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ABSTRACT 
Double queue concept has gained its popularity in 

dynamic user equilibrium (DUE) modeling because it 
can properly model real traffic dynamics. While direct-
ly solving such double-queue-based DUE problems is 
extremely challenging, an approximation scheme called 
first-order approximation was proposed to simplify the 
link travel time estimation of DUE problems in a recent 
study without evaluating its properties and performance. 
This paper focuses on directly investigating the First-In-
First-Out property and the performance of the first-order 
approximation in link travel time estimation by designing 
and modeling dynamic network loading (DNL) on sin-
gle-line stretch networks. After model formulation, we 
analyze the First-In-First-Out (FIFO) property of the 
first-order approximation. Then a series of numerical 
experiments is conducted to demonstrate the FIFO prop-
erty of the first-order approximation, and to compare its 
performance with those using the second-order approx-
imation, a point queue model, and the cumulative inflow 
and exit flow curves. The numerical results show that 
the first-order approximation does not guarantee FIFO 
and also suggest that the second-order approximation 
is recommended especially when the link exit flow is in-
creasing. The study provides guidance for further study 
on proposing new methods to better estimate link travel 
times.

KEYWORDS
double queue model; dynamic user equilibrium; 
dynamic network loading; travel time estimation;  
first-in-first-out (FIFO).

1. INTRODUCTION
Dynamic traffic assignment (DTA), often broadly 

categorized into Dynamic User Equilibrium (DUE) 
and Dynamic System Optimum (DSO), is one of 
the most challenging problems in transportation 
engineering, which has been intensively studied for 
decades (Peeta and Ziliaskopoulos 2001). Being a 
specific type of DTA, DUE aims to simultaneously 
model user departure times and route choices by as-
suming that all users follow certain rational behav-
ior. DUE ends at an equilibrium state where for any 
given origin-destination (OD) pair the generalized 
travel costs are identical for all route choices and 
departure time choices. Related literature reviews 
can be found in [1-3]. 

As queue spillbacks (i.e., downstream conges-
tion propagates to the entrance of a link, thus re-
stricting the inflow to the link) are prevalent on 
transportation networks, there have been some 
models that properly captured such phenomenon in 
literature. Developed by [4], the cell transmission 
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decisions based on the current prevailing travel 
times while the ideal DUE models assume that the 
travelers’ route choice decisions are based on the 
predicted travel times. With the development of in-
formation technologies some new models are pro-
posed considering a mixture of both. For example, 
when drivers get informed about traffic events via 
multiple information sources, the rerouting is mod-
eled in [18]. This paper focuses on the ideal DUE 
problems that generally contain two basic com-
ponents (or sub-models): a traffic flow model that 
describes traffic dynamics and evolutions in time 
and space, and a choice model that describes the be-
havior of traveler choices (such as departure-time 
choices and route choices). In theory, a DUE prob-
lem should integrate both components into an in-
tegrative formulation, which should then be solved 
simultaneously. One challenge, however, of solving 
such an integrated DUE model is that usually one 
cannot derive a closed-form expression for link (or 
path) travel times, especially when queue spillback 
occurs. Therefore, in literature most DUE models 
are solved via an iterative (and largely heuristic) 
procedure that solves the two components sep-
arately at each iteration. As shown in [11], this is 
just one way of solving DUE and one may choose 
to solve the integrative DUE model directly, i.e., 
solving the two components simultaneously. This, 
however, requires applying certain approximation 
schemes to the link or path travel time functions to 
derive certain closed-form approximations. In [11] 
the authors proposed the first-order approximation 
to simplify the computation of link travel times in 
order to solve their double-queue-based ideal DUE 
model. They did not, however, conduct a full inves-
tigation about the properties and performance of the 
first order approximation scheme, which means that 
the reliability of the estimation of link travel times 
remains questionable. The focus of this paper is to 
fill this gap by evaluating the properties and per-
formance of the proposed first-order approximation 
in link travel time estimation, which will serve as 
reference for future studies on proposing a better 
method to estimate the link travel times for solving 
double-queue-based DUE models.

