
ABSTRACT
Individual differences (IDs) may reduce the detec-

tion-accuracy of drowsiness-driving by influencing mea-
surements’ drowsiness-detection performance (MDDP). 
The purpose of this paper is to propose a model that can 
quantify the effects of IDs on MDDP and find measure-
ments with less impact by IDs to build drowsiness-detec-
tion models. Through field experiments, drivers’ natural-
istic driving data and subjective-drowsiness levels were 
collected, and drowsiness-related measurements were 
calculated using the double-layer sliding time window. 
In the model, MDDP was represented by |Z-statistics| 
of the Wilcoxon-test. First, the individual driver’s mea-
surements were analysed by Wilcoxon-test. Next, drivers 
were combined in pairs, measurements of paired-driver 
combinations were analysed by Wilcoxon-test, and mea-
surement’s IDs of paired-driver combinations were cal-
culated. Finally, linear regression was used to fit the mea-
surements’ IDs and changes of MDDP that equalled the 
individual driver’s |Z-statistics| minus the paired-driver 
combination’s |Z-statistics|, and the slope’s absolute val-
ue (|k|) indicated the effects of ID on the MDDP. As a 
result, |k| of the mean of the percentage of eyelid closure 
(MPECL) is the lowest (4.95), which illustrates MPECL 
is the least affected by IDs. The results contribute to the 
measurement selection of drowsiness-detection models 
considering IDs.
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1. INTRODUCTION
Drowsiness driving is still a widespread traf-

fic problem and always leads to serious injuries 
[1]. Studies pointed out that about 15–30% of all 
crashes were contributed by drowsiness driving [2]. 
According to the government report of America, 
drowsiness-related crashes caused approximately 
1550 deaths and 12.5 billion dollars of losses each 
year [3]. Unlike drunk driving, due to the lack of 
objective criteria of drowsiness occurrence, many 
drowsiness-related accidents have not been report-
ed, and the actual harm of drowsiness driving might 
be more serious. Thus, studies of drowsiness driv-
ing have always been a hotspot in traffic safety re-
search.

Anti-drowsiness driving assistance systems 
can warn drivers when they are drowsy, which is 
considered to be an effective countermeasure for 
drowsiness-driving [4]. Anti-drowsiness driving 
assistance systems rely on accurate and reliable 

YIFAN SUN, Ph.D.1 
E-mail: m18705423520@163.com
CHAOZHONG WU, Prof.1 
E-mail: wucz@whut.edu.cn
HUI ZHANG, Prof.1 
(Corresponding author) 
E-mail: zhanghuiits@whut.edu.cn
WENHUI CHU, Ph.D.1,2 
E-mail: chuwh@whut.edu.cn
YIYING XIAO, M.Sc.1 
E-mail: shadowxyy@outlook.com
YIJUN ZHANG, M.Sc.1 
E-mail: zyjits@whut.edu.cn
1 Intelligent Transportation Systems Research Centre 
 Wuhan University of Technology 
 1178 Heping Dadao, Wuchang District, Wuhan, Hubei 
 Province, China
2 School of Automobile and Traffic Engineering 
 Wuhan University of Science and Technology 
 Special 1, Huangjiahu University Town, Hongshan  
 District, Wuhan, Hubei Province, China

Promet – Traffic&Transportation, Vol. 33, 2021, No. 4, 565-578 565

Traffic Engineering 
Original Scientific Paper 
Submitted: 20 July 2020 
Accepted: 11 Dec. 2020

DOI: 10.7307/ptt.v33i4.3668

Sun Y, Wu C, Zhang H, at al. Effects of Individual Differences on Measurements’ Drowsiness-Detection Performance

EFFECTS OF INDIVIDUAL DIFFERENCES 
ON MEASUREMENTS’ DROWSINESS-DETECTION 

PERFORMANCE



Sun Y, Wu C, Zhang H, at al. Effects of Individual Differences on Measurements’ Drowsiness-Detection Performance

566 Promet – Traffic&Transportation, Vol. 33, 2021, No. 4, 565-578

ing IDs, in which measurements that contain fewer 
IDs or were less affected by IDs are preferentially 
selected to build models [17]. For driver-specific 
models, Wang [7] used 23 non-intrusive measure-
ments of individual drivers to establish the driv-
er-specific drowsiness-detection model based on the 
multilevel logit model. The results showed that the 
drowsiness-detection accuracy of the personalised 
model considering IDs was higher. Chu et al. [18] 
recorded driving behaviour data through field ex-
periments, using individual drivers’ data, and driv-
er-specific drowsiness-detection models were estab-
lished based on the RBF neural network and support 
vector machine. The results showed that driver-spe-
cific models could improve drowsiness-detection 
accuracy by eliminating IDs. You [19] concentrated 
on IDs at driver’s eye level and used eye landmarks 
of individual drivers to train the driver-specific 
drowsiness-detection model based on support vec-
tor machines. The accuracy reached 94.8%, which 
outperformed the models neglecting IDs. The above 
studies demonstrated that driver-specific drowsi-
ness-detection models are more accurate at the in-
dividual driver level, which is attributed to using 
the individual driver’s unique drowsiness-detection 
criteria. However, driver-specific drowsiness-detec-
tion models rely on the training of the individual 
driver's data to obtain the driver's unique drowsi-
ness-threshold, which cannot accurately detect a 
new driver's drowsiness. Consequently, the practi-
calities and generalisations of driver-specific mod-
els are weak and drowsiness-detection efficiencies 
are low.

