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Abstract: Environmental researchers, as well as epidemiologists, often encounter the problem of determining the 
probability of exceeding a high threshold of a variable of interest based on observations that are much smaller than the 
threshold. Moreover, the data available for that task may only be of moderate size. This generic problem is addressed by 
repeatedly fusing the real data numerous times with synthetic computer-generated samples. The threshold probability of 
interest is approximated by certain subsequences created by an iterative algorithm that gives precise estimates. The 
method is illustrated using environmental data including monitoring data of nitrogen dioxide levels in the air.  
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INTRODUCTION 

Environmentalists, as well as epidemiologists, often 
encounter the following basic problem. Suppose the 
value of a high threshold is T , but the data values at 
hand regarding a certain environmental variable are 
much smaller than T . Moreover, the data size could 
be moderately large at best. Based on the data, what is 
the probability p  of exceeding T ? For example, if the 
data values are all less than T / 2 , what is the chance 
that a future value exceeds T ? This generic problem is 
dealt with in this paper in terms of nitrogen dioxide 
emission. 

According to the American Lung Association 
(www.lung.org/clean-air/outdoors/what-makes-air-
unhealthy/nitrogen-dioxide), nitrogen dioxide ( NO2 ) is 
a gaseous pollutant emitted from the burning of fossil 
fuels at high temperatures primarily by vehicles, 
followed by power plants, diesel-powered heavy 
construction equipment and other movable engines. 
However, most of the NO2  in ambient air is formed in 
the atmosphere through photochemical reactions 
between nitric oxide and other air pollutants. Moreover, 
NO2  causes a range of harmful effects on the lungs, 
including increased inflammation of the airways, 
worsened cough and wheezing, reduced lung function, 
increased asthma attacks, and a greater likelihood of 
emergency department and hospital admissions. When 
exposed to NO2 , infants and children, due to their 
greater breathing rate for their body weight, have a 
higher risk of respiratory failure. 
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Epidemiological studies have demonstrated 
associations between NO2  exposure and premature 
death, cardiopulmonary effects, intensified allergic 
responses, and lower birth weight in newborns. It was 
found that exposure to NO2  and other outdoor air 
pollutants shortened the survival of lung cancer 
patients [1]. The International Agency for Research on 
Cancer (IARC) classified outdoor air pollution and 
particulate matter (PM) as carcinogenic (Group 1); and 
the evidence of a long-term effect of NO2  on mortality 
has been found to be as great as that of PM [2]. 
Consistent evidence of a relationship between NO2  
with lung cancer was noted by a systematic meta-
analysis [3]. The U.S. EPA’s National Ambient Air 
Quality Standard (NAAQS) (dep.wv.gov/daq/planning/ 
NAAQS/Pages/default.aspx) measures NO2  as an 
indicator for the NOx  family. To protect the public’s 
health from outdoor air pollution, NAAQS set the 1-hour 
NO2  standard as 100 parts per billion (ppb) and an 
annual (arithmetic average) standard of 53 ppb. 

Repeated Fusion 

Regarding the posed exceedance problem, as they 
are, the data do not give much information about such 
questions, and particularly so when the samples are 
not large. However, the situation differs dramatically if 
somehow we could only have a “peek” into the domain 
above the threshold. And if we can do that once, then 
we can repeat that numerous times henceforth. A way 
of doing that is by repeated fusion of real and synthetic 
or artificial data. As we shall see, synthetic data can 
enhance patterns in real data, a statistical idea 
highlighted by augmented reality (AR) explored in 
Kedem, De Oliveira, and Sverchkov (2017, Ch. 5), 
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Kedem et al. (2019), and in Kedem and Pyne (2021) 
[4-6]. 

Our approach to the estimation of the small 
exceedance or tail probability p  is based on numerous 
fusions. It runs as follows. Given any method which 
produces numerous upper bounds Bi  for p . Say, 
upper bounds which exceed p  with a 95%  chance. 
Then many upper bounds exceed p  but many do not. 
Therefore, there are subsequences of ordered upper 
bounds which approach p  from above and from below. 
In this paper, the numerous upper bounds are 
produced by repeated fusion of the data with computer-
generated samples, where the number of fusions is 
arbitrarily large, and where the support of the 
generated data is large enough so that it ranges 
beyond T . Hence, if the given and generated data are 
somehow connected, we then have a way to “peek" 
into the realm above T . 

Repeated fusion of the data with external computer-
generated data is referred to as repeated out of sample 
fusion or ROSF. Unlike the bootstrap, we seek 
information repeatedly outside the sample. 

To describe our approach, we must first review 
some ideas and then illustrate an iterative method for 
the estimation of small threshold probabilities. Thus, as 
such, part of this paper is a review. 

The following items are new. Lemmas 0.2 and 0.3 
which support Proposition 0.1 are new. If B( j )  are 
ordered upper bounds, then Lemma 0.3 predicts when 
there is a shift in B( ji )  subsequences converging to p  

from above and from below. Also new is the fact, not 
emphasized hitherto, that already by themselves the 
quartiles and mean of numerous upper bounds for the 
true threshold probability p  provide useful 
approximations for p , as illustrated in Tables 1,3,5, 
and 7. This is a fast, albeit crude, way to assess the 
magnitude of tail probabilities. We will show how to 
improve these crude assessments. The NO2  data 
analysis is new as well. Certain technical details are 
described in the APPENDIX. 

METHODS 

Upper Bounds for p  by Data Fusion 

Let X  be a random variable. The problem is to 
estimate a small tail probability p = P(X > T )  for a 
given threshold T  from a reference sample 
X 0= (X1, ..., Xn0 ) , where max( X 0) < T . This section 

follows for the most part Kedem et al. (2019) and 
Kedem and Pyne (2021) [5, 6]. 