In this paper, we narrow our study down to 
Dynamic Network Loading (DNL) on single-line 
stretch networks and the reasons are as follows. 
First, the DNL on a single-line stretch network elim-
inates travelers’ route choices and thus eliminates 
the necessity to estimate link travel times to obtain 

model (CTM) is one of the earliest and most widely 
used models that can capture queue spillbacks [5, 6]. 
When applied in DUE models, the CTM needs to dis-
cretize each link over both space and time to model 
the flow dynamics, leading to a DUE model with a 
very large dimension especially for large networks 
with a long study time period. Furthermore, as DUE 
models are normally very complex, the CTM-based 
DUE models are highly challenging to solve for prac-
tical problems due to its large dimension. Thus, there 
is an increasing trend in the recent DUE literature 
focusing on balancing the computational efficiency 
and the level of details a DUE model can capture. 
Recent efforts have been focused on developing link-
based traffic flow models such as the link transmis-
sion model (LTM) [7, 8], the double queue model 
[9-12], among others [13, 14]. The concept of dou-
ble queue originated from LTM based on the trian-
gular fundamental diagram of traffic flow [7]. It was 
first proposed and used in [9] and recently applied 
to model continuous-time DSO and DUE problems 
[11, 12, 15, 16] thanks to its capability of capturing 
queue spillbacks in macroscopic traffic modeling. 
Specifically, at time interval h the dynamics of link 
(i,j) in the double-queue model can be described by 
the changes of a downstream queue qd

ij (h) and an up-
stream queue qd

ij (h) as follows [15, 16].

( ) ( ) ( )q h q h u h v h n1ij
u

ij
u

ij ij ij$D- - = -- ~_ ^ hi  (1)

( ) ( ) ( ) ( )q h q h u h n v h1ij
d

ij
d

ij ij ij
0$D= -- - -_ i  (2)

where uij(h) and vij(h) are the inflow and exit flow 
rates of the link (i,j) at the time interval h; n0

ijand nω
ij 

are the free-flow and shockwave travel times of the 
link (i,j) in terms of time intervals, respectively. To 
capture the flow withholdings caused by the double 
queues, two sets of complementary slack variables 
are defined, i.e., ηij(h) for the upstream queues 
and μij(h) for the downstream queues as shown 
in Equations 14 and 15, respectively. Their physical 
meanings are described after the model formula-
tion. Note that the continuous-time double-queue-
based models are usually solved by discretization. 
Thus in this paper, we directly formulate the dis-
crete-time model for simplification purposes. 

Generally, the link-based DUE models can be 
categorized as instantaneous DUE models and pre-
dictive/ideal DUE models depending on whether 
travelers are assumed to make route choices based 
on the current prevailing travel times or predicted 
travel times [17]. The instantaneous DUE mod-
els assume that travelers are making route choice  
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link exit flow is increasing. The study can provide 
guidance for future research on deriving a closed-
form expression for link travel time approximations 
in ideal DUE models.

This paper is organized as follows. The second 
section is about the discretized DNL model for-
mulation on single-line networks followed by the 
first-order and second-order link travel time approx-
imation functions. In the beginning, there will be 
a brief introduction on the double queue dynamics 
and the slack variables defined for reflecting the 
flow withholdings at road link entrances and exits. 
The third section presents the numerical experi-
ments and discussions. The final part is the conclu-
sion.

2. MODAL FORMULATION AND LINK 
TRAVEL TIME
The paper mainly concentrates on the double-

queue-based DNL on single-line stretch networks 
in order to study the performance of the first-order 
approximation proposed by [11] in a direct manner. 
The DNL model is to assign a given time-depen-
dent demand profile onto the network, which is an 
important component for DUE. Figure 1 displays the 
structure of a single-line stretch network on which 
the DNL model will be built, followed by the nota-
tion used throughout the paper. In Figure 1, we use 
red and green bars to represent the upstream and 
downstream queues at the two ends of each link, 
respectively. Note that it is assumed that all travel 
time parameters are integral multipliers of the dis-
cretizing time interval ∆.