To address the shortcomings of driver-specific 
drowsiness-detection models, some researchers ex-
plored the method to deal with IDs in generalised 
drowsiness-detection models. Generalised models 
considering IDs made a balance between reducing 
the impact of IDs and improving the practicalities of 
drowsiness-detection. On the one hand, IDs in mea-
surement distribution are analysed, and measure-
ments with small IDs are chosen to build models for 
reducing the impact of IDs on drowsiness-detection 
accuracy. On the other hand, the generalised mod-
el only needs to be trained once using all drivers' 
data, which does not need to respectively utilise the 
data of each driver to train multiple driver-specific 
models. All drivers can use the generalised model to 
detect drowsiness. Therefore, the practicalities and 
efficiencies of drowsiness-identification models are 
improved. 

drowsiness-detection models that have been widely 
studied [5, 6]. And according to the intrusiveness of 
data collection, drowsiness-detection models can be 
divided into two types: intrusive and non-intrusive 
[7]. Although intrusive models using data like elec-
troencephalograms [8], electromyography [4] have 
good accuracy, these are only available in laboratory 
conditions [7]. As opposed to that, the non-intrusive 
models based on driving behaviour data [5, 9] or 
eye movement data [10] are more practical because 
the data collection process causes little disturbance 
to drivers and fewer restrictions [11]. Thus, non-in-
trusive drowsiness-detection models have become 
the interest of traffic safety research.

However, the accuracy and reliability of non-in-
trusive drowsiness-detection models are signifi-
cantly affected by individual differences (IDs) [6]. 
IDs generally refer to differences among drivers in 
behavioural performance, physiological character-
istics, and cognitive abilities, etc., which are crucial 
issues in current driving behaviour research [12-14]. 
To date, most non-intrusive drowsiness-detection 
models belong to generalised models that use the 
mixed measurement data of all drivers to train mod-
els and utilise the same drowsiness threshold to de-
tect the drowsiness of each driver [1]. Many schol-
ars have studied the mechanism of IDs affecting the 
drowsiness-identification of generalised models. In-
ger [15] pointed out that the drowsiness thresholds 
of generalised models were the average value of all 
drivers rather than the individual driver’s threshold, 
and using the average threshold made the drowsi-
ness-detection at the individual driver level suffer 
from systematic error. Similarly, Philip et al. [16] 
reported that there were major IDs in driving per-
formance under drowsy state, and IDs might reduce 
the accuracy of drowsiness-identification based on 
average damage of drowsiness on driving perfor-
mance. Yan [13] explored IDs in drowsiness-detec-
tion and found that IDs in measurement distribution 
among drivers could exceed differences caused by 
drowsiness, which decreased the correlation be-
tween measurements and drowsiness. These studies 
illustrated that it is necessary to consider IDs when 
establishing drowsiness-detection models. 

Currently, the drowsiness-detection models 
considering IDs include two categories. One is the 
driver-specific drowsiness-detection model without 
IDs, which is trained using the driving behaviour 
data of the individual driver [7]. And the other is the 
generalised drowsiness-detection model consider-
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it is significant to analyse the effects of IDs on the 
MDDP when choosing measurements to build gen-
eralised drowsiness-detection models. 

In the present paper, a new model was estab-
lished to quantify the effect of IDs on the MDDP 
for finding measurements with fewer effects by IDs. 
The significance of the results is to provide a ba-
sis for generalised drowsiness-detection models to 
select measurements that are less affected by IDs. 
As a result, we can weaken the effects of IDs on 
the drowsiness-detection accuracy of generalised 
models and ensure the accuracy and efficiency of 
drowsiness-detection. In this paper, first the drivers’ 
subjective-drowsiness levels and multi-source sen-
sor data were collected through naturalistic driving 
experiments on the motorway. Then, a double-lay-
er sliding time window was used to compute nine 
non-intrusive measurements. Next, the MDDP was 
evaluated by |Z-statistics| of the Wilcoxon-test and 
IDs of measurements were calculated. Then, chang-
es of the MDDP with respect to IDs were analysed 
by linear regression, and the model to quantitively 
analyse the effect of IDs on MDDP was built. Final-
ly, the effect of IDs on MDDP was quantified and 
verified. According to the results, measurements 
whose drowsiness-detection performance is less 
affected by IDs could be selected to establish gen-
eralised drowsiness-detection models, which could 
ensure the average drowsiness-detection accuracy 
and improve practicalities of generalised drowsi-
ness-detection models.

The remainder of this paper is organised as fol-
lows. The experimental details of data collection 
were presented in section 2. The formulas of se-
lected measurements, data pre-processing, and the 
models to quantify the effects of IDs on the MDDP 
were introduced in Section 3. In Section 4, the quan-
titative effects of IDs on the MDDP, its verification 
analysis, and other relative results were displayed. 
Finally, this is followed by the discussion and con-
clusions in Section 5 and 6, respectively.