Assume that X 0  is from some unknown reference 
probability density (pdf) g(x) , x ! (0,")  , and let )(xG  
denote the corresponding distribution function (CDF). 
Since max( X 0) < T  and since g(x)  is unknown, there 
is not much we can say about p . However things are 
very different when an independent random sample X 1  
exists from a distribution with pdf g1(x)  and CDF G1(x)  
supported over a region stretched beyond T . We shall 
assume that X 0  and X 1  “talk" to each other via a 
relationship between their distributions, whence useful 
information is gained about p . 

Let  X 1! g1,G1  be a computer-generated random 
sample of size n1  and consider the fusion of X 0  and 
X 1 ,  

 
t= (t1,…, tn0 +n1 ) = ( X 0, X 1),          (1) 

of size n0 + n1 . We shall assume the density ratio 
model [7] 

g1(x)
g(x)

= exp(!1 + "#1 h(x))          (2) 

where !1  is a scalar parameter, ! j  is an r !1  vector 
parameter, and h(x)  is an r !1  vector-valued 
function. Clearly, to generate X 1  we must know the 
corresponding g1 . However, beyond the generating 
process, we do not make use of this knowledge. Thus, 
by our estimation procedure, none of the probability 
densities g, g1  and the corresponding CDF’s G,G1 , 
and none of the parameters !1  and ! 1  are assumed 
known, but, strictly speaking, the so called tilt function 
h  must be a known function. However, in the present 
application the requirement of a known h  is 
weakened considerably by the mild assumption (3) 
below, which may hold even for misspecified h , as 
numerous examples with many different tail types 
show. Accordingly, based on numerous experiments, 
some of which discussed in Kedem et al. (2019)  and 
Kedem and Pyne (2021) [5, 6], for non-negative data 
we shall assume the “gamma tilt" h(x) = (x, log x) . 
Further justification for choosing the gamma tilt is 
provided by the rather precise p -estimates in the first 
eight entries in Table 10 below. Notice that the “normal 
tilt" h(x) = (x, x2 )  is used in the last entry in the table. 

Under the density ratio model (2), the maximum 
likelihood estimate of G(x)  based on the fused data 
t= ( X 0, X 1)  is given in (15) in the APPENDIX along 

with its asymptotic distribution described in Theorem 
0.2. 
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From the theorem we obtain confidence intervals for 
p =1!G(T )  for any threshold T  using (18). In 

particular we get an upper bound B1  for p . In the 
same way, from additional independent computer-
generated samples X 2, X 3, ..., X N  we get additional 
upper bounds for p . Thus, from the repeated fusions  

( X 0, X 1), ( X 0, X 2), ( X 0, X 3), ...( X 0, X N )  

the density ratio (2) assumption produces the 
sequence of upper bounds  

B1,B2 , ...,BN  

which, conditional on X 0 , is then a sequence of 
independent and identically distributed random 
variables from some distribution FB . 

It is assumed that  

0 < FB (p) < 1            (3) 

so that  

P(B1 > p) = 1! FB (p) > 0.  

Let B(1),B(2), ...,B(N )  be the corresponding sequence 
of order statistics from smallest to largest. Then, as 
N !" , B(1)  decreases and B(N )  increases. 

Theorem 0.1 As N  increases, 

a. With probability approaching one, 

B(1) < p < B(N )            (4) 

b. FB  can be approximated arbitrarily closely.  

c. There are B( ji )  subsequences that take values in 

a neighborhood of p .  

d. For all N > N0 , for some sufficiently N0 ,  

0 < p < FB
!1(0.051/N )  

Proof. Assumption (3) implies a. Part b follows from 
the Glivenko-Cantelli Theorem, and the fact that the 
number of fusions of X 0  with computer-generated 

samples is arbitrarily large. More precisely, let F̂B  be 
the empirical distribution obtained from the sequence of 
upper bounds B1,B2 , ...,BN . Then as the number of 
fusions of X 0  with computer generated data grows, 

F̂B  converges to FB  almost surely uniformly. To prove 

c, we construct a particular subsequence. For some 
j1 , there is B( j1 )  such that P(B( j1 ) > p) =Q1 . Hence, 

the smallest p*  which satisfies P(B( j1 ) > p
*) !Q1  is not 

far from p . It follows that the closest B(k1 )  to p*  falls in 

a neighborhood of p . Repeating this with  j2 , j3,!  we 
obtain a subsequence 

 
B(k1 ),B(k2 ),B(k3 ),!  with values in 

a neighborhood of p . Part d follows from the 
distribution of B(N ) . 

Since the number of fusions can be as large as we 
wish, our key idea, FB  is known for all practical 
purposes. Hence, from d, we see that for sufficiently 
large N , FB  provides information about p  [8]. Clearly, 
already by themselves, the quartiles and mean of FB  
provide useful approximations for p . We shall illustrate 
this fact below. 

“Down-up" Subsequences 

For a sufficiently large number of fusions N , we 
show how to produce subsequences {B( ji )}  which 

approach p  from above (“down") and from below 
(“up"). 

A relationship between j  and p  is obtained from 
the well known distribution of order statistics,  

P(B( j ) > p) =
k=0

j!1

" N
k
#

$
%

&

'
([FB (p)]

k [1! FB (p)]
N!k .        (5) 

This probability is readily available since N  is 
arbitrarily large, and hence, FB  is known for all 
practical purposes by Theorem 0.1- b. 

Consider now only B( ji ) ’s in a neighborhood of the 

true p , all satisfying the inequality,  

P(B( ji ) > p) ! 0.95.           (6) 

Observe that (6)  is satisfied for small P(B( ji ) > p)  

when B( ji )  lies to the left of the true p . Suppose now 

we solve (6)  with B( ji )  along some p -increments, and 

find B( j2 )  nearest the smallest p  which satisfies (6). 

Thus p ! B( j2 ) . Replacing B( j1 )  with B( j2 )  in (6) we 

obtain another approximation for p . We keep doing 
that to obtain a subsequence B( j1 ),B( j2 ),B( j3 ), ... . 

Clearly, depending on the p -increment, some of the 



On the Probabilities of Environmental Extremes International Journal of Statistics in Medical Research, 2021, Vol. 10      75 

B( ji )  fall to the left of the true p  and some to the right. 