Notation
N    – the node set;
L    – the link set;
O   – the only origin O!N ; 
Õ   – the dummy origin;
(Õ,O) – the dummy link;
S    – the destination; 
(x,S)  – the last link connecting the destination S;
∆    – the selected discrete time interval; 

the predictive route travel times as in an ideal DUE. 
Second, the predefined time-dependent demands in 
DNL also avoid the computational complexity from 
travelers’ departure time choices. Therefore, we can 
solve the DNL problem directly and then compute 
the link travel times based on the cumulative inflow 
and exit flow curves, which are defined as the ‘real 
link travel times’ in this paper. By comparing with 
the real link travel times, we can study the perfor-
mances of the first-order approximation and other 
approximation methods. 

In particular, we first formulate the discretized 
DNL model for single-line stretch networks as a 
linear programming problem. Note that we omit 
the continuous-time DNL model to save space [19, 
20]. Then, we investigate the FIFO property of the 
first-order approximation and show that FIFO is 
guaranteed if there are no downstream queues on 
any links of the network anytime as presented lat-
er. After that, we conduct some numerical experi-
ments on a simple single-line stretch network with 
only two links and compare the performances of the 
travel times estimated using the first-order approxi-
mation, the second-order approximation, the point-
queue model [3], and the cumulative inflow and 
exit flow curves, respectively. Here the second-or-
der approximation is an extension of the first-order 
approximation. We also define the link travel times 
estimated from the cumulative link inflow and exit 
flow curves using linear interpolation as the real 
link travel times, which are intuitive deductions of 
real travel times and can be obtained after the DNL 
problem is solved. Detailed performance results can 
be found in the numerical analysis section. The re-
sults show that the first-order approximation could 
overestimate the link travel times under certain cir-
cumstances when demand is larger than link capac-
ities, whereas most of the time it underestimates the 
link travel times. Overall, the link travel times from 
the first-order and second-order approximations are 
more reliable compared with the point queue mod-
el. The numerical results also suggest that the sec-
ond-order approximation is recommended when the 

Õ O 1 x S

uÕO(h)=dO(h)

μÕO(h)

vÕO(h)
=uO1(h)

μO1(h)ηO1(h) μxS(h)ηxS(h)

vxS(h)vO1(h)=u12(h)

qd
ÕO(h) qu

O1(h) qd
O1(h) qd

xS(h)qu
xS(h)

Figure 1 – Single-Line Network Structure with Double Queues on Links
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queues, and the values of the slack variables, with 
which we can estimate the link travel times using 
different approximation schemes and compare their 
performances. 
Initial conditions:

( ) , ( , ) ( , ), [ , ]q h i j L O O h T0 0ij
d ,6 6! != M L  (3)

( ) , ( , ) ( , )q h i j L O O0ij
u ,6 != M  (4)

;n n0 0O OOO
0 = =~
u u  (5)

( ) ( ), [ , ]u h d h h T0OO O 6 !=u L  (6)

Traffic dynamics:

( ) ( ), [ , ]v h u h h T0OO O1 6 !=u L  (7)
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v h h C h v h
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0 0
0
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( ) , ( ) , , ( , ),
( , ) , [ , ]

h min C h h i j L O O
j k L h T0

ij ij ij jk ,!

! !
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( ) ( ) ( )v h C h hij ij ij ijn d= - -  (15)

( ) ( ), [ , ]v h C h h T0xS xS xS !n= - L  (16)

Equations 3–6 give the initial conditions; Equations 
7 and 8 define the flow conservation at each node; 
Equations 9 and 10 describe the upstream and down-
stream queue dynamics, respectively; Equations 11 
and 12 are the complementarity problems for the 
upstream and downstream queues; Equations 13-
16 define the complementarity problems on exit 
flow rates and the computation of exit flow rates. 
In particular, ηij(h) in Equation 11 describes the flow  