2. EXPERIMENTS

2.1 Participants 
Forty professional drivers (including 5 female 

drivers) with proficient driving skills were recruit-
ed and numbered. The ages of drivers ranged from 
34 years to 57 years (mean=46.83, SD=5.62). The 
years of driving experience ranged from 3 years to 
32 years (mean=16.53, SD=6.10). They had good 

With regards to generalised drowsiness-detec-
tion models considering IDs, effects of IDs on the 
measurements’ drowsiness-detection performance 
(MDDP) are the major factors influencing the ac-
curacy of drowsiness-detection [13]. Thus, some 
scholars explored IDs in drowsiness measurements 
of generalised models [17, 20, 21]. The obvious 
IDs in the distribution of measurements, such as 
the standard deviation of steering wheel movement 
[12], percentage of eyelid closure (PERCLOS), 
gaze time ratio [19], steering reversal rate (SRR), 
and standard deviation of lane position (SDLP) [21] 
have been frequently mentioned in previous stud-
ies. And scholars have compared the magnitude of 
IDs in various measurements. Xu, et al. [17] cal-
culated 23 non-intrusive measurements using simu-
lated driving experimental data and calculated IDs 
of measurements based on the Kruskal-Wallis test. 
It was found that IDs of PERCLOS and measure-
ments derived from the steering wheel angle were 
higher and lower, respectively. Furthermore, the re-
searchers analysed the impact of IDs on the MDDP. 
Niu [20] used the F-statistics of variance analysis 
to represent the MDDP and studied changes of the 
MDDP with IDs by comparing the individual driv-
er’s F-statistics with the F-statistics of the paired 
driver combinations. The results indicated that IDs 
weakened the MDDP. Zhang [21] calculated the 
Pearson correlation coefficients of SDLP, SRR, and 
drowsiness respectively for each participant and 
pointed out that IDs reduced the correlation between 
measurements and drowsiness levels. The above re-
sults could provide significant basis for developing 
generalised drowsiness-detection considering IDs.

Previous studies proved that IDs of measure-
ments existed and found that the IDs of various 
measurements were different. However, the quan-
titative analysis on the effect of IDs on MDDP has 
not been reported in current studies, which is crucial 
for the generalised drowsiness-detection models to 
choose measurements less affected by IDs. In previ-
ous generalised drowsiness-detection models with-
out considering the effect of IDs on the MDDP, the 
drowsiness measurements whose drowsiness-detec-
tion abilities were greatly affected by IDs were cho-
sen to train models, which caused the IDs to sharp-
ly reduce the drowsiness-detection accuracy. The 
prerequisite of improving the drowsiness-detection 
accuracies of the models is to select measurements 
that can distinguish awake state and fatigue state ef-
fectively, that is, the MDDP is ideal [22]. Therefore, 
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traffic volume, was chosen as the experimental road. 
The experimental routes and sensors were shown 
in Figure 1. The high definition cameras collected 
the outside driving environment, the driver's facial 
features, and driving manipulation. The Mobileye 
gathered distances from the vehicle to the lane line. 
The driver state sensor gathered eye movement 
data. The inertial navigation equipment recorded 
velocity, acceleration, and GPS. Besides, we also 
used materials such as the participant's demograph-
ic information scale and the KSS, etc.

2.3 Experimental procedure
Before the experiments, the participants spent 

at least 10 minutes to familiarise themselves with 
the experimental vehicle. During the experiments, 
the participants departed the Fuhe Toll Station, en-
tered the Suizhou Service Area after 2 hours, and 
spent one hour to have meals and rest. Then, partici-
pants drove to the Xiangyang North Toll Station and 
turned back to the starting point. One experiment 
took about 6 hours which did not include the rest 
time, and the total distance was about 600 kilome-
tres. Participants were required to drive at approxi-
mately 100 km/h. To avoid interference with driving 
drowsiness, participants were not allowed to listen 
to songs and nor to communicate. Experiments were  
conducted during the non-traffic peak period. 
During the experiments, the traffic environment was 

driving skills and stable driving habits. The par-
ticipants were in a good psychological and physi-
ological state, with normal work and rest, and did 
not take any drugs for 3 weeks before experiments. 
Every participant signed the informed consent and 
was told the possible experimental risks and details 
before the experiments. Each experiment was ac-
companied by a safety officer who was an instructor 
with 30 years of driving experience. After training, 
the safety officer was responsible for inquiring and 
recording the subjective-drowsiness level of partic-
ipants using the Karolinska Sleepiness Scale (KSS) 
and taking emergency measures to ensure safety 
when necessary.

2.2 Apparatus
Participants drove a real vehicle that was inte-

grated with on-board sensors including the three-
way HD camera, the Mobileye, the Driver State 
Sensor (the sampling frequency is 60 HZ), the in-
ertial navigation equipment, and the steering wheel 
angle sensor (the sampling frequency is more than 
20 HZ), etc. because turning behaviour caused by 
corners and traffic congestions can interfere in the 
study of the correlation between drowsiness and 
steering measurements. In order to avoid the influ-
ence of road alignment and other factors on driv-
ing behaviour, the Hanshi Motorway, which has 
straight road alignment, better road surface, and less  

Reentry: Xiangyang
north toll gate

Rest point:
Suizhou service area

Outset: Fuhe toll
gate

Inertial navigation
equipment

Steering wheel angle
sensor

HD Camera

Mobileye

Driver state sensor

Figure 1 – Experimental routes and apparatus
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where Nthr is the number of sampling points exceed-
ing the threshold and Nall is the total number of an-
gle sampling points in the time window.