This process stops when the next B( ji )  is equal to the 

previous one. 

The preceding argument suggests the following 
Iterative Algorithm for the estimation of tail probabilities 
proposed in Wang (2018) and Kedem et al. (2019) [5, 
9]. Recall the order statistics formula (5). 

Iterative Algorithm 

1. Let B( j ) ,  j =1,!,N , be the order statistics 
obtained from B1, ...,BN .  

2. Choose a starting point j = j1  and find the 
smallest p  that satisfies the inequality  

k=0

j!1

" N
k
#

$
%

&

'
([F̂B (p)]

k [1! F̂B (p)]
N!k ) 0.95         (7) 

where F̂B  is the empirical distribution function of the 
Bi ’s. Evaluate (7) along p -increments of size ! : 

 !, 2!,! . Find the smallest integer k = k1  such that 
p = k1!  satisfies (7).  

3. Find j2  such that B( j2 )  is the smallest B( j ) ! p1 .  

4. Repeat steps 2 and 3 for j2 .  

In general, starting with any j , convergence occurs 
when for the first time B( jk ) = B( jk+1 )  for some k  and 

we keep getting the same probability pjk . That is, the 

process stops when pjk  keeps giving the same 

B( jk+1 ) . Thus, the algorithm produces the iterative 

steps,  

 

j1 ! pj1 ! j2 ! pj2 !! jk ! pjk ! jk+1 ! pjk
! jk+1 ! pjk!

 

For each starting point j , the algorithm produces a 
sequence  j1, j2 ,! . The first thing we wish to show is 
that such a sequence is either non-decreasing or non-
increasing. To show this, we note that the left-hand 
side of (7) is non-increasing in p . Thus, solving (7) is 
equivalent to solving  

k=0

j!1

" N
k
#

$
%

&

'
([F̂B (p)]

k [1! F̂B (p)]
n!k = 0.95         (8) 

To solve (8), we need the following lemma. 

Lemma 0.1 Suppose  X ! b(n,! )  and 

 Y ! beta( j +1,n ! j) , then  

P(X ! j) = P(Y "# ) .  

Proof. See Casella and Berger (2002) [10], 
Problem 9.21, p. 454. 

By Lemma 0.1, conditional on F̂B (p) , we have 

P(Y ! F̂B (p)) = P(X " j #1)  where  Y ! beta( j,n ! j +1)  

and  X ! b(n, F̂B (p)) . Then we can rewrite (8) as  

P(Y ! F̂B (p)) = 0.95           (9) 

and the solution of p  is p̂ j = qq0.05
beta( j,n! j+1)
F̂B  where qF̂B  

and qbeta( j,n! j+1)  are the quantiles of F̂B  and 
beta( j,n ! j +1) , respectively. 

We wish to show P(B( j ) ! p̂ j ) = 1 . 

Lemma 0.2 For every j , B( j ) ! p̂ j  almost surely.  

Proof. Since j
n
! q0.05

beta( j,n" j+1)  for every j , then 

F̂B
!1( j
n
) " F̂B

!1(q0.05
beta( j,n! j+1) )  almost surely by the 

monotonicity of F̂B . Then by the definition of order 
statistics and the quantile function, we have 

B( j ) = F̂B
!1( j
n
)  and p̂ j = qq0.05

beta( j,n! j+1)
F̂B = F̂B

!1(q0.05
beta( j,n! j+1) ) . 

By Lemma 0.2, we know that if we solve (7) 
analytically, the sequence obtained should satisfy 

 j1 ! j2 !! . However, since the algorithm solves (7) 
approximately by using a p -increment, then we could 
also have  j1 ! j2 !! . 

Lemma 0.3 For each starting point j1 , the algorithm 
produces one of the three types of sequences: 1. 

 j1 > j2 !!  i.e. a sequence that goes down; 2. 

 j1 = j2 =!  i.e. a sequence that stays at j1 ; 3. 

 j1 < j2 =!  i.e. a sequence that goes up for one step 
and then stays there.  

Proof. The proof is technical and is given in 
Appendix B. 

Lemma 0.3 points to the existence of a “down" and 
“up" sequence produced by the Iterative Algorithm. 
This and the argument at the beginning of this section 
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lead to the following proposition, supported by the 
examples in the next section. 

Proposition 0.1 Assume that the samples size n0  
of X0  is large enough, and that the number of fusions 
N  is sufficiently large so that B(1) < p < B(N ) . Consider 
the smallest pj ! (0,1)  which satisfies the inequality  

k=0

j!1

" N
k
#

$
%

&

'
([F̂B (pj )]

k [1! F̂B (pj )]
n!k ) 0.95       (10) 

where the pj  are evaluated along appropriate 
numerical increments. Then, iterating between (10) and 
the ordered sequence {B( j )}  produces “down” and 
“up” sequences depending on the B( j )  relative to pj . 
In particular, in a neighborhood of the true tail 
probability p , with a high probability, there are “down” 
subsequences {B( ji )}  which converge from above and 

“up” subsequences {B( jk )}  which converge from below 

to points close to p .  

A problem arises as to the choice of the p -
increment. The quartiles of FB  from a very large 
number of fusions are known, and their order of 
magnitude shed light on the true p . In fact, as we shall 
see, the sample mean and quartiles of B1, ...,BN  
already give us a pretty good idea as to the value of p . 
Experience tells us that mean(B) /10  and 
median(B) /10  or similar orders of magnitude are useful 
choices for p -increment as we shall demonstrate in 
the next section. 

We further note that: 

The “down” and “up” sequences in the proposition 
are indeed the type 1 and type 3 sequences in Lemma 
0.3, respectively. Furthermore, by Lemma 0.3, the 
Iterative Algorithm produces “down” and “up” 
sequences depending on the relative size of the p -
increment !  and the difference B( j ) ! p̂ j .  

The proposition states that there is a shift between 
“down” and “up” patterns around the true p . As we 
shall see in the next section, the “down” and “up” 
patterns around the true p  essentially converge to 
what looks like a “fixed point" close to p . Such fixed 
points could occur elsewhere as well.  

