

result in an accuracy of 67% if we choose the first four or five principal components. 

While the classical approach chooses four or five principal components at an 

accuracy of 53%-54%, our approach identifies 3 principal components and achieves 

72% accuracy. This result is important as it demonstrates that our algorithm not only 

performs an automatic selection of principal components but it can also lead to 

improved accuracy results. 
 

Figure 1 

The ANOVA-Boot-PCA-LR on the glass dataset: Varying the percentile of principal 

components selected 

 

 
Source: Author’s calculations 

The leafshape dataset 
Tables 4 present the results from the classical PCA approach on the leafshape 

dataset. 

 

Table 4  

PCA classical approach: the leafshape dataset 

  var explained accuracy error rate 

PC1+PC2 85.0% 77% 23% 

PC1+PC2+PC3 92.3% 75% 25% 

Source: Author’s calculations 

 

 The leafshape dataset is a similar case to the glass dataset. The classical 

approach shows that we must choose between the first two and three principal 

components to continue our analysis. The first three principal components achieve 

an accuracy rate of 75%, explaining 92% of the variance, while the first two explain 

85% of the variance in y and have an accuracy rate of 77%. Similarly, the number of 

principal components that will be chosen depends on the researcher. The first two 

principal components contribute the most to the variance explained, so we pick the 
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first two principal components due to the classical approach. An important note 

should be made that more principal components can be chosen depending on the 

research purpose. However, the classical approach does not provide a direct 

answer to the question:” In which case do we need the first few principal 

components and in which do we need more principal components?”. 

 Figure 2 shows the results from the ANOVA-Boot-PCA-LR we propose on the 

leafshape dataset. The figure illustrates that we will get an accuracy of 77% if we 

pick either the first 3, 4, or 5 principal components. However, as figure 2 illustrates, the 

ANOVA-Boot-PCA-LR achieves the highest accuracy of 78.9% when using 6 and 7 

principal components. As a result, from the ANOVA-Boot-PCA-LR, we select the first 6 

principal components to use in the logistic regression model. Thus, we propose an 

automatic way to answer the question, “In which case do we need the first few 

principal components and in which do we need more principal components?”. 

 

Figure 2 

The ANOVA-Boot-PCA-LR on the leafshape dataset: Varying the percentile of 

principal components selected 

 

 
Source: Author’s calculations 

 

 In the case of the glass dataset, our algorithm identifies the first 3 principal 

components as the most important ones; in the case of the leafshape dataset, we 

use 6 out of 7 principal components. Those conclusions differ from the classical 

approach, where we have to manually pick the right number of features. The well’s 

dataset has also confirmed this finding. 

Wells dataset 
Table 5 summarizes the results on the wells dataset from the classical PCA approach. 

 

Table 5 

PCA classical approach: the wells dataset 

  var explained accuracy error rate 

PC1+PC2 58.9% 58% 42% 

PC1+PC2+PC3 83.2% 57% 43% 

PC1+PC2+PC3+PC4 100.0% 57% 43% 

Source: Author’s calculations 

 

 According to table 5, the researcher should choose the first two, three, or four 

principal components. The dataset contains 4 principal components. Table 5 shows 

that the accuracy rate does not change significantly whether we choose 2,3, or 4 

principal components. So, again the researcher should decide manually which 

principal components to choose. However, we would get similar accuracy 

regardless of the number of principal components chosen in this case. 
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 Figure 3 demonstrates the outcome of our proposed algorithm. It shows that we 

would achieve an accuracy rate of 58% regardless of the number of principal 

components we use in the logistic regression. This finding confirms the result from the 

classical approach. However, the ANOVA-Boot-PCA-LR automatically performs the 

PCA analysis, providing direct guidelines on the number of principal components 

that would produce the highest accuracy in the logistic regression. As a result, we 

can select a small number of principal components from our algorithm without losing 

accuracy. This is an important advantage of our algorithm in the case of datasets 

with a large number of principal components. 