T̃    – the number of time intervals required for  
     all demand arriving at the destination S;
h    – h![0,T̃], h is the ordered ID of a time  
     interval;
fij    – the free-flow travel speed of link (i,j)!L;
ωij   – the shockwave travel speed of link  
     (i,j)!L;
dO(h)  – the demand at origin O at discrete time  
     interval h;
qu

ij(h)  – the upstream queue of link (i,j)!L at  
     discrete time interval h;
qd

ij(h)  – the downstream queue of link  
     (i,j)!L,(Õ,O) at discrete time interval h;
μij(h)  – the slack variable related to the  
     downstream queue of link (i,j)!L at  
     discrete time interval h;
ηij(h)  – the slack variable related to the upstream  
     queue of link (i,j)!L at discrete time  
     interval h;
vij(h)  – the exit flow rate of link (i,j)!L,(Õ,O)  
     at discrete time interval h;
uij(h)  – the inflow rate of link (i,j)!L at discrete  
     time interval h;
n0

ij   – n0
i =τ0

ij ⁄∆ (note: n0
ÕO=0) where τ0

ij is the free  
     flow travel time on link (i,j)!L;
nω

ij   – nω
ij =τω

ij ⁄∆(note: nω
ÕO=0) where τω

ij  is the  
     shockwave travel time on link (i,j)!L;
nij(h)  – nij(h)=τij(h) ⁄∆ where τij(h)  is the travel  
     time on link (i,j)!L at discrete time  
     interval h;
Cij   – the exit flow capacity of link (i,j)!L;
Qij   – the queue storage capacity of link (i,j)!L  
     (note: QÕO=∞). 

As shown in Figure 1, a dummy origin Õ and a 
dummy link (Õ,O) are created for modeling purpos-
es. By setting the free-flow and shockwave travel 
times of the dummy link (Õ,O) as zeros and the 
queue storage capacity as infinite, we can always re-
place the time-dependent demand at origin O as the 
time-dependent inflow to the dummy link (Õ,O). 
The following is a brief description of the double 
queue concept and the slack variables defined for 
reflecting the flow withholdings.

As the DNL model for single-line stretch net-
works does not have the route and departure time 
choice behavior as in a DUE model, the formulation 
is much simpler as presented below. Again, the in-
flow rate to the dummy link, namely the time-de-
pendent demand, is pre-defined. By solving the 
DNL model, we can obtain the time-varying inflow 
and exit flow rates, the upstream and downstream 
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It can be seen from Equations 17 and 18 that the 
approximated link travel time nij(h) is estimat-
ed by assuming that the link exit flow rate is con-
stant from h+n0

ij to h+nij(h), which could either  
underestimate or overestimate the link downstream 
queue in Equation 17 and thus the link travel time 
in Equation 18. The first-order Taylor expansion is 
applied in Equation 18 to deal with the non-zero re-
quirement for the term 1 - ((μij(t+τ0

ij)+δij(t+τ0
ij))⁄Cij. 

Figure 12 below is created for demonstration purpos-
es, where the area surrounded by the dashed lines 
represents the actual link downstream queue while 
the area marked by pattern lines is the estimated 
link downstream queue assuming the exit flow rate 
is approximated as vij(h+n0

ij) from h+n0
ij to h+nij(h) 

in Equation 17. 
 As shown in Figure 12, if the link exit flow rate 

is increasing from h+n0
ij to h+nij(h), the link down-

stream queue will be underestimated, leading to the 
underestimation of link travel time in Equation 18; 
it is the opposite for the case with decreasing link 
exit flow rate. Since the first-order Taylor expansion 
leads to additional underestimation of link travel 
times, the second-order Taylor expansion as ex-
pressed by Equation 19 is proposed as an alternative 
method to improve the approximation performance. 
In this study, we define the approximations used in 
Equations 18 and 19 as the first-order and second-order 
approximation, respectively.