For a very small p -increment such that 
! < arg jmin (B( j ) " p̂ j ) , meaning, there is at least one 

p -increment between p̂ j  and B( j )  for every j , the 
algorithm will not produce any “up” sequence.  

Algorithm Illustrations 

In practice, computational constraints limit the size 
of the number of fusions N . Hence in (10), FB  is 

approximated very closely by F̂B  obtained with 
N =10, 000  fusions, while in the binomial coefficients 
we use N =1000 , near the maximum allowed by R. In 
all cases we use the misspecified tilt function 
h(x) = (x, log x) , appropriate for gamma data, and the 
computer-generated data are uniform where the upper 
limit exceeds T :  X 1!Unif (0, L)  where L > T . The 
precision of the estimates p̂  of p  obtained at the 
“down-up" transition supports these choices. 

The only exception is the normal case in Section 8 
where h(x) = (x, x2 )  and N = 5, 000 . In that case 

 X 1!Unif (!L, L)  where L > T . 

To observe the “down-up" pattern near the true p , 
each entry in the following tables is obtained from a 
different sample of 1000 independent B ’s, at times 
with the same j . This is to show that different samples 
lead to the same p̂  observed at the shift from “down" 
to “up". From the following tables we see that as the 
“down-up" sequences approach p  with any j , the 
number of iterations from the Iterative Algorithm 
decreases, a telltale sign we approach the true p . 

Illustration in Terms of Lognormal Data 

We start with a simulated lognormal example, with 
parameters µ =! 2 = 1 , denoted by LN(1,1), where we 
know for sure that the tail of the distribution is far from 
that of a gamma tail, meaning that h(x) = (x, log x)  is 
misspecified. We have  X 0! LN(1,1) , 
max( X 0) = 44.82807 , T =112.058 , p = 0.0001 , and 

 X 1!Unif (0,130) . Hence max( X 0) < T < 130 . 

The descriptive statistics of the upper bounds 
B1, ...,B10,000  obtained from N =10, 000  fusions of X 0  
with independent computer-generated samples 

 X 1!Unif (0,130) , where n0 = n1 = 100 , are given in 
Table 1. Conspicuously, the median and mean are of 
the same order of magnitude as that of the true p .  

We chose a p -increment of 0.000015 which is of 
the same order of magnitude of both the 
median(B) /10 = 0.00003828  and 
mean(B) /10 = 0.00005504 .  
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Table 1: Descriptive Statistics of B1,...,B10,000  from 
Fusions of LN(1,1) with Unif(0,130) Samples 

1st Qu.   Median   Mean   3rd Qu.   Max.  

.624e-04   3.828e-04   5.504e-04  7.752e-04   3.729e-03 

 
The pattern in Table 2 points to a shift from “down" 

to “up" at p̂ = 0.0001045544  close to the true p = 0.0001  
with an error of 4.5544e! 06 .  

Table 2: p = 0.0001 ,  X 0! LN (1,1) .  X 1!Unif (0,130) , 
max(X 0) = 44.82807 , T =112.058 , n0 = n1 =100 , 
h = (x, log x) , p -Increment 0.000015 . Down-Up 
Shift at p̂ = 0.0001045544  

Starting j    Convergence to   Iterations    

800  0.0001945544   22  Down 

500  0.0001795544   9  Down 

300  0.0001345544   4  Down 

200  0.0001195544   1  Down 

170  0.0001045544   1  Down 

160  0.0001045544   1  Down 

155  0.0001045544   1  Up 

152  0.0001045544   1  Up 

150  0.0001045544   1  Up 

 
The next lognormal example concerns  X 0! LN(0,1)  

and misspecified h(x) = (x, log x) . We have 
max( X 0) = 13.77121 , T = 41.22383 , p = 0.0001 , and 

 X 1!Unif (0, 70) . Hence max( X 0) < T < 70 . 

The descriptive statistics of the upper bounds 
B1, ...,B10,000  obtained from N =10, 000  fusions of X 0  
with independent computer-generated samples 

 X 1!Unif (0, 70) , where n0 = n1 = 100 , are given in Table 
3. Conspicuously, the median and mean are of the 
same order of magnitude as that of the true p .  

Table 3: Descriptive Statistics of 10,0001,...,BB  from 
Fusions of LN(0,1) with Unif(0,70) Samples 

1st Qu.   Median   Mean   3rd Qu.   Max.  

.972e-05   2.012e-04   4.287e-04  5.759e-04   4.288e-03 

 

We chose a p -increment of 0.000015 which is of 
the same order of magnitude of both the 
median(B) /10 = 0.00002012  and mean(B) /10 = 0.00004287 . 

The pattern in Table 4 points to a shift from “down" 
to “up" at p̂ = 0.0001042241  close to the true p = 0.0001  
with an error of 4.2241e! 06 .  

Table 4: p = 0.0001 ,  X 0! LN (0,1) .  X 1!Unif (0, 70) , 
max(X 0) =13.77121 , T = 41.22383 , n0 = n1 =100 , 
h = (x, log x) , p -Increment 0.000015 . Down-Up 
Shift at p̂ = 0.0001042241  

Starting j    Convergence to   Iterations    

900  0.0002392241   27   Down 

800  0.0001042241   24   Down 

700  0.0001042241   17   Down 

420  0.0001042241   3   Down 

370  0.0001042241   1   Down 

360  0.0001042241   1   Down 

355  0.0001042241   1   Up 

350  0.0001042241   1   Up 

350  0.0001042241   1   Up 

 

Illustration in Terms of Mercury Data 

The present illustration concerns levels of mercury 
data measured in marine life in mg/kg. The data source 
is NOAA’s National Status and Trends Data 

https://products.coastalscience.noaa.gov/nsandt_da
ta/data.aspx. 

The mercury data consists of 8,266 observations of 
which 9 observations exceed T = 22.41  giving the 
proportion of p = 0.001088797 . We treat the mercury 
data as a population and draw a reference random 
sample without replacement X 0  of size n0 = 200  from 
it. 

