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Theoretical and experimental estimation of self-attenuation corrections in determination of

219pb by gamma-spectrometry with well Ge detector.

Pilleyre T., Sanzelle S., Miallier D., Fain J. and Courtine F.
Laboratoire de Physique Corpusculaire IN2P3-CNRS et Université Blaise Pascal

63177 Aubiere cedex, France

Abstract

This paper aims at giving a practical method for routine measurements of the activity of *'’Pb
in solids by gamma spectrometry with a well Ge crystal. Since the gamma rays emitted by
1%Ph have a low energy, 46.5 keV, the proportion of pulses counted in the crystal depends
strongly on the sample composition trough self-attenuation within the sample itself. Self-
attenuation can be calculated by use of a Monte Carlo method based on a model. In the
present work two codes, namely GEANT 4 and a Laboratory code gave results in agreement.
However, both necessitate a good knowledge of the sample composition, of the detector
geometry and of the computing programs. In order to circumvent such drawbacks, was
developed an experimental technique, where the overall counting efficiency can be derived
directly from the transmission of 46.5 keV y-rays through the sample, by means of a linear
relationship. Such correlation was observed experimentally with samples of known activity

and the approach was validated by verification that a linear relation preliminary exists

between the transmission and the calculated self-absorption.
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1. Introduction
219 P is a very useful radioactive element for environmental studies (Ivanovich and Harmon,
1992). It has been used extensively for measuring the sedimentation rates in lakes, estuaries
and the coastal marine environment during the past century, since Godlberg (1963) introduced
it as a geochronometer. Measuring its activity in air and in surface soils will afford

2’Rn and its daughters in the atmosphere. >'’Pb

quantitative information about the flux of
can help in uranium exploration, through the radon yield, and in monitoring transfers of
nuclides of the uranium series in soils and aquatic systems. In the context of luminescence
dating (i.e., our concern), the *'’Pb/ ***Ra activity ratio can give the proportion of ***Rn that
can escape from a given sediment, such data being of importance in the calculation of annual
radiation dose rate (Aitken, 1985).

There are three basic approaches to the measurement of *'°Pb activity (Ivanovich and
Harmon, 1992): by alpha spectrometry of *'°Po, assuming radioactive equilibrium between
the two nuclides; by beta spectrometry, observing the growth of its daughter *'°Bi; and by
gamma-ray spectrometry, which allows direct measurement in various media, including
water, rocks and soils (see e.g., Allisy et al., 1994) . It consists in counting, using an adapted
detector, the specific gamma rays that are emitted at 46.5 keV by the nuclide, during a certain
number of hours, for a given amount of sample sealed in a container. The number, N
(counts.s™), of such photons, that are observed per time unit is directly connected to the

activity A (Bq) of >

Pb in the sample. The ratio € = N/A (global efficiency) depends on :

- The "branching ratio" (4.25 %) of the gamma ray, that is the proportion of disintegrations
that give rise to a 46.5 keV photon (data from the National Nuclear Data Center, Brookhaven
National Laboratory).

- The attenuation in the sample; this means that some of the gamma rays that are emitted will

lose partially or totally their energy in the sample itself before leaving the container, resulting



in a diminution of the number of 46.5 keV gamma rays that can reach the detector. This effect
is called self-attenuation. The self-attenuation factor m, is defined here as the ratio:
n=N/No [1]

where N (counts.s) is the number of 46.5 keV photons per unit time that would be counted
for the same sample if no attenuation occurred within the sample.