( )

(

/
/

/

n h n q h n C
h n h n C
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1
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d
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ij ij ij ij ij
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0 0

0 0 2

$.

n d

n d
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+ + + + +
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i

i

i
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As FIFO is an important requirement in DTA, 
it has been investigated in many DTA models (Ran 
and Boyce 1996). It requires the derivative of travel 
times to be no less than -1, namely: 

( ) /t t
n h n h

1
1

1orij
ij ij

22 $ $x
D

-
+ -

-
^ ^h h  (20)

withholding at the entrance of the link (i,j). If  
Qij-q

u
ij(h)>0, then ηij(h)=0, i.e. no withholding at the 

link entrance if the upstream queue is less than the 
link queue storage capacity. Otherwise the inflow 
rate to the link (which is also the exit flow of the up-
stream link) may be restrained, i.e., ηij(h)≥0. μij(h) 
is the slack variable associated with the downstream 
queue of the link (i,j), which collectively restrains 
the exit flow of the link (i,j) with the inflow with-
holding of its downstream link (j,k), i.e., ηjk(h). To 
be specific, if qd

ij(h)>0, μij(h) will be zero, indicating  
vij(h)=Cij-μij(h)=Cij if there is no withholding on the 
inflow to the downstream link (j,k), i.e., ηjk(h)=0. 
Equations 13–15 are designed to restrict vij(h) to zero 
if ηjk(h)≥Cij-μij(h). Similar formulations for the dou-
ble-queue-based DUE model can be found in [11]. 

Reference [11] proposed the first-order ap-
proximation to estimate link travel times using the 
first-order Taylor expansion theory to solve their 
double-queue-based DUE. The approximation 
first assumes the exit flow rate remains constant as  
vij(h+n0

ij) from h+n0
ij to h+nij(h) as shown in 

Equation 17 and then further approximates the link 
travel time using first-order Taylor expansion theory 
as presented in Equation 18.

( )

( )

q h n v r

v h n n h n

( )

ij
d

ij ij

r h n

h n h

ij ij ij ij

0

0 0
ij

ij

0

.

+ =

+ -
= +

+
_

_

i

i7 A

/
 (17)

( )

/
/

/

n h n
v h n
q h n

n
C h n h n

q h n

n
C h n h n C

q h n C

n C
q h n

h n h n C

n C
q h n

C
h n h n

1
1

1

ij ij
ij ij

ij
d

ij
ij

ij ij ij ij ij

ij
d

ij

ij
ij ij ij ij ij ij

ij
d

ij ij

ij
ij

ij
d

ij

ij ij ij ij ij

ij
ij

ij
d

ij

ij

ij ij ij ij

0
0

0
0

0 0

0

0
0 0

0

0
0

0 0

0
0 0 0

$

$

.

.

n d

n d

n d

n d

+
+
+

= +
- + - +

+

= +
- + - +

+

= +
+

- + + +

+
+

+
+ + +

_

_

_

_
_

_

e
_

_

_

_

_
_

_
_

i

i

i

i
i

i

i

i

i

i

i
i o

i
i

7

7

A

A
 (18)

h+n0
ij h+nij(h) h̆ h+n0

ij h+nij(h) h̆ h+n0
ij h+nij(h) h̆

vij(h̆) vij(h̆) vij(h̆)

a) Accurate b) Underestimate c) Overestimate

Figure 2 – Link Downstream Queue Approximation
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that the capacity of the link (1,S) is time-varying, 
which could be caused by road maintenance, acci-
dents, or disasters. Related parameters are given in 
Table 1. Note that in all numerical experiments the 
inflow rate capacity of the link (O,1) is set the same 
as the inflow rate to the dummy link, while the in-
flow rate capacity of the link (1,S) is set the same as 
its exit flow rate capacity.

The discrete time interval is selected as 0.2 min-
utes, i.e., ∆=0.2 minutes, so that the free flow travel 
time τ0

ij, the shockwave travel time τω
ij, and the two 

capacity-changing time points of C1S (2 minutes and 
5 minutes) will all be integral multiples of ∆. Again, 
as previously mentioned, the time-dependent inflow 
rates to the dummy link are given and the queue 
storage capacity of the dummy link is defined as 
infinite. Further, we assume that the Link O-1 and 
the Link 1-S are three-lane road links with a normal 
flow capacity of 4200 vph while the capacity of the 
Link 1-S is decreased to 2100 vph during time inter-
vals 10 to 25 due to an incident. We also assume that 
the inflow rate capacity of the first link is unrestrict-
ed to test various scenarios. In order to measure the 
performance of the first-order approximation, the 
point queue model denoted by Equation 21 is used for 
comparison purposes [11].

