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1. INTRODUCTION 

The generalized versions of Weibull distribution 
(WD) and their applications have gained much 
importance in fields of engineering, ecology, medicine, 
pharmacy, etc. due to the flexibility of these 
distributions in handling survival data. Many such 
modifications of the WD were considered by various 
researchers including [1-5], etc. An exponentiated 
version of the WD having the name ‘the exponentiated 
Weibull distribution’ was introduced by [6] to 
incorporate the bath-tub shape for its hazard rate 
function through the cumulative distribution function 
(c.d.f.) 

G!  y   =    1  −  e  !! !! 
!
,	   	   	   	   	   	   (1) 

for any y > 0, with scale parameter σ > 0 and shape 
parameters β > 0, δ > 0. A distribution with c.d.f. (1) is 
hereby denoted as EWD(σ, β, δ). Various properties of 
the distribution were further investigated in detail by 
several researchers like [7-9], etc. More recently, [10] 
considered certain properties of a log-transformed 
version of the one parametric Weibull distribution 
capable of dealing with truncated data sets using the 
name, ‘the log-Weibull distribution (LWD)’ with c.d.f.	  

G! y = 1 − e ! !" ! ! ,      (2) 

for y > 1 and shape parameter c > 0. The distribution 
with c.d.f. (2) is hereafter referred to as the LWD(c). 

In this paper, we consider a generalized version of 
the LWD(c) using the name ‘the generalized 
log-Weibull distribution (GLWD)’. It is seen that the 
GLWD possess five distinct shapes  for its hazard rate  
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function including most of the monotone as well as 
non-monotone hazard rate shapes such as increasing, 
decreasing, bathtub, upside-down bathtub, and ‘S’ 
shapes and is more flexible in terms of its measures of 
central tendency, dispersion, skewness, and kurtosis, 
which highlights the utility of the model as a lifetime 
distribution. As such the proposed distribution can be 
considered to be a better alternative for many of the 
recently developed modifications of the WD. The paper 
is organized as follows: In section 2 we introduce the 
GLWD and discuss its important properties. In section 
3, some structural properties of the distribution are 
dealt with and Section 4 derives the distribution and 
moments of the order statistics of the GLWD. Section 5 
contains the maximum likelihood estimation of the 
parameters of the distribution for complete and 
censored cases. In section 6, the usefulness of the 
model is illustrated with the help of both complete and 
censored real-life data sets. 

2. GENERALIZED LOG-WEIBULL DISTRIBUTION: 
DEFINITION AND PROPERTIES 

Here we present the definition of the generalized 
log-Weibull distribution and discuss its important 
properties. 

Definition 2.1 A continuous random variable Y is 
said to have “the generalized log-Weibull distribution 
(GLWD)” if its c.d.f. is of the following form, for any α>0, 
β>0 and y >1. 

!! ! = 1 − !! !" ! ! !
       (3) 

Henceforth we write GLWD(α, β) for denoting this 
distribution, it is necessary. When β  = 1, the 
GLWD(α, β) reduces to the LWD(α) with c.d.f (2). 

We give the expressions for the probability density 
function (p.d.f.) !! ! , survival function !! ! , the 
hazard rate function ℎ! !  and the reversed hazard 
rate function !! !  of the GLWD(α, β)as given below. 
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f! y = !"
!
ln y !!!e![!" ! ]! 1 − e! [!" ! ]! !!!

,    (4) 

F! y = 1 − 1 − e! !" ! ! !
, 

h! y = !"
!
1 − e! !" ! ! !!!

e! !" ! ! ln y !!! 1 −

1 − e! !" ! ! ! !!
       (5) 

and 

τ! y = !"
!
1 − e! !" ! ! !!

e! !" ! ! ln y !!! .    (6) 

A practical interpretation of the GLWD   α, β  can be 
provided whenever β  is an integer. Consider a device 
that is constituted of independent and identically 
distributed components having the LWD(α) with c.d.f. 
(3), connected in a parallel system so that the device 
fails only if the last component in the system fails. Let 
!!,!!, . . . , Y!  denote the lifetimes of the components and 
let Y be the life of the system with c.d.f. !! ! . Then  

!! !   =   P(Y   ≤   y)   =   P(!1 ≤   y, !2 ≤   y,… , !β ≤   y)   
      =    [P(!! ≤   y)]! =    [G!(y)]!. 

Clearly, in the light of (3), the lifetime of the device 
has the GLWD(α, β). 

The plots of the p.d.f., the c.d.f. and the hazard rate 
function of the GLWD(α, β) for particular values of its 
parameters are presented in Figures 1, 2, and 3 

respectively. Based on Figures 1, 2, and 3 we have the 
following observations regarding the shapes of the 
c.d.f., p.d.f. and hazard rate function of the GLWD(α, β) 

• From Figure 1 it can be observed that the p.d.f. 
of the GLWD(α, β)  is a decreasing function for 
values of α and β such that αβ< 1 whereas the 
p.d.f. is unimodal when αβ> 1. 