The results of 10,000 fusions of the mercury 
reference sample X 0  with  X 1!Unif (0, 50)  samples of 
size n1 = 200  gave 10,000 B  upper bounds. Their 
descriptive statistics are summarized in Table 5.  

Table 5: Descriptive Statistics from 10,000 Mercury B  
Upper Bounds 

1st Qu.   Median   Mean   3rd Qu.   Max.  

.098e-03   3.319e-03  3.475e-03  4.715e-03   8.929e-03 

 
Observe that the 1st quartile, median, mean, and 

3rd quartile are all of the same order of magnitude as 
that of the true p , and hence they give us an idea as to 
the value of p . Here max( X 0) = 13.8 < T = 22.41 < 50 . 
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One-tenth of both the median and the mean 
suggest a p-increment of 0.0001 . That is, an increment 
of the order of mean(B) /10  and median(B) /10 . 

The pattern in Table 6 points to a shift from “down" 
to “up" at p̂ = 0.001092137  close to the true 
p = 0.001088797  with an error of 3.34e! 06 .  

Table 6: p = 0.001088797 , X 0  a Mercury Sample. 

 X 1!Unif (0,50) , max( X 0) =13.8 , T = 22.41 , 
n0 = n1 = 200 , h = (x, log x) , p -Increment 0.0001 . 
Down-Up Shift at p̂ = 0.001092137  

Starting j    Convergence to   Iterations    

775  0.002792137   18   Down 

600  0.000999351   16   Down 

300  0.001492137   9   Down 

200  0.001192137   7   Down 

100  0.001192137   1   Down 

90  0.001192137   1   Up 

85  0.001092137   1   Down 

84  0.001092137   1   Up 

83  0.001092137   1   Up 

81  0.001092137   1   Up 

80  0.001092137   1   Up 

 

Illustration in Terms of Radon Data 

Residential radon is a tasteless, colorless and 
odorless radioactive gas naturally abundant in the soil. 
Approximately 40 percent of Pennsylvania homes have 
radon levels above the EPA action guideline of 4 pCi/L. 

The iterative algorithm is applied here to Beaver 
County radon data from 1989 to 2017. The data consist 
of 7,425 radon observations, taken as a population, of 
which only 2 exceed 200. Hence, with T = 200  we wish 
to estimate the small probability 
p = 2 / 7425 = 0.0002693603 . The reference sample X 0  

was chosen without replacement from the 7,425 radon 
observations. The generated X 1  samples are from 
Unif (0, 300)  and n0 = n1 = 500.  We observe that 
max( X 0) = 107 < T = 200 , so that the largest data point 
is close to T / 2 . 

The results of 10,000 fusions of a radon reference 
sample X 0  of size n0 = 500  with  X 1!Unif (0, 300)  
samples of size n1 = 500  gave 10,000 B  upper 
bounds. Their descriptive statistics are summarized in 
Table 7.  

Table 7: Descriptive Statistics from 10,000 Mercury B  
Upper Bounds 

1st Qu.   Median   Mean   3rd Qu.   Max.  

.175e-04   1.806e-04   2.077e-04  2.686e-04  1.077e-03 

 

Observe that the 3rd quartile of 0.0002686 is very 
close to true p = 0.0002694 . The p -increment was 
chosen as 0.00003, which is of the same order of 
magnitude as one tenth of either the 1st quartile, mean, 
median, or 3rd quartile of the 10,000 B ’s. 

From Table 8, the down-up shift occurs at 
p̂ = 0.0002689389  very close to the true 
p = 0.0002693603  giving an error of 4.611e! 07 . 

Changing to a p -increment of 0.000018, close to 
median(B) /10 = 0.00001806 , we get the exact same 
p̂ = 0.0002689389 , whereas a p -increment of 

0.00002686 which is equal to one-tenth of the 3rd 
quartile gives p̂ = 0.0002675389  with an error of 
1.8611e! 06 .  

Table 8: p = 0.0002693603 , X 0  a Radon Sample. 

 X 1!Unif (0, 300) , max( X 0) =107 , T = 200 , 
n0 = n1 = 500 , h = (x, log x) , p-Increment 0.00003 . 
Down-Up Shift at p̂ = 0.0002689389  

Starting j    Convergence 
to  

 Iterations    

1000  0.0005389389   6   Down 

800  0.0002989389   1   Down 

773  0.0002689389   1   Down 

762  0.0002689389   1   Down 

750  0.0002689389   1   Down 

749  0.0002689389   1   Down 

748  0.0002689389   1   Up 

745  0.0002689389   1   Up 

743  0.0002689389   1   Up 

740  0.0002689389   1   Up 

739  0.0002689389   1   Up 

730  0.0002689389   1   Up 

 

A different approach to residential radon 
exceedances using fused county data is studied in 
Zhang et al. (2020a,b) [11, 12], employing a density 
ratio model with variable tilt functions. 
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Illustration in Terms of Normal Data 

Throughout the paper we deal with tail probabilities 
of non-negative continuous data where we use 
h(x) = (x, log x) . However, the Iterative Algorithm is 
applicable in more general situations, including the 
situation when the data are normal, provided the tilt 
function is chosen judicially. To underscore this, we 
bring next an example with normal sample X 0 , in 

which case the “normal tilt" h(x) = (x, x2 )  is specified 
when X 1  is a normal sample as well, but nearly 
specified when X 1  is uniform over a sufficiently large 
support. 

Accordingly, consider  X 0! N(0, 4) , T = 6.180465 , 
p = 0.001 , max( X 0) = 4.168643 ,  X 1!Unif (!10,10) , 

and n0 = n1 = 100 . From 5,000 fusions we have 
median(B) = 0.0037089  and mean(B) = 0.0039251  (same 
order of magnitude as that of p ), one tenth of which is 
on the order of the used p -increment=0.0001. The 
down-up results are given in Table 9, showing a shift at 
p̂ = 0.001008915 , giving an error of 8.915e-06, on par 

with the previous results. 