- The efficiency € of the counting system, that is the proportion of initially emitted 46.5 keV
photons that would be counted if no self-attenuation occurred. It depends on the physical
properties and geometry of the detector and sample container, but not on the sample

characteristics.

g0=No/N'y [2]
where N (counts s™) = total number of emitted 46.5 KeV photons = 0.0425A
We finally have :
A=N/e=N/(0.0425¢g 1) [3]

For evaluating the activity of >'’Pb in various samples in routine measurements, assessment of
€ needs evaluation of g, once for all, and n for each individual sample. €, can be obtained by
means of calibration using reference samples of well known activity. And its evaluation needs
also, first, evaluation of m for the reference samples themselves. The problem is that n can
significantly vary from sample to sample (see Table 1). Actually, for a given container
volume and geometry, the self-attenuation depends strongly on both the composition and
apparent density of the sample (Cutshall et al., 1983).

Self-attenuation can be theoretically calculated using physicals models of interaction
between gamma rays and matter, computed with a Monte Carlo technique. Such techniques,
in which stochastic phenomena can be simulated by means of random draws generated by the

computer, have been adapted to the assessment of the counting efficiency for germanium



detectors in various configurations (e.g., Nakamura, 1975 ; Kamboj and Kahn, 2003). In the
present work, two different Monte Carlo codes have been used specifically for evaluating self
attenuation in the well geometry: (i) a home-made code (Laboratory code, hereafter) and (i1) a
program that is widespread in the field of nuclear physics, namely GEANT 4 (Agostinelli et
al., 2003). Results will be presented.

Alternatively, some experimental approaches have been proposed. Wilson (1980) based his
method for determination of absolute activity of large volume geological samples, without
being hindered by self-attenuation, on replicate counting of increasing volumes of the
unknown samples. He obtained good results but the method was time consuming. Cutshall et
al. (1983) have reported a method based on an evaluation of the transmission of low energy -
rays from a point source placed on an aluminium container in the presence and absence of
sample. Further, Joshi (1989) attempted to establish a direct correspondence between the
measured count rate for the sample and the count rate expected for material identical to that
used for efficiency calibration using y-ray transmission; this was for measuring **'Am ( at
59.6 keV), however the situation is nearly the same as for *'°Pb. Bolivar et al. (1996)
generalized the method of Joshi, by describing the transmission factor as a single function of
the gamma-ray energy, sample density and geometry. Using a derived approach, in the
present paper, we show that the transmission factor for 2'°Pb is strongly correlated to the self-
attenuation that is calculated using a Monte Carlo method. This allowed to develop and justify
an experimental method of direct evaluation of the overall counting efficiency for unknown
samples using a calibration curve made by plotting the efficiency vs the transmission factor

for a set of reference samples.



2. Experimental setting

We deal here with spectrometry of rocks and soils by means of an intrinsic germanium
cylindrical crystal (Canberra GCW3523, 193 c¢m’ ; 65x65 mm) in a well configuration ( 54x23
mm) (Fig.1). The thickness of the dead layers is not accurately given by the manufacturer, and
this 1s discussed further.

The samples to be measured are finely ground (< 100 um) before being poured and
compressed by hand in a container made of PETP (polyethylene-terephtalate). Use of PETP is
intended to get a radon-tight container with a view to evaluating not only *'°Pb, but also **°Ra
from its short-lived post-radon daughters *'*Pb and *'*Bi, using the gamma ray emissions at
195.2, 351.9 and 609.3 keV (measurements after a delay of 15 days for getting secular
equilibrium); it has been experimentally observed that commercially available containers that
would geometrically suit the well are generally made of polymers that are porous to radon
(e.g., polystyrene crystal). The volume of the container, 4.35 cm’, is always completely filled
up with powder. The samples that are routinely measured are common rocks and sediments,
with a low *'°Pb activity, typically in the range 10-100 Bg/kg. In this context, counting is
usually performed for at least three days, so that a statistically satisfying number of counts
(usually, more than ~1200, resulting in an uncertainty of less than 10%) is got in the 46.5 keV
photo-peak (after subtraction of Compton background). Evaluation of counts in the peak is
derived from a commercially available software from Canberra (Genie 2000).

The reference samples comprise: commercially available powdered rock standards and
various powdered rocks that have been dispatched within several laboratories for comparisons
of radioactivity measurements (Fain et al., 1997) (Table 2). gy can be averaged over several

reference samples.