• Figure 2 reveals that the c.d.f. FY (.) of the 
GLWD(α, β) coincides at the point (e, 0.63212β) 
for fixed values of the parameter β and various 
values of α. 

• From Figure 3, it is clear that the hazard rate 
function takes five different shapes including 
decreasing, increasing, bathtub shape, S-shape, 
and upside-down bathtub shape depending on 
the values of the parameters α and β, which 
illustrates the flexibility of the distribution to 
model data sets. 

On inverting the c.d.f. !!(!!)  of the  GLWD(α, β), we 
obtain the expression for the quantile function yp in 
which p is a Uniform(0,1) random variable as 

y! = e
!!" !!!!

!! !!!

.       (7) 

On substituting p = 0.5 in (7), we obtain the median 
(M) of the GLWD(α, β) as  

 
     (a)      (b) 

 
     (c)      (d) 

Figure 1: Plots of the p.d.f. of the GLWD for particular values of its parameters. 

(a) Shapes of the p.d.f. for α= 0.01 and particular values of β. (b) Shapes of the p.d.f. for α= 2 and particular values of β. (c) 
Shapes of the p.d.f. for α= 10 and particular values of β. (d) Shapes of the p.d.f. for β= 2 and particular values of α. 
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     (a)      (b) 

Figure 2: Plots of the c.d.f. of the GLWD for particular values of its parameters. 

(a) Shapes of the c.d.f. for β= 2 and particular values of α. (b) Shapes of the c.d.f. for α= 2 and particular values of β. 

 

 
     (a)      (b) 

 
     (c)      (d) 

Figure 3: Plots of the hazard rate function of the GLWD for particular values of its parameters. 

(a) Shapes of the hazard rate function for α=0.01 particular values of β. (b) Shapes of the hazard rate function for α=2 and 
particular values of β. (c) Shapes of the hazard rate function for α=10 particular values of β. (d) Shapes of the hazard rate 
function for β = 2 and particular values of α. 

M = e
!!" !!!.!!

!! !!!

. 

Also on differentiating the p.d.f. (4) for y, we have 

f!! y =

f! y y!! ln y !! α 1 − ln y ! !!!!
! !" ! !

!!!! !" ! ! − 1 −

1 .          (8) 

The mode of the GLWD(α, β) is obtained from (8), 
as the solution of the equation !′! ! = 0 , which 
reduces to 

α − 1 ln y !! − α ln y !!! +
α β − 1 ln y !!! e !! ! ! − 1 − 1 = 0.     (9) 

Using the condition for unimodality, it can be 

observed that the GLWD(α, β) is unimodal if 
!!!′! !
!"!

<
0, which on simplification reduces to 

1 − !!!
!" !

!!!!! !" ! !

!!!! !" ! ! + 1 ≤

!
!" !

α d − 1 !" ! !"!!!! !" ! !

!!!! !" ! ! ! + !!!
!

!
!" !

− 1 .  
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The following observations can be made on the 
values of the modes of the GLWD(α, β) for various 
values of α and β. 

• When β= 1 and α<1 such that αβ<1. 

 In this case, the p.d.f. of the GLWD(α, β)  is a 
decreasing function of y. 

• When β= 1 and α>1 such that αβ>1. 

 In this case the p.d.f. is unimodal in shape and the 
mode (Mo) is obtained from (9) 

 as the solution of the equation ln M!
! = 1 −

!" !! !!
!

. 

• When α= 1 and β>1 such that αβ>1. 

 Here, the p.d.f. of the GLWD(α, β) is unimodal in 
shape and the mode is obtained 

 from (9) as  M! =
!!!
!!!

. 

• When α= 1, β<1 or α<1, β<1 such that αβ<1. 

 In both these cases, the p.d.f. is a decreasing 
function of y. 

• When α<1 and β>1 such that αβ>1. 

 In this case, the p.d.f. of the GLWD(α, β)  is 
unimodal and Mo is obtained from (9) as the solution 
of the equation    ln M! 1 + ! !!!

!
ln M!

! =
αβ − 1. 

Moreover, differentiating the reversed hazard rate 
function (6) concerning y, we have 

τ!! y = τ! y y!! α − 1 ln y !! − α !" ! !!!

!!!! !" ! ! − 1 .	   	   	   (10) 

Based on (10) we have the following result on the 
log-concavity of the c.d.f. of the GLWD(α, β), the proof 
of which is straightforward and hence omitted. 

Result 2.1 The c.d.f. !! !  of the GLWD(α, β ) is 
log-concave if !" ! !

!!! ! !" ! ! > 1 − !" ! !!
!

. 

We have plotted the values of the median and mode 
of the GLWD(α, β)  for arbitrary values of β and 
particular values of the parameter α (Figure 4). 

Now we present certain series representations and 
integrals which we require in the sequel for deriving 
expressions for the characteristic function and 
moments of the GLWD(α, β). 