Table 9: p =0.001.  X 0! N (0, 4) ,  X 1!Unif (!10,10) , 
max(X 0) = 4.168643 , T = 6.180465 , n0 = n1 =100 , 
h = (x, x2) , p-Increment 0.0001 . Down-Up Shift 
at p̂ = 0.001008915  

Starting j    Convergence to   Iterations    

77  0.001008915   9   Down 

50  0.001008915   7   Down 

22  0.001108915   5   Down 

14  0.001008915   3   Down 

10  0.001008915   2   Down 

9  0.001008915   1   Down 

8    0.001008915     1     Up  

7  0.001008915   1   Up 

6  0.001008915   2   Up 

  0.001008915   2   Up 

 

Results Summary 

To get a picture of of the repeated fusion method in 
tail estimation, the top four entries in Table 10 depict 
the pairs ( p, p̂ ) obtained from the previous examples 
with a misspecified h(x) = (x, log x) . The next four 
entries are from nearly specified cases where 
h(x) = (x, log x)  is sensible, and where the increment 

was chosen as before. There is no apparent difference 
from the four misspecified cases. In the Weibul(1.1,1) 
case the down-up shift alternated between 
0.0001051111 and 0.0001201111 and we report the 
average. Similar results can be found in Kedem et al. 
(2019) and Kedem and Pyne (2021) [5, 6]. 

 Again, already the median and mean of 
B1, ...,B10,000  ( B1, ...,B5,000  in the last entry) give a good 
idea as to the value of p , however, the Iterative 
Algorithm improves greatly on the mean and median as 
we see from Table 10 where in all cases p̂  is close to 
p . We have seen that in many other cases.  

Comparison with POT 

Possibly, an alternative method to repeated fusion 
is the extreme value theory method of peaks over 
threshold (POT), where only the values above a 
sufficiently high threshold are used in the estimation of 
small tail probabilities [13, 14]. This results in a reduced 
sample which could prove to be problematic when the 
original sample is too small to begin with. By contrast, 
with the repeated fusion method the total number of 
observations, albeit some of which are artificial, 
increases. A brief comparison between these two 
methods is given in Wang (2018) and Kedem et al. 
(2019) [5, 9]. It shows that, across quite a few 
distributions, for sample sizes on the order of 100 and 
p = 0.001 , the repeated fusion method tends to give 

higher coverage and smaller mean absolute error. 
However, it must be emphasized that this could be 
reversed for much smaller probabilities and much 
larger samples. We shall look into this problem 
elsewhere. 

RESULTS 

Nitrogen Dioxide Data Analysis 

Finally, we apply next the Iterative Algorithm to 
nitrogen dioxide ( NO2 ) data from Washington DC, 
where, as before we use 10,000 fusions giving upper 
bounds B1, ...,B10,1000  for p , the chance that NO2  

exceeds T . The algorithm was applied for T =100 , 
where max( X 0) = 48.06 < T / 2 . As in the previous 
rather precise computational results, the down-up shift 
point is the point estimate p̂ . 

Our repeated fusion analysis was applied to a 
random sample X 0  of hourly measurements of size 
n0 = 400 . The generated X 1  samples were from 
Unif (0,150) , h(x) = (x, log x) , and n0 = n1 = 400.  We 
have max( X 0) = 48.06 < T =100 < 150 , so that the 
largest data point is close to T / 2 . The results of 
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10,000 fusions of the NO2  reference sample X 0  with 

 X 1!Unif (0,150)  samples of size n1 = 400  gave 10,000 
B  upper bounds. Their descriptive statistics are 
summarized in Table 11.  

Table 11: Descriptive Statistics from 10,000 NO2  B  
Upper Bounds. T =100  

1st Qu.   Median   Mean   3rd Qu.   Max.  

.209e-05   9.860e-05   1.039e-04   1.293e-04   5.821e-04 

 

From Table 12, with mean(B) /10 = 0.00001039  as 
the p -increment, the down-up shift occurs at 
p̂ = 0.0001344551  not far from the 
3rd Quartile(B) = 0.0001293 . 

To approximate the variance of p̂ , we can redo the 
analysis over and over again. Thus, we have repeated 
the above analysis ten times, each time with different 
10,000 fusions. The resulting p̂ ’s from different 
reference samples X 0  of sizes n0 = 400 , using 
different p -increments equal to mean(B) /10 , are given 
in Table 13. The exception is an increment of 
3rd Qu(B) /10  in entry 9. 

The variation among the p̂ ’s is fairly small pointing 
to consistent results. In fact the sample mean and 
standard deviation of the p̂ ’s are 0.0001306905 and 
1.411819e-05, respectively. 

We see that in all cases the median(B)  and 
mean(B)  are close to 0.0001, which is not far from the 
resulting p̂ ’s.  

CONCLUSION 

The repeated fusion of a given moderately large 
sample with numerous computer-generated samples 

Table 10: Comparison between p  and p̂  Obtained from 10,000 Fusions.  X 1!Unif (0,L) . The Last Entry was Obtained 
from 5,000 Fusions and  X 1!Unif (!10,10) . Some Figures are Rounded 

X 0    T    max( X 0)    L    n0 = n1    Median( B )   p    p̂    Error 

LN(1,1)   112.06   44.83   130   100   0.0003828   0.0001000   0.0001046   4.6e-06 

LN(0,1)   41.22   13.77   70   100   0.0002012   0.0001000   0.0001042   4.2e-06 

Radon   200.00   107.00   300   500   0.0001806   0.0002694   0.0002689   5.0e-07 

Mercury   22.41   13.80   50   200   0.0033190   0.0010888   0.0010921   3.3e-06 

F(1,18)   15.38   7.27   20   100   0.0022574   0.0010000   0.0010513   5.1e-05 

Gamma(1,0.05)   184.21   77.62   210   100   0.0001582   0.0001000   0.0001040   4.0e-06 

Weibul(1.1,1)   7.53   2.84   12   100   0.0007227   0.0001000   0.0001126   1.3e-05 