 

Figure 3 

The ANOVA-Boot-PCA-LR on the wells dataset: Varying the percentile of principal 

components selected 

 

 
Source: Author’s calculations 

Classification scores 
During our research, we also calculate classification scores like precision, recall, and 

f1-score. As table 6 below shows, the classification scores from the two algorithms are 

very similar for the glass dataset. The ANOVA-Boot-PCA-LR does not lead to a 

decrease in the classification scores on the glass dataset. The classification metrics 

from both algorithms are similar on the glass dataset. The new approach we propose 

improves the precision and recall for classes 1 and 2. 

 

Table 6 

Classification scores of the classical PCA approach vs. the ANOVA-Boot-PCA-LR: The 

glass dataset 

Classical 

approach 

PC1+PC2+PC3+PC4       

Class Precision Recall F1-score Support 

1 0.55 0.74 0.63 70 

2 0.62 0.42 0.50 76 

7 0.90 0.90 0.90 29 

Average 0.64 0.63 0.62 175 

ANOVA-Boot-PCA-LR (3 principal components) 

Class Precision Recall F1-score Support 

1 0.69 0.74 0.71 34 

2 0.69 0.68 0.68 37 

7 0.91 0.83 0.87 12 

Average total 0.73 0.72 0.72 83 

Source: Author’s calculations 
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 Table 7 shows the results of the leafshape dataset. In the case of the leafshape 

dataset, the new algorithm predicts better the precision of class 1 and the recall of 

class 0. At the same time, the classical PCA predicts better the recall of class 1 and 

precision of class 0. Overall, both algorithms have the same precision, while the 

classical approach provides slightly better recall and f-1 score measures. Table 8 

shows the results on the wells dataset. As table 8 shows, classification metrics on the 

wells dataset are similar.  

 

Table 7 

Classification scores of the classical PCA approach vs. the ANOVA-Boot-PCA-LR: The 

leafshape dataset 

Classical 

approach 

PC1+PC2       

Class Precision Recall F1-score Support 

0 0.84 0.90 0.87 192 

1 0.76 0.66 0.70 94 

Average 0.81 0.82 0.81 286 

ANOVA-Boot-PCA-LR (6 principal components) 

Class Precision Recall F1-score Support 

0 0.75 0.99 0.85 99 

1 0.94 0.31 0.47 48 

Average total 0.81 0.77 0.73 147 

Source: Author’s calculation 

 

Table 8 

Classification scores of the classical PCA approach vs. the ANOVA-Boot-PCA-LR: The 

wells dataset 

Classical 

approach 

PC1+PC2+PC3       

Class Precision Recall F1-score Support 

0 0.58 1.00 0.73 1743 

1 0.20 0.00 0.00 1277 

Average 0.42 0.58 0.42 3020 

ANOVA-Boot-PCA-LR (4 principal components) 

Class Precision Recall F1-score Support 

0 0.57 1.00 0.72 843 

1 0.00 0.00 0.00 647 

Average total 0.32 0.57 0.41 1490 

Source: Author’s calculations 

 

 As the results for all three datasets indicate, the classification scores from both 

algorithms are similar. More experiments may be conducted with the leafshape 

dataset to improve the results from the ANOVA-Boot-PCA-LR. Nevertheless, our 

proposed algorithm provides an automatic way to select the number of principal 

components to avoid the manual steps. The criteria we propose for choosing the 

number of principal components is the highest accuracy rate. 

 The proposed algorithm has advantages that can be applied to large datasets. 

Selecting the number of principal components in datasets with many principal 

components can be a tedious and time-consuming manual process. As a result, we 

propose the ANOVA-Boot-PCA-LR algorithm to select principal components in the 

logistic regression automatically. 

 

 



  

 

10 
 

ENTRENOVA - ENTerprise REsearch InNOVAtion Vol. 7 No. 1 

Discussion 
The algorithm we propose is a novel approach to selecting the number of principal 

components for classification. The ANOVA-Boot-PCA-LR algorithm provides a fast 

and effective way to select the number of principal components and 

retain/improve the model's accuracy. 