④VSA eliminates the effect of road curvature 
on the steering wheel angle [23] and reflects the re-
lationship between drowsiness and steering wheel 
angle.

VSA SDSWA
MSWA=  (2)

where MSWA and SDSWA are the mean value and 
standard deviation of the steering wheel angle in the 
time window, respectively.

PERCLOS is the standard measure for drows-
iness-detection [10]. The ⑨SDPE describes the 
variation of PERCLOS in the time window, which 
can reflect the blink frequency of drivers.
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where PEi is the PERCLOS of the driver at sam-
pling point i, and npe is the total number of PER-
CLOS sampling points in the time window.

3.2 Data pre-processing
The time window to calculate the measurement 

is considered sensitive to drowsiness-detection 
[21]. According to reference [24], the double-lay-
er sliding time window was proposed to compute 
measurements. And due to a monotonous environ-
ment, long duration of driving, and high speed,  
drowsiness-driving in the continuous driving sce-
nario on the motorway is more dangerous [7]. 
Therefore, we focused on the continuous driving 

relatively simple and there was little traffic conges-
tion due to the low traffic volume. Besides, the traf-
fic conditions outside the vehicle were recorded by 
the camera in real-time. Therefore, some data under 
abnormal traffic scenes could be deleted based on 
videos outside the car. The safety officer recorded 
the participant’s self-report KSS every 5 minutes, 
and after the experiments, the final KSS was deter-
mined by considering the videos of the participant’s 
face and the experts’ opinions. Participants received 
certain compensation after finishing the whole ex-
periment.

Due to equipment failure and other reasons, ex-
perimental data of 5 participants (No.10, 13, 17, 25, 
32) were not collected. Finally, the investigators ob-
tained valid original experimental data of 35 partic-
ipants. The participants with invalid experimental 
data were excluded in the following analysis.

3. ANALYSIS METHODS

3.1 Drowsiness measurements
According to references [1, 10, 11, 21], nine 

non-intrusive drowsiness-driving measurements 
were chosen. These measurements were computed 
using original data from various sensors, which re-
flects the impact of drowsiness on the driver's phys-
iological characteristics, driving operations, and ve-
hicle movement. The information on non-intrusive 
measurements was presented in Table 1.

The calculation formulas of some complicated 
measurements were as follows.

②SRR reflects the stability of the steering wheel 
control. Referring to research studies on drowsi-
ness-driving in a real vehicle environment [21], 6º 
was chosen as the threshold.

Table 1 – The non-intrusive drowsiness measurements

Data source Symbol Description unit

Mobileye ①SDLP Standard deviation of lane position m

Steering wheel angle sensor

②SRR Steering reversal rate /

③SDSWM Standard deviation of steering wheel movement °

④VSA Variation of steering wheel angle /

Inertial navigation equipment

⑤SDLA Standard deviation of longitudinal acceleration m/s2

⑥MATV Mean absolute value of the transverse velocity m/s

⑦SDTV Standard deviation of transverse velocity m/s

Driver state sensor
⑧MPECL Mean of PERCLOS /

⑨SDPE Standard deviation of PERCLOS /
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SDLP, if T1=60s, S2=5s, T2=20s, T1 included nine 
T2 and the lane position data in each T2 can be used 
to calculate the SDLP. The maximum SDLP of all 
nine T2 in T1 was chosen as the final SDLP of the 
sample (T1).

Chose measurement samples of consecutive 
driving data on the motorway. According to the 
external videos captured by the HD camera, the 
driving duration of the continuous driving scenar-
io on motorways was extracted. Through statistical 
analysis of the vehicle speed of these driving du-
rations of the continuous driving scenario on mo-
torways, and according to the reference [21], we 
chose T1 with the minimum speed above 80 km/h 
as the sample in consecutive driving data on the 
motorway.

3.3 Quantitative model building
As shown in Figure 3, this paper proposed a mod-

el based on the Wilcoxon-test (W-test) and simple 
linear regression to quantitatively analyse the effect 
of IDs on the drowsiness-detection performance of 
measurements. Nine non-intrusive drowsiness-driv-
ing measurements were input into the model one by 
one to calculate the effect of IDs on their drowsi-
ness-detection performance.

In Part A, based on the result of the Wilcoxon-test 
for the individual driver, paired-driver combinations 
having various IDs between two drivers’ measure-
ments were formed. We made the Wilcoxon-test  

scene on the motorway. The pre-processing flow 
of setting time window and selecting continuous 
driving data is shown in Figure 2.

First of all, multi-source data were synchonised 
according to the timestamp. Because the driver's 
self-report drowsiness level was recorded every 5 
minutes, in order to avoid sample crossing of two 
KSSs, the original data were divided into samples 
within 5 minutes. For each data sample, if the cap-
tured videos have demonstrated that the drivers’ 
behaviour is interrupted by any traffic incidents, 
this sample was excluded.