Weibul(0.8,1)   16.05   5.80   22   100   0.0006309   0.0001000   0.0001049   4.9e-06 

N(0,4)   6.18   4.17   10   100   0.0037089   0.0010000   0.0010089   8.9e-06 

Table 12: X 0  from NO2 ,  X 1!Unif (0,150) , 
max( X 0) = 48.06 , T =100 , n0 = n1 = 400 , 
h = (x, log x) , p-Increment 0.00001039 . Down-Up 
Shift at p̂ = 0.0001344551  

Starting j    Convergence 
to  

 Iterations    

999  0.0002175751   6   Down 

990  0.0001760151   7   Down 

950  0.0001760151   2   Down 

910  0.0001656251   1   Down 

850  0.0001448451   1   Down 

830  0.0001448451   1   Down 

800  0.0001344551   1   Down 

780  0.0001344551   1   Down 

775  0.0001344551   1   Down 

774  0.0001344551   1   Down 

773  0.0001344551   1   Up 

771  0.0001344551   1   Up 

770  0.0001344551   1   Up 

769  0.0001344551   1   Up 

768  0.0001344551   1   Up 

767  0.0001344551   1   Up 

766  0.0001344551   1   Up 

765  0.0001344551   1   Up 

750  0.0001344551   1   Up 

700  0.0001240651   1   Up 
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produces many upper bounds for tail or threshold 
probabilities. The descriptive statistics of the upper 
bounds already by themselves provide useful 
information about the probabilities. In fact, reasonably 
close approximations. The ensued iterative method 
takes the ordered upper bounds as input to produce 
estimates of small threshold probabilities, which take 
values in small neighborhoods of the true threshold 
probability. The precision obtained by the iterative 
method is encouraging if not somewhat surprising, as 
has been observed numerous times with different types 
of data exhibiting very different probability distributions. 
Variability of the estimates can be obtained from 
different sets of, say, 10,000 fusions. 

Some words of caution are in order. First, like with 
any other statistical method, the sample size is 
important. Thus, in the NO2  analysis, the excessively 
high threshold of T = 200  proved problematic, which 
most likely could be overcome with a larger sample. 
Second, we do not have any guidelines as to the size 
of the support of the uniform fusion samples, except to 
say that the support must contain T , as was done in 
our data analysis. 

Additional references about fusion and repeated 
fusion of a sample with independent external data are 
Fokianos and Qin (2008), Katzoff et al. (2014), Kedem 
et al. (2016), and Zhou (2013) [8, 15, 16, 17]. 

APPENDIX 

Appendix A: Density Ratio Model for Multiple 
Sources 

The appendix addresses the density ratio model (2) 
for m +1  data sources. Thus, we deal with the density 
ratio model more generally where X 0  is fused with m  

computer-generated samples. Above we dealt with the 
special case of m =1 . 

Assume that the reference random sample X 0  of 
size n0  follows an unknown reference distribution with 
probability density g , and let G  be the corresponding 
cumulative distribution function (cdf). 

Let  

X 1, ..., X m,  

be additional computer-generated random samples 
where  X j! gj ,Gj , with size nj , j =1,...,m . The 
augmentation of m +1  samples  

 t= (t1,…, tn ) = ( X 0, X 1,…, X m),        (11) 

of size  n0 + n1 +!+ nm  gives the fused data. The 
density ratio model stipulates that  

 

gj (x)
g(x)

= exp(! j + "# j h(x)), j =1,…,m,       (12) 

where ! j  is an r !1  parameter vector, ! j  is a scalar 
parameter, and h(x)  is an r !1  vector valued distortion 
or tilt function. None of the probability densities 
g, g1, ..., gm  and the corresponding Gj ’s, and none of 
the parameters ! ’s and ! ’s are assumed known, 
but, strictly speaking, the so-called tilt function h  must 
be a known function. 

Asymptotic Distribution of Ĝ(x)  

Define !0 " 0,#0 " 0 , wj (x) = exp(! j + "# jh(x)) , 
!i = ni / n0 ,  j =1,…,m . 

Table 13: Estimates p̂  of the Probability that NO2  in Washington DC Exceeds 100 ppb Obtained from Different 
Samples. p -Increment is mean(B) /10 , Except in Number 9 where p-Increment is 3rd Qu(B) /10 = 0.00001220.  

Case   1st Qu(B)   Median(B)   Mean(B)   3rd Qu(B)   p̂   

1.   5.019e-05   7.064e-05   7.459e-05  9.536e-05  0.0001180567 

2.  7.979e-05   1.060e-04   1.130e-04  1.403e-04  0.0001464964 

3.  5.364e-05   7.645e-05   8.022e-05  1.020e-04  0.0001035439 

4.  7.809e-05   1.048e-04   1.106e-04  1.364e-04  0.0001321030 

5.  7.385e-05   1.005e-04   1.058e-04  1.307e-04  0.0001264732 

6.  8.448e-05   1.122e-04   1.194e-04  1.470e-04  0.0001427179 

7.  6.125e-05   8.044e-05   8.408e-05  1.027e-04  0.0001002384 

8.  6.744e-05   9.260e-05   9.752e-05  1.220e-04  0.0001262218 

9.    6.744e-05     9.260e-05     9.752e-05    1.220e-04    0.0001336458  

10.  7.209e-05   9.860e-05   1.039e-04  1.293e-04  0.0001344551 
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Maximum likelihood estimates for all the parameters 
and G(x)  can be obtained by maximizing the empirical 
likelihood over the class of step cumulative distribution 
functions with jumps at the observed values  t1,…, tn  
[18]. Let pi = dG(ti )  be the mass at ti , for  i =1,…,n . 
Then the empirical likelihood becomes  

 

!( ! ,G) =
i=1

n

"pi
j=1

n1

"exp(#1 + $%1 h(x1 j ))

"
j=1

nm

"exp(#m + $%m h(xmj )).