3. Determination of self-attenuation corrections

3.1 Monte Carlo methods
The aim is to evaluate the mean self-attenuation factor for the gamma rays that are able to
reach the crystal detector and that are prone to be entirely absorbed for finally giving rise to a
pulse in the photo-peak. For this purpose it is necessary to have a good knowledge of the
detector geometry and characteristics. However, as mentioned earlier, the thickness of the
germanium dead layers is not accurately known. Such information is absolutely necessary for

calculation of the overall efficiency, €, of the detector, but has a very weak impact on the

self-attenuation; this is because such attenuation occurs within the sample, before reaching the
Ge-crystal. Actually, attempts have been made to assess the thickness of the dead layer in the
well (work in progress) and preliminary estimations have been tentatively taken into account
in the calculation of the self attenuation with both codes. Results indicated that a dead layer of
25um would give the same self-attenuation as without dead layer within statistical
uncertainty.

3.1.1 Laboratory code
The self-attenuation factor  is calculated as the ratio:

n=(Zp)/(Z pw) [4]

where :
pa = probability of interaction within the crystal with attenuation within the sample taken into
account; py = probability of interaction in the crystal without attenuation within the sample.
Summation is made over a great number of draws (typically, 10*). For the sake of

simplification, it is assumed that every 46.5 keV photon that may interact in the crystal will be



entirely absorbed and give rise to a pulse in the peak. This is justified due to the short range of
the low energy photons in germanium (less than 1mm).
Basically, the successive steps of the calculation are as follows :

- 1: Draw at random an emitting point within the sample

- 2. Draw at random a direction for the emission of the gamma ray

- 3: Test possible intersection of this direction with the crystal : if not, go back to step 1

- 4: Calculation of the geometrical path lengths in the different media (sample, container

walls, aluminium shield, germanium crystal). The parameterisation uses cylindrical

coordinates.

5: Calculation of p, and py.

pw 1s calculated as follows:
Pw = [exp(- Splppp - SkpkPx - SapigPe)] [1 - exp(-Oghgpg)] [5]

where 0, Ok, 0, and 04 (cm) are the geometrical path lengths in the container walls (p),
aluminium shield (k), dead layer (d) and "active" germanium (g), respectively and p; (cm>.g™)
and p; (g.cm™) are the corresponding attenuation coefficients and densities. The formula [5] is
valid whatever the energy, however, as noted earlier, the second term, [1 - exp(-Sglgps)],
which relates to absorption in germanium, equals 1 at 47 keV. The coefficients p; are
computed from the major element composition of the samples and the attenuation coefficients

for those elements are extracted from the NIST tables (http://physics.NIST.gov/PhysRef

Data/XrayMassCoef/cover.html). Densities p; are simply derived from the mass and volume

(4.35 cm’) of the sample in the container.
Pa 18 given by:
Pa = Pw [exp(- dspsps)] [6]

where the subscript s is related to the sample characteristics.



The results for a set of 15 different samples are shown on Table 1 (for &q = 25 um). The
standard deviation for successive runs is around 0.3 %, one run of 10" draws taking 30s with

a personal computer (equipped with a Pentium II, 233 MHz).

3.1.2 GEANT 4
GEANT 4 is a general toolkit for simulating the passage of particles through matter
(Agostinelli et al., 2003). It includes all possible physical interactions and corresponding data
tables. In the present work, the version GEANT 4.5.2 was applied, together with the Low
Energy Electromagnetic Processes option. In the frame of the present work, the code allowed
one to follow and list, step by step, all the interactions of the gamma rays and the resulting
electrons in the different media : sample, container walls, aluminium, dead layer, germanium.
For evaluating the global efficiency € for a given sample, an homogeneous source was
simulated in the sample container, that emitted at random, in all directions, a simple 46.5 keV
photon. In term, the total number of gamma rays that let all their energy in the crystal was
compared to the total number of created photons. The ratio gave the overall efficiency. The
computation was performed with various theoretical compositions of the sample in the
container, including air only. The self-attenuation factor n was then evaluated as the ratio
between the efficiency calculated with a rock or sediment sample and the efficiency
calculated with an "air sample". Note that all the created photons were tracked; thus, more
draws were necessary than using the Laboratory code which selects the photons that can give
a pulse in the photopeak. Routinely, processing one sample (10° draws) takes around 20

minutes, leading to a reproducibility of successive runs within + 0.2 %. It can be seen (Table