Set double-layer sliding time window. It is 
found that in a real vehicle environment, the 
drowsiness-driving state generally lasts 15–75 
seconds, while the duration of typical drowsiness 
operation characteristics is generally 5–20 seconds 
[24]. In order to avoid the calculation of the aver-
age effect covering the drowsiness operating char-
acteristics, the double-layer sliding time window 
was proposed to calculate measurements. Firstly, 
the first-layer sliding step (S1) and time window 
(T1) were set within every 5 minutes. The data in 
T1 were a sample that was a fundamental unit for 
obtaining measurements and detecting drowsiness 
driving. Secondly, within each T1, the second-layer 
sliding step (S2) and the time window (T2) were 
set. The data in T2 were used to calculate measure-
ments, the maximum measurement for all T2 in ev-
ery T1 was chosen as the final measurement value 
of the sample (T1). For instance, when calculating 
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Speed≥80?
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Figure 2 – The data pre-processing flow
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that there are statistically significant differences be-
tween the measurement samples of the sober state 
and the drowsy state. Thus, |Z-statistics| was used to 
represent the drowsiness-detection performance of 
measurements.

We supposed there are n measurement samples 
S1,...,Si,...,Sn in the sober driving state and there are 
m measurement samples F1,...,Fj,...,Fm in the drowsy 
driving state. The measurement samples from the so-
ber state and the drowsy state are mixed, the amount 
of the mixed samples is T=n+m, and the mixed sam-
ples are arranged in ascending.
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Ri is the rank of the measurement sample Si of the 
sober driving state in mixed samples, Rj is the rank 
of the measurement sample Fj of the drowsy driving 
state in mixed samples.

Calculation of IDs of measurement
We proposed the following formulas to calculate 

the comprehensive IDs between the drivers’ mea-
surements.
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on the measurement samples of individual driv-
ers and obtained the P-value (Po) and Z-statistics 
(Zo) of the Wilcoxon-test. Then, drivers were ar-
ranged in descending order according to their |Zo|, 
the previous qv drivers were respectively chosen as 
the benchmark driver (qv needed to be optimised, 
which will be introduced in Formula 7). Next, the 
benchmark driver was combined with the other 
driver whose |Zo| is smaller than that of the bench-
mark driver to form some combinations including 
two drivers. Finally, mixed measurement samples 
of the paired-driver combinations were obtained by 
mixing measurement samples of the two drivers.

In part B, firstly, the Wilcoxon-test was performed 
on the paired-driver combination’s mixed measure-
ment samples and the combination’s Z-statistics (Zt) 
was obtained. ∆|Z| of each paired-driver combination 
equalled to |Zob| of the benchmark driver minus |Zt| 
of this paired-drivers combination, which represent-
ed the change of the MDDP. Secondly, the measure-
ment’s comprehensive IDs (D) between the two driv-
ers in the combination were computed using Formula 
5. Finally, simple linear regression was used to fit D 
(independent variable) and ∆|Z| (dependent variable), 
and the absolute value of the slope of the fitted line 
indicated the effect degree of IDs on the MDDP.

Wilcoxon-test
The Wilcoxon-test is usually used to analyse the 

differences between the unpaired samples from the 
two groups and the data need not follow a normal dis-
tribution [25]. The bigger the |Z-statistics|, the greater 
the difference between the measurements of the so-
ber state and the drowsy state. P-value<0.05 means 

Part A: do the W-test on measurements of individual driver and construct paired-driver combinations

Part B: do the W-test on mixed measurements of the combination and fit D and ∆|Z|

Start

End

Do W-test on
measurement

samples of
individual

driver

Form
paired-driver
combinations

Do W-test on
combination’s

mixed
measurements

Sort drivers in
descending
according
their |Zo|

Choose another driver
whose |Zo| is smaller than that

of benchmark driver

Choose the previous qv drivers
as a benchmark driver

respectively

Obtain Z-statistics
and P-value

Output
|Zt|

Get ∆|Z|
Calculate

comprehensive
individual

differences(D)
∆|Z| is dependent variable

D is independent
variableFit D and ∆|Z|

Obtain the
absolute value of
the slope of the
fitting straight

Figure 3 – The model for analysing the effects of IDs on measurements
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Through iterating, we obtained the optimal pa-
rameter values that maximise h namely, λ=0.6, 
η=0.1, α=0.1, β=0.2, qv=3.

4. RESULTS

4.1 The Wilcoxon-test for individual 
participants

For individual participants, according to KSS, 
the measurement samples were divided into two 
groups: the sober state and the drowsy state. Ac-
cording to the literature [7], measurement samples 
with KSS≤3 belonged to the sober driving state, and 
measurement samples with KSS≥6 belonged to the 
drowsy driving state. The Wilcoxon-test was used 
to analyse the differences between the measurement 
samples in the sober state and the drowsy state.

The design of the time window has an important 
effect on the drowsiness-detection performance of 
the measurement [20, 24]. This paper aims to guide 
to select measurements for the generalised drows-
iness-detection model. The optimal time window 
should enable as many drivers as possible to use 
the measurement to detect drowsiness. Thus, the 
Wilcoxon-test was performed on each participant’s 
measurement and optimised time windows to maxi-
mise the number of participants whose Po<0.05. We 
designed the range of time windows [20, 24] and 
the best time windows for each measurement were 
acquired by iterating. The optimal time window 
setting and Wilcoxon-test outcomes were shown in 
Table 2.