( )n h n q C
h n

ij ij ij
d

ij

ij0
0

= +
+  (21)

FIFO Property: If the link travel times are approxi-
mated by the first-order approximation in Equation 21, 
FIFO is guaranteed if there are no downstream 
queues on any links of the network anytime.
Proof: If there is no downstream queue on the net-
work, i.e., qd

ij(h+n0
ij)=0 for any h, then nij(h)=n0

ij 
for any h based on Equation 19, resulting in  
∂nij(h) ⁄∂h=0. Therefore, FIFO is guaranteed for 
first-order approximation.

It is worth to mention that there will be no queue 
on the network if the inflow and exit flow capacities 
of all links on a single-line stretch network are the 
same, which guarantees FIFO. On the other hand, 
if downstream queues exist on a road network be-
cause of large demands or various link inflow and 
exit flow rate capacities on routes, FIFO will not be 
guaranteed. Counter examples can be found in the 
numerical tests. 

3. NUMERICAL ANALYSIS
The numerical analysis is conducted on a two-link 

stretch network as shown in Figure 3. A dummy node 
Õ and a dummy link (Õ,O) are added to the network. 
Different pre-defined inflow rates (i.e., demand pro-
files) are tested with all experiments assuming that the 
inflow lasts for 15 minutes. In addition, it is assumed 

Õ O 1 S

uÕO(h)=do(h)

μÕO(h)

vÕO(h)
=uO1(h)

ηO1(h) η1S(h)η1S(h)μO1(h)

v1S(h)
vO1(h)
=u1S(h)

qd
ÕO(h) qu

O1(h) qu
1S(h) qd

1S(h)qd
O1(h)

Figure 3 – A Simple Stretch Network for Numerical Analysis

Table 1 – Parameters for the Three-node, Two-Link Stretch Network

Parameters Values of parameters

fij, ωij O1=f1S=60 mph; ωO1=ω1S=20 mph

Qij QÕO=∞; QO1=Q1S=(4200/60+4200/20) · 0.2=112 vph

Δ Discretized time interval, which is 0.2 minutes

τ0
ij, n

0
ij τ0

O1=τ0
1S =0.4 minutes; τ0

ÕO=0; n0
O1= n0

1S =2; n0
ÕO=0

τω
ij, n

ω
ij τω

O1=τω
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1S =6; nω
ÕO=0
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to 2100 vph for 15 minutes, there are no queues and 
vehicles are traveling at a free flow speed; FIFO is 
satisfied by all estimation schemes; (2) if the inflow 
rates are higher than 2100 vph and lower than 4200 
vph for 15 minutes, the travel time patterns are sim-
ilar to that in Figure 5b; (3) if the demand is much 
higher, the travel time pattern will be different from 
Figure 5b as shown in Figure 6 with an inflow rate of 
8000 vph for 15 minutes. 

Figure 6 presents two peaks of link travel times, 
reflecting two different bottleneck capacity levels 
during the study time period. The first bottleneck 
capacity level is 4200 vph (i.e., exit flow rate ca-
pacity of the link O-1) while its inflow rate capac-
ity is 8000 vph, and the second is the time-varying 
exit flow rate capacity of the link 1-S. The sudden 
decrease of travel time on the link (O,1), i.e., from 
τO1(28)=1.6 min to τO1(29)=1.1 min, produces  
d τ(28)=-(1.6-1.1)⁄0.2=-2.5<-1. Obviously, FIFO is 
violated here. It is similar for the cases with inflow 
rates higher than 2100 vph and lower than or equal 
to 4200 vph. 