1) that the results are not much different from the results obtained using the Lab. code, the
correlation between the results of both methods being: Ngeant = 1.012 (£ 005)N1ap. + 0.003 (£

0.002) (R*=0.998).

3.2 Experimental

3.2.1 Self-attenuation and efficiency vs transmission

The experiments presented below are derived from the transmission method proposed by
Cutshall et al. (1983) and developed by Joshi (1989) and Bolivar et al. (1996). The basic idea
was to look for a correlation between the experimental attenuation through the whole sample,
measured with an external gamma source, and the self-attenuation coefficient. For that
purpose, the experimental setting of Fig.2 was used. The source is made of *'’Pb (283 Bq in
December 2003) diluted in a polymer matrix, that forms a disk (¢$=9mm) deposited onto an
aluminium holder. An aluminium mounting allows insertion of a PETP tube between the
source and the top surface of the aluminium shield of the detector. The attenuation is
calculated by the ratio ny/ng. with ny =[counting rate with a tube containing the sample] and ny
= [counting rate with an empty tube]. Actually, ns can be corrected as n's, taking into account
the gamma rays at 46.5 keV that come from the sample itself. n's is only different from n for
very active samples; it can be easily derived from a single measured ratio between the counts
in the well position and the counts in the position of Fig. 2. The plot of n'y/n, for various
samples of rock and sediment against the self-attenuation coefficient calculated for the same
samples gives a linear correlation in the field of usual rock and sediment compositions, as
well for the n calculated with GEANT 4 as for n calculated with the Laboratory code (Fig. 3).
The correlation looks linear (R* = 0.988) but for an outlying sample that has been shown for

comparison: a non-natural manganese rich sand (lower black triangle).



The above results suggested that the overall efficiency should be also linearly correlated to the
transmission. This was verified using a set of 8 reference samples, which are common rocks
of known *'°Pb activity, by plotting € vs n'y/no (Fig. 4). The precision on & was limited by the

low signal/background ratio around 47 keV; however, this is true whatever the approach that

210

is adopted with gamma spectroscopy of “""Pb. This limited the correlation coefficient to 0.89

in the present example.

3.2.2 Practical method for € assessment
For a practical purpose, i.e., estimating the efficiency at 46.5 keV for unknown samples, it is

sufficient to know the correlation between the transmission n'yng and the efficiency €. For

210

ordinary rocks and sediments samples, the “"Pb activity A (Bq) can be estimated by use of a

calibration curve, where A/N (Bq.s.counts™) is plotted vs n'y/no. This is done routinely in our

210

laboratory. With the “"Pb source that is used, a statistical uncertainty of less than 1 % on the

experimental attenuation (horizontal axis on Fig.4) can be attained within around one day of

counting; this lengthens the total counting time for one sample by around 25%.

210

Since the available samples of known “"Pb activity were used for plotting the

calibration curve (Fig. 4), it was not possible to test the method with such samples. We tested

it another way: samples C396bis and C397 (Table 1), not used for the calibration curve,

226 d 210

should show secular equilibrium between ““Ra an Pb according to geological

considerations (sediments included in a lava flow, not allowing radon migration). Because the
activity of radium can be evaluated with a good accuracy using gamma spectroscopy, an

agreement between the activity of radium and the activity of *'’Pb measured as above would

226 210

be a test. ““Ra was basically measured by the same method as for “"Pb; however, since the
self attenuation at 295 keV and above is significantly less important and less composition-

dependant than at 46 keV, it is simply accounted for by use of a factor exp(-Omlmps), Where



Om 1s the mean path length in the tube (0.65cm, evaluated experimentally) and p,, is the
attenuation coefficient at the energy of interest for a standard sediment sample. We finally
found activities ratios *'’Pb/***Ra of 1.00 = 0.15 and 1.08. £ 0.11 (15) respectively. This

illustrates the potentiality of the technique in one of the fields of interest (see section 1).