In the paired-driver combinations, each driver’s 
measurement is a group sample. ICCs and ICCf  are 
the intra-class correlation coefficient of the sober 
state and the drowsy state, respectively. SSAs and 
SSAf  are the between-group variances of rank in the 
sober state and the drowsy state, respectively. SSTs 
and SSTf are the total variances of rank in the sober 
state and the drowsy state, respectively. Mbs and Mbf 
are the measurement median of benchmark driver 
in the sober state and the drowsy state, respective-
ly. Mrs and Mrf are the measurement median of the 
other driver of a paired-driver combination in the 
sober state and the drowsy state, respectively. λ, η, 
α, β are weights of the four IDs source factors (ICC, 
|Zob-Zor|, |Mr-Mb|, (|M2s|+|M2f|)/2).

Simple linear regression
The simple linear regression model was used to 

fit ∆|Z| and D, and the model was as follows:

Z k D b$D = +  (6)

Formula 6 reflects the relationship between the 
change of the drowsiness-detection performance 
of the measurement and IDs. |k| indicates the effect 
degree of IDs on the drowsiness-detection perfor-
mance of the measurement. The smaller |k|, the 
smaller the effect degree of IDs on the MDDP. The 
coefficient of determination (R2) evaluates the fit-
ting goodness of the linear model [26]. In this paper, 
R2 is no less than 0.4, which means that the fitting 
function reflects the relationship between ∆|Z| and 
D. 

In the model shown in Figure 3, the number of 
benchmark drivers (qv) and λ, η, α, β of Formula 5 
affect the R2. For improving the fitting effect, the ob-
jective function was established to optimise λ, η, α, 
β, and qv. Ri

2 was the R2 of i-th measurement, which 
is determined by λ, η, α, β, qv.

Table 2 – Wilcoxon-test results of drowsiness measurements

Measurements S1 [s] T1 [s] S2 [s] T2 [s]
The number 

of participants 
whose Po<0.05 

|Zomax|

①SDLP 5 40 3 12 26 13.62
②SRR 8 60 4 14 28 7.64
③SDSWM 5 38 3 8 29 14.20
④VSA 5 35 3 12 29 10.97
⑤SDLA 5 38 3 8 29 19.00
⑥MATV 5 35 3 10 31 18.16
⑦SDTV 5 44 3 12 29 13.75
⑧MPECL 5 44 3 10 34 29.54
⑨SDPE 5 38 3 12 32 12.27

Notes: |Zomax| was the maximum of |Zo| for all participants.
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was more drastic in the drowsy state. It was indicat-
ed that drowsiness could decrease the stability and 
safety of steering operations for most participants, 
which was consistent with previous studies [5, 6].

Comparing the data distribution of SDSWM 
among participants, it was found that there were 
visible IDs of SDSWM in both the sober state and 
the drowsy state. In the sober state, the median val-
ue of the participant No. 12 was the highest with 
a value of 0.55, and that of the participant No. 29 
was the lowest with a value of 0.27. Furthermore, 
for participants No. 7, No. 8, No. 9, No. 12, No. 30, 
and No. 31, the median of SDSWM in the drowsy 
state was lower than that in the sober state. This 
was different from the general law of the relation-
ship between SDSWM and drowsiness. However, 
the mechanism of this phenomenon was not clear, 
it might be related to the driver's personality, op-
erating habits, alertness, and other attributes. This 
phenomenon reflected that there were also obvious 
differences in the trend of changes in measurements 
from sober driving to drowsy driving between par-
ticipants.

4.3 Effects of IDs on the measurements’ 
drowsiness-detection performance

For each measurement, according to the mod-
el in Figure 3, ∆|Z| and D for each paired-partici-
pant combination were calculated. Then the linear 
function was used to fit D (independent variable) 
and ∆|Z| (dependent variable) of all paired-partic-
ipant combinations. We chose SDLP, SDSWM as  

In Figure 4, we took some measurements as ex-
amples and listed |Zo| of all participants. The hollow 
points are |Zo| of the participants whose Po≥0.05. 
There were obvious differences among the partic-
ipants’ |Zo|. Taking MPECL as an example, the |Zo| 
of the participant No. 31 was the highest with a val-
ue of 29.54, which indicated that No. 31 was the 
participant who used MPECL to detect drowsiness 
most effectively. Whereas |Zo| of the participant No. 
6 was the lowest minimum with a value of only 
1.57. It was found that for different participants, the 
performances of the same measurement to detect 
drowsiness-driving were significantly different. It 
could be speculated that if the MPECL samples of 
participant No. 31 and No. 6 were mixed, compared 
with participant No. 31, the performance of MPECL 
to detect the drowsiness driving might be reduced 
for the mixed measurement data of No. 31 and No. 
6. Besides, |Zo| of No. 36, No.3 7, and No. 39 was 
similar, which indicated that the drowsiness-detec-
tion performance of the MPECL of these partici-
pants was similar.

4.2 IDs in measurement distribution
To analyse the IDs in the distribution of the mea-

surements between participants, we took SDSWM 
as an example and drew the box plot of SDSWM 
in the sober state and the drowsy state. In Figure 5, 
we only chose these participants whose Po<0.05. 
For most participants, the median of SDSWM in 
the drowsy state was bigger than that in the sober 
state and the change in steering wheel movement 
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performance of each measurement were different. 
Besides, it was found that ∆|Z|<0 when the IDs were 
low, which meant that the MDDP for paired-partici-
pant combinations increased compared to that for a 
benchmark participant.