      (13) 

Maximizing  !( ! ,G)  subject to the constraints  

 i=1

n

!pi =1,
i=1

n

!pi[w1(ti )"1] = 0,…,
i=1

n

!pi[wm (ti )"1] = 0   (14) 

we obtain the desired estimates. In particular,  

 

Ĝ(t) = 1
n0
!
i=1

n

" I(ti # t)
1+ $1 exp(%̂1 + &'̂1 h(ti ))+

!+ $m exp(%̂m + &'̂mh(ti ))

,       (15) 

where I(ti ! t)  equals one for ti ! t  and is zero, 

otherwise. Similarly, Ĝ j  is estimated by summing 

exp(!̂ j + "#̂ jh(ti ))dG(ti ) . 

The asymptotic properties of the estimators have 
been studied by a number of authors including Qin and 
Zhang (1997), Zhang (2000), and Lu (2007) [7, 19, 20]. 

Define the following quantities:  !=diag{!1,…,!m} ,  

Aj (t) = !
wj (y)I(y " t)

k=0

m

#$kwk (y)

dG(y),

Bj (t) = !
wj (y)h(y)I(y " t)

k=0

m

#$kwk (y)

dG(y),
 

 A(t) = (A1(t),…,Am (t) !) , B(t) = ( !B1(t),…, !Bm (t) !) .  

Then the asymptotic distribution of Ĝ(t)  for m !1  is 
given by the following result due to Lu (2007) [20].  

Theorem 0.2 Assume that the sample size ratios 
! j = nj / n0  are positive and finite and remain fixed as 

the total sample size n =
j=0

m
! nj "# . The process 

n(Ĝ(t)!G(t))  converges to a zero-mean Gaussian 

process in the space of real right continuous functions 
that have left limits with covariance matrix given by 

Cov{ n(Ĝ(t)!G(t)), n(Ĝ(s)!G(s))} =  

k=0

m

!"k
#

$
%
%

&

'
(
((G(t ) s)*G(t)G(s)*

j=1

m

!" j Aj (t ) s))  

+(A'(s) !,B'(s)( !" I p ))S
#1 !A(t)
( !" I p )B(t)

$

%
&&

'

(
)).      (16) 

where I p  is the p ! p  identity matrix, and !  denotes 
Kronecker product.  

For a complete proof see Lu (2007) [20]. The proof 
for m =1  is given in Zhang (2000) [19]. 

Denote by V̂ (t)  the estimated variance of Ĝ(t)  as 
given in (16). Replacing parameters by their estimates, 
a 1!"  level pointwise confidence interval for G(t)  is 
approximated by  

Ĝ(t)! z" /2 V̂ (t), Ĝ(t)+ z" /2 V̂ (t)( ) ,       (17) 

where z! /2  is the upper ! / 2  point of the standard 
normal distribution. Hence, a 1!"  level pointwise 
confidence interval for 1!G(T )  for any T , and in 
particular for relatively large thresholds T  is 
approximated by  

(1! Ĝ(t)! z" /2 V̂ (t),1! Ĝ(t)+ z" /2 V̂ (t)).       (18) 

Appendix B: Proof of Lemma 0.3 

To prove that the three types of sequences 
specified by Lemma 0.3 are the only ones that we 
obtain from the algorithm, we first show how the p -
increment determines the relationship between j1  and 
j2 .  

By Lemma 0.2, B( j1 ) ! p̂ j1  almost surely. If there is 

a p -increment k!  such that p̂ j1 ! k" < B( j1 ) , then the 

approximated solution that the algorithm provides is 
k!  since it is the smallest p -increment that satisfies 
(7). If there are more than one p -increment between 
p̂ j1  and B( j1 ) , then the algorithm will give the smallest 

one among them and we can denote this as k! . 

The next step of the algorithm is to find the smallest 
B( j ) ! k" . If we have a B( j2 )  such that 

k! " B( j2 ) < B( j1 ) , then the sequence will go down from 
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B( j1 )  to B( j2 ) . Now it remains to show that B( j3 ) ! B( j2 )  

to prove that the algorithm can produce the type 1 
sequence i.e.  j1 > j2 !! . Recall the expression 

p̂ j = qq0.05
beta( j,n! j+1)
F̂B  and this is non-decreasing in j . 

Thus, we must have p̂ j2 ! p̂ j1 . 

Note that we have k!  between p̂ j2  and B( j2 )  

which means that there is at least one p -increment 
between p̂ j2  and B( j2 )  so that the sequence will either 

go down or stay at 2j . To sum up, if there exists a p -
increment !k  such that p̂ j1 ! k" < B( j1 )  and a B( j2 )  

such that k! " B( j2 ) < B( j1 ) , then the algorithm will give 

type 1 seqence.  

Now we shall examine the circumstances under 
which the algorithm produces type 2 sequence i.e. the 
sequence stays at j1 . There are two cases: 1. There is 
no p -increment between p̂ j1  and B( j1 )  but there is a 

p -increment k! = B( j1 ) . In this case, the algorithm will 

give k!  as the solution and then the smallest B( j ) ! k"  
is still B( j1 ) ; 2. There exists at least one (if more than 

one then we take the smallest one among them) p -
increment k!  between p̂ j1  and B( j1 )  but there is no 

B( j2 )  between k!  and B( j1 ) . In this case, the smallest 

B( j ) ! k"  is also B( j1 ) .  

Based on the analysis above, it is readily seen that 
if there is no p -increment k!  such that 
p̂ j1 ! k" ! B( j1 ) , then the algorithm gives type 3 

sequence i.e.  j1 < j2 =! . 

It remains to show that the sequence stays at j2  
after one-step going up from j1  to j2 . Suppose that 
k!  is the smallest p -increment such that k! " B( j1 )  

and B( j2 )  is the smallest B( j ) ! k" . Note that 

P(B( j ) > p)  is non-increasing in j  so that if k!  
satisfies the inequality (7) for j1  then it must satisfy it 
for j2  since j2 > j1 . Therefore, the solution of p  is 
also k!  for j2  so that the sequence stays at j2 . At 
this point, we have completed the proof of Lemma 0.3.  
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