4. Resume and conclusions
The use of a simulation code, either a home-made code or a widespread code like
GEANT 4, can allow evaluation of the self-attenuation coefficients for the 46.5 keV gamma

*1%Pph emitted within a sample. This can be illustrated by the agreement that is

ray from
obtained between the self-attenuation coefficients which were obtained using the two different
approaches. However, such a method imposes the control of the code and its language (C++),
a good knowledge of the detector geometry, including parts that can not be seen externally
(data necessary for the simulation), and an assessment of the composition in major elements
and water content for every sample to be measured. The evaluated value for the attenuation
coefficient is not error free; this is illustrated by the difference that can sometimes be
observed between the results obtained from two different approaches (Table 1), the origin of
which is unknown (not accounting for errors in weighting, chemical analysis and geometrical
data). For circumventing such problems, we have developed an experimental technique,
derived from the transmission technique initiated by Cutshall et al. (1983), in which the
counting efficiency is directly derived from the measured transmission at 46.5 keV, through a
linear correlation obtained by use of reference samples. In the present work, the technique
was limited to ordinary rocks and sediments in a certain range of elemental compositions
(Table 2). We have indications that extending the range of compositions would result in a

correlation that is no longer linear (see triangle on Fig. 3); however, a simplified model based

on exponential attenuation (not reported here) indicated that the correlation cannot be strictly



linear and, therefore, it would not be irrelevant to use, e.g., polynomial fits for extending the

range of measured samples.

Acknowledgements

We are grateful to Michel Condomines for providing the reference samples 1906, 2149, 1081,
1603 and 623 B, with the related data. Most of the other samples have been analysed for
major elements by CRPG (Centre de Recherches Pétrographiques et Géochimiques),

Vandoeuvre-les-Nancy, France.

Figure captions

Figure 1.
Cross section of the gamma detector (cylindrical geometry). 1: germanium crystal; 2:
powdered sample; 3: aluminium alloy shield; 4: sample container.

Figure 2.

Experimental setting for measuring attenuation through the whole container using a *'°Pb
source. 1: germanium crystal ; 2: powdered sample; 3: aluminium alloy shield; 4: sample
container; in black: *'°Pb source. The mounting was not drawn for sake of simplification.

Figure 3.

Black dots : experimental attenuation n'y/'ng using the setting of Fig. 2, vs calculated self-
attenuation 1 (using the Laboratory code), for various natural rocks and sediments (including
those of Table 1). The lower point (black triangle) is a non natural manganese sand and the
upper one is water. Statistical error limits to within 2.

Figure 4.

Plot of the measured global efficiency €, for a set of samples of known “"Pb content vs
experimental attenuation n'y/ng, using the setting of Fig. 2. Error bars are statistical +
systematic (20).

210



Sample reference n n €
(Lab. code) (GEANT 4) (experimental)