 This algorithm needs further research, though. Academic literature confirms the 

application of the classical PCA either as a self-sufficient data exploratory or as an 

additional model combined with prediction and classification models. The algorithm 

we propose can be used in combination with other predictive and classification 

models. In this research, we examine its use with logistic regression. So, deeper 

research into other classification and predictive models should be done. Also, we do 

not propose an automatic algorithm when the principal component analysis is used 

as a stand-alone method to explore data. The algorithm can further be developed 

to apply to a wide range of datasets, for example, improve the results on the 

leafshape dataset. 

 Another limitation of our research is the value of the random iterator (the seed 

parameter) in Python that allows for the repetition of the results. We do not 

investigate how this value affects our results, and we do not recommend a concrete 

value for the seed parameter. This value may be specific for each dataset, and it 

can interact with the classification model used. As this is the subject of further 

research, we do not examine this matter in our research. This paper aims to propose 

a new automatic algorithm to select the number of principal components in the 

logistic regression. We call this algorithm the ANOVA-Boot-PCA-LR. 

 

Conclusion 
In conclusion, we developed a simple algorithm for automatically detecting the 

number of principal components used in the logistic regression. The advantages of 

our algorithm include simplicity as it is based on existing algorithms, is easy to 

interpret, and provides more efficient results in terms of accuracy.  

 Many authors of machine learning textbooks recommend detecting the number 

of principal components based on the percentage of variance explained, but this 

algorithm is not automatic. It is an issue when the percentage of variance explained 

identifies two possible principal components, and their accuracy is close. Many 

authors try to solve this problem by modifying parts of the equation of the PCA (for 

instance, eigenvectors, eigenvalues, etc.) or by using variable selection with PCA 

(Salata et al., 2021; Pacheco et al., 2013, Kim et al., 2011). The classical approach 

recommends manually deciding which number is most appropriate. However, our 

approach fixes this issue by conducting principal component selection rather than 

variable selection. It performs an automatic selection of the number of principal 

components to be used in the logistic regression. 

 This advantage of our algorithm is important in big datasets where the number of 

principal components can be big. The traditional manual selection of principal 

components can give several alternatives, and choosing between them can be 

hard and time-consuming. For instance, if the traditional theory outlines the first five, 

six, seven, or eight principal components as possible options, the researcher needs a 

criterion to choose among them. In many cases, the criteria are subjective. On the 

other hand, the ANOVA-Boot-PCA-LR algorithm we propose gives only one number 

of principal components, removing the subjectiveness from manually choosing the 

number of principal components. This chooses principal components faster. 

 The approach we propose has several limitations that need to be further 

researched. First, more experiments with larger datasets should be conducted to 
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demonstrate the advantage of our algorithm better. Datasets should include a large 

number of variables. Our results in this research show that the ANOVA-Boot-PCA-LR 

gives similar results to the classical approach. For example, suppose the classical 

approach identifies two options – the first three and four principal components. In 

that case, our algorithm identifies as the most appropriate only one of the options 

provided by the classical approach. Researching with a bigger dataset would test 

the hypothesis that our algorithm provides automatic, reliable principal component 

selection in large datasets. 

 Second, deeper research into the seed value should be conducted to discover 

whether it affects the performance of the proposed algorithm. The seed value in 

Python controls for the reproducibility of the results. Deeper research should be 

conducted into how this value affects the output of our algorithm. Does it change 

the number of principal components selected? How and why if that is the case. 

Third, deeper research is necessary about whether changing the values of the 

logistic regression parameters would affect the number of principal components 

chosen and whether it stays close to that outlined from the classical approach. This 

would allow a deeper understanding of the automatic nature of our algorithm and 

its applications to large datasets. 

 Fourth, experiments with other classification methods are necessary to test the 

feasibility of the ANOVA-Boot-PCA-LR to other classification models. This would 

expand the practical applications of the model we propose and show its universal 

nature, outlining in what cases it can and cannot be applied to other classification 

methods. Despite all possible directions for improving our research, we believe our 

research provides the first step to an efficient and fast automatic algorithm for 

principal components selection in classification problems. Thus, we can avoid the 

manual process and achieve better accuracy, a novel approach in academic 

literature. 
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