From the above numerical analysis, it is also ob-
served that (1) the point queue model could produce 
an underestimation but never an overestimation; (2) 
as shown in Figures 5b and 6, when the real link travel 
time (i.e., the blue solid line) is increasing, the first 
order approximation (i.e., the green solid line), the 
second order approximation (i.e., the pink dashed 
line), and the point queue model (i.e., the blue dash-
dot line) all give underestimations, whereas the 
second-order approximation gives the best estima-
tion; (3) when the real link travel time is decreasing, 
both the first-order and the second-order approx-
imation first give an underestimation and then an  

Considering the inflow and exit flow rate capaci-
ties of the link (O,1) and (1,S), different demand pro-
files ranging from 2100 vph to 8000 vph are tested 
in the numerical analysis. For each demand profile, 
the real link travel times based on the cumulative 
inflow and exit flow curves, the first-order and the 
second-order approximated travel times, and the 
travel times based on the point queue model will 
all be computed for performance comparison. First, 
we test with an inflow rate of 4200 vph with results 
shown in Figures 3 and 4. 

As it can be seen from Figure 4, the upstream 
queues are always larger than or equal to the down-
stream queues on both links, which is consistent 
with Equations 12 and 13. The cumulative inflow and 
exit flow curves are plotted in Figure 5a, based on 
which the real link travel times can be obtained 
using linear interpolation. Since link (O,1) is the 
link with complete double-queue constraints on 
both ends, it is chosen as the study link. Figure 5b 
shows its link travel times obtained from different 
approaches and its exit flow rates.

From Figure 5b, the second-order approximation 
technique always produces higher link travel times 
than the first-order approximation and the point 
queue model, which is consistent with Equations 18, 
19, and 21. In addition, when congestion presents the 
point queue model always underestimates the link 
travel times while the first-/second-order approxi-
mation could either underestimate or overestimate 
the link travel times. Furthermore, the second-order 
approximation always produces smaller errors in 
the case of underestimation but greater errors in the 
case of overestimation. The numerical results show 
that: (1) if the inflow rates are lower than or equal 
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exit flow capacity of the link (O,1). Total absolute 
travel time differences, on the other hand, keep in-
creasing with the increase of demand. In terms of 
total absolute travel time differences, as plotted in 
Figure 7, compared to the real link travel times, the 
first-order approximation is more reliable than the 
point queue mode; the second-order approximation 
is slightly better than the first-order approximation. 
To sum up, the point queue model, the first-order, 
and the second-order approximations increase in 
both the performance and the computational com-
plexity. 

overestimation before reaching the real link travel 
time, while the point queue model gives an under-
estimation before the real link travel time. These 
findings from the numerical results give us insight 
into how to design a more accurate approximation 
scheme.

To further compare the performances of differ-
ent link travel time approximation methods, Table 2 
summarizes some statistics on the travel times on 
the link (O,1) estimated using different approxima-
tion methods given a series of demand profiles.

In Table 2, the maximum real travel time is the 
maximum travel time on the link (O,1) estimated 
with the cumulative inflow and exit flow curves 
among all the discrete time intervals; the maximum 
absolute difference compared with the real time as 
defined by ( ) ( )dif h hmaxm

h
O
x

O
real

1 1x x= -  means 
that, among all the time intervals, the maximum ab-
solute difference between the travel times on the link 
(O,1) computed by the approximation technique x 
(where x refers to the point queue model, the first-or-
der approximation, or the second-order approxima-
tion) and its real travel time based on the cumulative  
inflow and exit flow curves; the total absolute dif-
ference compared with real travel time is defined as 

( ) ( ) .total h hSum
h

O
x

O
real

1 1x x= -  
Table 2 shows that with the increase of the de-

mand, the maximum travel time on the link (O,1) 
and the maximum travel time differences with dif-
ferent approximation methods increase first and 
then become stable after the demand arrives at the 

Table 2 – Link Travel Times on the Link  Computed with Different Approximation Methods

Demand do(h)/
Capacity CO1(h)

h≤75 

Maximum real 
travel time

max hmax
O

h
O
real

1 1x x= ^ h
[min]

Maximum absolute difference compared 
with real travel time

maxdif
h

h
m

h O

O
x

real
1

1

x
x=

-
^
^
h
h

Total absolute difference compared with 
real travel time

Sumtotal
h

h
h O
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O
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1
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-
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^
h
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an issue. In addition, with the increase of the total 
demand, the link travel time estimation error would 
increase with the first-order and the second-order 
approximations. The numerical results show that 
the first-order approximation produces more reli-
able results compared with the point queue model, 
while the second-order approximation may be used 
as an alternative to further increase the travel time 
estimation performance. 