C341 0.563 £ 0.002 0.576 £ 0.001

C347 0.719 £ 0.002 0.734 £ 0.001 0.52 £0.07

C396bis 0.712 £0.002 0.729 £ 0.001

C397 0.704 £ 0.002 0.721 £ 0.001

65SR300 0.813 £ 0.003 0.825 £ 0.001 0.61 £ .05

Al203 0.775 £0.002 0.790 £ 0.001

Si02 0.761 £0.002 0.773 £0.001

water 0.871 £+ 0.002 0.878 =£0.001

MAZ 0.579 £0.002 0.593 £ 0.001

GOU 0.638 £ 0.002 0.650 £ 0.001 0.46 £0.06

MPX 0.751 £0.003 0.765 £ 0.001

BEN 0.591 £ 0.002 0.597 £ 0.001 0.41 £0.06

1081 0.706 £ 0.002 0.720 £ 0.001 0.52 +£0.04

1603 0.617 £0.002 0.623 £ 0.001 0.44 £0.07

1906 0.648 £ 0.002 0.657 £0.001 0.41 £0.05

2149 0.657 £0.002 0.664 £ 0.001 0.48 £0.06

623B 0.619 £ 0.002 0.629 £ 0.001 0.51+£0.15

CASCI110 0.373 £0.001 -

Table 1

Compared values of the self-attenuation coefficient n, obtained by modelization using a local

code (10" draws) and GEANT4 (10° draws); errors are statistical only (1c). Experimental

values of the global efficiency € for the samples which content of 2'°Pb is known; overall

uncertainty at 1G.

sample nature Si02 | Al203 | Fe203 | MnO | FeO | MgO | CaO [Na20 |K20 |TiO2 |P205 | H20 d Lo
reference

C341 lava 46.95 | 16.67 12.15 .19 6.16 |9.59 |3.71 1.68 |244 |.57 17 1.94 |0.537
C347 granite 73.09 | 15.05 1.45 <LD .38 .89 3.62 4.17 | .13 .19 .82 1.54 ]0.362
C396bis sediment 67.51 | 15.66 |3.63 0 0.77 |091 |1.83 5.06 [0.48 |[0.35 3.7 1.45 ]0.396
C397 sediment 7194 | 152 3.16 0 0.72 |0.78 | 1.83 523 1034 [0.24 0.45 1.51 ]0.393
Si0, silica 100 1.43 |0.318
65SR300 sediment 45.74 | 13.93 3.64 0.02 0.46 |0.48 |0.73 2.56 1054 |02 30.61 | 094 |0.353
AlLO3 alumina 100 1.42 [0.292
MAZ lava 49.19 | 17.13 12.12 [ 0.22 4.69 |847 |4.36 2.29 |2.39 0.33 1.82 |0.537
GOU lava 54.9 18.2 7.91 0.22 225 |547 |54 3.14 |1.38 0.03 1.69 |0.467
MPX sandstone | 86.00 | 6.89 0.83 0.01 0.11 |0.07 |0.19 2.99 10.05 0.1 1.38 |0.345
BEN lava 38.2 10.07 12.08 |[0.2 13.2 | 139 |3.18 139 |2.61 |1.05 0.5 1.72 | 0.548
1081 lava 62.43 | 16.55 2.45 0.16 |235|159 |[291 |627 338 |1.1 0.31 0.27 | 141 |0.381
1603 lava 47.53 | 18.21 3.76 0.18 |6.68|548 |[10.7 |4.16 1.1 1.77 |0.65 0.13 1.66 |0.416
1906 lava 51.02 | 18.63 4.25 0.14 509|298 |[8.51 |4.69 2.08 |1.66 |0.71 0.21 1.52 |0.420
2149 lava 49.94 | 20.38 5.43 0.14 275|324 |9.29 |4.58 1.16 |1.51 |0.62 0.68 1.53 ]0.433
623B lava 48.65 | 14.73 2.92 0.16 |7.51|103 |[9.55 |3.62 0.7 1.55 1039 0.19 1.65 |0.396
water 100 1.00 |0.217
CASC110 | Mn sand 2.83 |6.81 6.5 64.98 0.47 |0.33 |0.18 1.09 |0.27 |0.34 15.11 | 1.70 | 0.120
Table 2

Elemental composition (%) of the samples and their density d (g.cm’
compositions were obtained by ICPMS. The mass attenuation coefficient, o, is in cm®g™.

%) in the container. Most
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