The linear fitting results of ∆|Z| and D for all 
measurements were summarised in Table 3. The mea-
surements were arranged in descending order of |k|.

In Table 3, |k| of the MATV was the highest with 
a value of 6.98, which indicated that its drowsi-
ness-detection performance decreased the most 
rapidly due to the influence of IDs, whereas |k| of 
MPECL was the lowest and its value was 4.95, in-
dicating that its drowsiness-detection performance 
was the least influenced by IDs. Furthermore, it was 

examples to show the fitted results. In Figure 6, each 
point represents one paired-participant combination 
consisting of two participants, and the scattered 
points are approximately distributed on both sides 
of a straight line. Therefore, the linear function was 
used to fit D and ∆|Z|.

In Figure 6, ∆|Z|>0 means that compared to the 
MDDP for the benchmark participant, the MDDP 
for the paired-participant combinations decreased. 
The ∆|Z| and D were positively correlated. And as 
D increased, ∆|Z| increased to greater than zero. The 
result illustrated that IDs weaken the MDDP, and the 
greater the IDs, the greater the weakening degree in 
the MDDP. |k| was different, which illustrated that 
the effect degrees of IDs on the drowsiness-detection 
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that of MATV (7.37%), which verified that the effect 
degree of IDs on the drowsiness-detection perfor-
mance of MPECL was smaller than that of MATV. 
When the IDs were 2.5, the drowsiness-detection 
accuracy of MPECL was by 11.1% higher than that 
of MATV. This illustrated that using measurements 
that were less affected by IDs could improve drows-
iness-detection accuracies and adaptabilities of the 
generalised drowsiness-detection models.

5. DISCUSSIONS
According to the results and analyses above, 

some meaningful insights and contributions to the 
development of drowsiness-detection methods con-
sidering IDs were obtained. In sections 4.1 and 4.2, 
there are obvious IDs in distributions of measure-
ments (see Figure 5), which could largely explain 
why the drowsiness-detection performance of the 
same measurement is different for different drivers 

found that compared to other categories of measure-
ments, the effects of IDs on the drowsiness-detec-
tion performances of measurements derived from 
eye movement were lower.

4.4 The verification of results
The measurements whose drowsiness-detection 

performance was affected less by IDs were chosen 
to build models, the decrease in drowsiness-detec-
tion accuracy was small when the IDs increased. 
For verifying the outcomes in Table 3, the single 
measurement was used to build drowsiness-detec-
tion models based on the Fisher discriminant func-
tion. We took MPECL and MATV as examples, 
whose drowsiness-detection performance was the 
lowest and the most affected by IDs, respectively. 
Measurement data with different IDs were used 
to train models. By comparing the change in the 
drowsiness-detection accuracy with the increase 
of IDs, effects of IDs on the drowsiness-detection 
performance of measurements were verified. The 
drowsiness-detection accuracy of models based on 
MPECL and MATV is shown in Figure 7.

In Figure 7, when IDs were 0, the data of the driver 
with maximum |Zo| were used to train driver-specif-
ic drowsiness-detection models. For both MPECL 
and MATV, the accuracies of driver-specific models 
using the data of the driver with maximum |Zo| were 
the highest (MPECL=86.47%, MATV=79.81%). 
When adding data of other drivers, the IDs in-
creased from 0 to 2.5, the models became gen-
eralised drowsiness-detection models, and the  
accuracies of models based on MPECL and MATV 
both decreased. But the decrease in drowsiness-de-
tection accuracy of MPECL (2.93%) was less than 

Table 3 – Linear regression results about D and  

                   Linear function 
Measurement    

Δ|Z|=k · D+b

k (95% confidence interval) b (95% confidence interval) R2

⑥MATV 6.98 (5.90, 8.06) -6.70 (-8.04, -5.37) 0.59

⑤SDLA 6.93 (5.36, 8.51) -5.70(-8.54, -2.85) 0.44

②SRR 6.30 (4.77, 7.82) -3.57 (-4.77, -2.36) 0.45

③SDSWM 6.00 (5.42, 6.58) -4.93 (-5.71, -4.14) 0.82

⑦SDTV 5.98 (5.31, 6.65) -4.85 (-5.59, -4.11) 0.76

④VSA 5.88 (4.72, 7.05) -3.06 (-4.26, -1.86) 0.51

①SDLP 5.66 (4.79, 6.53) -4.29 (-5.15, -3.43) 0.63

⑨SDPE 5.19 (4.01, 6.38) -2.86 (-4.56, -1.16) 0.47

⑧MPECL 4.95 (3.89, 6.01) -5.13 (-8.17, -2.10) 0.47
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are stronger, which may lead to the drowsiness-de-
tection performances of MPECL and SDPE being 
relatively less affected by IDs.