This paper specifically studied the performance 
and properties of the link travel times estimated 
with the first-order approximation proposed and 
applied in the previous study on the ideal double-
queue-based DUE modeling [11]. Future study can 
be conducted on how to better derive a closed-form 
expression for link travel time estimation in order 
to improve the estimation accuracy and even guar-
antee the FIFO property. Such improved link travel 
approximation will help better model and solve the 
ideal DUE problems with queue spillbacks. 
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杨霞，马睿，杨鹏，班学钢

基于双队列概念的交通流模型中的路段运行时
间估测

摘要

由于双队列概念（Double queue concept）能有效
地模拟实际交通流动态特征包括排队溢出现象等，
双队列概念已经开始应用于理想/预测型动态用户
均衡建模。由于基于双队列概念的动态用户均衡问
题直接求解非常困难，最近一研究提出了一种一阶
近似方案以简化动态用户均衡问题中的路段运行时
间估测，但该研究并没有研究该一阶近似方案的特
性和性能。本文通过设计并模拟单线路网动态加载
问题而非复杂网络的动态配流问题，以直接研究该
一阶近似方案在路段运行时间估测中的先进先出
（FIFO）特性及估测性能。建模后我们首先分析了
该一阶近似方案的先进先出特性。接着我们进行了
一系列算例分析以展示该一阶近似方案的先进先出
特性，并对比一阶近似方案，二阶近似方案，点队
列模型和累积流入和流出流量曲线的路段运行时间
估测性能。研究结果显示一阶近似方案不能确保先
进先出特性，并且尤其当路段的流出流量增长时应

4. CONCLUSION
This paper focused on investigating the prop-

erties and performance of the first-order and the 
second-order approximation methods for the link 
travel time estimation in the double-queue-based 
ideal DUE models. By analyzing the approxi-
mation function, it was found that the first-order  
approximation could result in either overestimated 
or underestimated link travel times when the de-
mand is larger than the link capacity. In addition, 
FIFO is guaranteed if there is no downstream queue 
on any link of the single-line stretch network over 
time but not guaranteed if there is downstream 
queue on any link.

In order to directly study the performances of 
the first-order approximation, the discretized dou-
ble-queue-based DNL model was designed and for-
mulated for single-line stretch networks. Then we 
proposed and compared the link travel times using 
the first-order approximation with those using the 
second-order approximation, the point queue mod-
el, and the cumulative inflow and exit flow curves.

Numerical analysis was conducted on a two-
link stretch network to demonstrate the FIFO vio-
lation of the first-order approximation and compare 
its performance with other estimation schemes. 
Overall the point queue model, the first-order ap-
proximation, and the second-order approximation 
increase in both the performance and the computa-
tional complexity. To be specific, the results showed 
that all these estimation approaches produced the 
exact real link travel times if the demand was al-
ways no larger than the bottleneck link exit flow rate 
capacity. However, if the demand exceeded the bot-
tleneck capacity, queues would build up. The point 
queue model could underestimate the link travel 
times while the first-order and the second-order ap-
proximation may either underestimate or overesti-
mate the link travel times. When the real link travel 
time is increasing, the link travel time from either 
the first-order or the second-order approximation 
is always underestimated. When the real link travel 
time is decreasing, the link travel time from either 
the first-order or the second-order approximation 
is first underestimated and then overestimated be-
fore reaching the real link travel time. These give 
us insight into how to design a more accurate ap-
proximation scheme. For instance, it is suggested 
that the second-order approximation should always 
be preferred when the real link travel time is in-
creasing and the computational complexity is not 
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