In section 4.4, the accuracies of driver-specific 
models trained by individual driver’s data are higher 
than that of generalised models trained by two driv-
ers’ data (see Figure 7), which is mentioned in previ-
ous studies [6]. However, the driver-specific drows-
iness-identification model has weak generalisation. 
Thus, for improving the utilisation rate of models, 
it is still necessary to study a generalised drowsi-
ness-detection model applicable to some drivers with 
low IDs. In order to decrease the negative influenc-
es of IDs on generalised models, this paper builds a 
model to find measurements less affected by IDs to 
train generalized models. In Figure 7, when the IDs 
are the same, the accuracies of generalised drowsi-
ness-detection models based on measurements whose 
drowsiness-detection performance is less affected by 
the IDs are higher. Therefore, for effectively weak-
ening the negative effects of IDs and improving ac-
curacies and practicalities of drowsiness-detection, it 
is recommended to preferentially choose measure-
ments in Table 3 that are less affected by IDs, such 
as MPECL and SDPE, to train generalised drowsi-
ness-detection models.

These results can be applied to the development 
of commercial anti-drowsiness systems consider-
ing IDs. For instance, in freight corporations, first-
ly, managers calculate IDs in the measurement be-
tween the drivers to group the drivers with smaller 
IDs. And then they can use the measurements that 
are less affected by the IDs (see Table 3) to establish 
generalised drowsiness-detection models suitable 
for all drivers in the group. Furthermore, the gener-
alised drowsiness-detection models considering IDs 
can be embedded in anti-drowsiness systems. In this 
way, on the premise of reducing the effect of IDs and 
ensuring certain drowsiness-detection accuracy, the 
utilisation rate of a model can be improved as much 
as possible to reduce model training costs. The ac-
curacy of the generalised drowsiness-detection mod-
el using MPECL is 83.54% (see Figure 7), which is 
higher than that of generalised drowsiness-detection 
models (78.01%) without considering the effects of 
IDs on the MDDP in the previous research [5]. More-
over, the generalised drowsiness-detection models in 
this paper only use individual measurements. Conse-
quently, integrating multiple measurements that are 

(see Figure 4). For different participants, the measure-
ments with the strongest drowsiness-detection per-
formance are different, thus, for the specific partic-
ipant, it is more reasonable to choose measurements 
with the best drowsiness-detection performance of 
the participant to establish a drowsiness-detection 
model. Besides, it can be inferred that when the mea-
surement data of two drivers with obvious individ-
ual differences in the measurement distribution are 
mixed, the differences of measurements between the 
sober state and drowsiness state may become less 
distinct, which weakens the drowsiness-detection 
performance of the measurements.

In section 4.3, the fitting lines in Figure 6 illus-
trate that IDs have obvious influences on the drows-
iness-detection performance of the measurements. 
IDs in the mixed data of two drivers can weaken the 
drowsiness-detection performance of measurements 
when IDs are large enough, which is consistent with 
the previous study [20]. However, it is found that the 
drowsiness-detection performance of measurements 
increases rather than decreases when IDs are small, 
which is not mentioned in previous literature [20]. 
The reason may be that when the IDs are small, the ef-
fects of IDs on the drowsiness-detection performance 
of the measurement are limited. Meanwhile, the in-
creasing sample size can provide more information 
and improve the MDDP. Therefore, the drivers with 
small IDs in the drowsiness-driving measurements 
should be grouped and the mixed data of the group 
are used to train a generalised drowsiness-detection 
model, which can relatively reduce the effect of IDs 
and improve the accuracy and utilisation rate of the 
model.

The most significant achievement of this pa-
per is to propose a quantitative analysis model for 
the effect of IDs on the MDDP. Using the mod-
el, the effects of IDs on the drowsiness-detection  
performance of non-intrusive measurements were 
quantified (see Table 3). Compared to other categories 
of measurements, the drowsiness-detection perfor-
mance of measurements derived from eye movement 
data is less affected by IDs. Previous studies have 
only pointed out that IDs of the PERCLOS during 
drowsiness are low [17], but they have not quantified 
the effect of IDs on the drowsiness-detection perfor-
mance of the PERCLOS. The IDs of the measure-
ments derived from eye movement data are low, and 
the correlations between PERCLOS and drowsiness 
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个体差异对指标疲劳检测性能的影响

摘要：

个体差异可能通过影响指标的疲劳检测性能而降
低疲劳驾驶的检测精度。本文的目的是提出一个可
以量化个体差异对指标疲劳检测性能影响的模型，
并且找到受个体差异影响较小的指标来建立疲劳检
测模型。通过实车实验，我们采集了驾驶人的自然
驾驶数据和主观疲劳水平，使用双层滑动时间窗来
计算与疲劳相关的指标。在模型中，使用威尔科克
森检验的Z统计量的绝对值（|Z-statistics|）来表示
指标的疲劳检测性能。首先，使用威尔科克森检验
对个体驾驶人的指标进行分析。然后，将驾驶人两
两组合，对两驾驶人组合的指标进行威尔科克森检
验，并且计算两驾驶人组合的指标的个体差异。最
后，使用线形回归拟合指标个体差异和由个体驾驶
人的|Z-statistics|减去两驾驶人组合的|Z-statistics|所
表示的驾驶人疲劳检测性能变化量，使用拟合直线
斜率绝对值|k|表示指标疲劳检测性能受个体差异
的影响。结果表明，眼睛闭合时间比例均值的|k|最
小是4.95，表明该指标受个体差异影响最小。研究
结果有助于考虑个体差异的疲劳检测模型的指标选
择。

关键词：

交通安全；疲劳检测模型；非侵入性指标； 

自然驾驶实验；个体差异
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