B j, k!
!!!

!
!!! = B j, k − j!

!!!
!
!!!    (11) 

Also, for any a ∈!, 

1 + x ! = a + 1 − j !
!!

!!
!
!!! ,    (12) 

in which (!)! = z z + 1 … z + k − 1 ,  for k ≥ 1 with 
(z)! =   1 .  

The incomplete Gamma function  γ(λ, z) is defined 
as 

z!!!e!!!!
! dz = λ!!γ ν,  λu .    (13) 

The expressions of the characteristic function and 
the rth raw moment of the GLWD(α, β)  are obtained 
through the following results, the proofs of which are 
provided in Appendix A. 

Result 2.2 The characteristic function of the 
GLWD(α, β) is 

!! ! =
β !!! ! !! ! !" !!!!!"! !!! !!! !!

!! !!! ! !!! !!! !!! !!

!" !

!!
!
!!!

!
!!!

!
!!! ,  (14) 

when Re[{α−1(j − m) + 1}] > 0, t ∈  ! and ! = −1. 

Remark 2.1 As a special case, when α = 2, using 
equations (3.462) and (9.254) in [11], the characteristic 
function of the !"#$(2,!) 

for!!! ! = − !/2!
!!

! !/2! !!
!

! − ! 1 − !! !/ 2  is 

!! ! =

!" !

!!
!!!
!

!! !

!!!
!

!" !

! !!!!!!
!!! !!!

! !"
! !!!

!
!!! , !"  β ∈ !

!" !

!!
!!! !
!!

!! !

!!!
!

!" !

! !!!!
!!! !!!

! !"
! !!!

!
!!! , !"  β ∉ !

  

 

 
     (a)      (b) 

Figure 4: Plots of the median and mode of the GLWD for particular values of its parameters. 

(a) Median of the GLWD for particular values of α and β. (b) Mode of the GLWD for particular values of α and β. 
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in which φ (.) is the standardized normal distribution 
function. 

Result 2.3 The rth raw moment of the !"#$(!,!) 
is given by 

!! ! =
β !! !, β !

!
!
+ 1 , !"  β!

!!! ∈   !

β !! !, β !
!
!
+ 1 ,∞

!=0   !"  β ∉ !,
  (15) 

where !! !, β = 1 +
!! ! !!!

!

!!! !!!!!!
!!!
!!! ,!! !, β = 1 +

!! ! !!! !

!! !!! !!!!!!
!
!!!  and N is the set of natural numbers. 

The expressions for µ r and ! Y(t) is seen to 
converge for all values of r ∈ N as well as the 
parameters of the GLWD(α, β). It has also been verified 
that the values of the raw moments of the GLWD can 
be calculated numerically using statistical packages 
like MATHEMATICA and MATHCAD. We derive the 
expression for the rth incomplete raw moment of the 
GLWD(α, β) through the following result. 

Result 2.4 The expression for the rth incomplete raw 
moment of the GLWD(α, β) can be obtained as  !! ! =

β
! ! !! ! !!! ! !!!

! !
!!!

!!!!
  ! !

!
+ 1 ,   ! +!

!,!!!

1 !" ! ! ,      (16) 

in which γ(λ, z) is the incomplete Gamma function as 
defined in (13). 

Proof. The rth incomplete raw moment ∆!(!)  is 
given by 

!! ! = E Y!/Y < ! =
αβ y!y!! 1 − e ! !" ! ! !!!

e ! !" ! ! ln y !!! dy.!
!   (17) 

By using the substitution !   =    [!"(!)]! in (17), we 
obtain  

!! t = ! !

!!
β z!!!!e!! 1 − e!! !!!dz!" ! !

!
!
!!! .(18) 

On simplifying (18) in the light of (12) and (13), we 
obtain (16). 

We obtain the expressions for the mean deviations 
about the mean and the median of the GLWD(α, β)  with 
c.d.f. FY(.), in terms of its rth incomplete moment, ∆ r(.) 
can be obtained as  

E(|Y   −   µμ!|)   =   2µμ!FY  (µμ!)   −   2∆!(µμ!) and E(|Y   −
  M|)   =   M   −   2∆!(M) respectively, where ∆!(t)   is as 
defined in (16), when r =1. 

Now we present certain expressions for the 
percentile measures of skewness and kurtosis of the 
GLWD(α, β) . Percentile measures of skewness and 
kurtosis of distribution are less affected by the tail 
behaviour of the distribution or by outliers  (see  [12])  
 

and find use in cases where the moment measures are 
infinite. Galton’s and Bowley’s measures of skewness, 
SG, and SB are defined as 

     (19) 

and 

!! =
!!.!"!!!.! ! !!.!!!!.!"

!!.!"!!!.!"
,    (20) 

while the expression for the Schmid - Trede measure of 
kurtosis L is 

,     (21) 

in which yp is the pth quantile of the GLWD(α, β) as 
given in (7). The percentile measures of skewness and 
kurtosis of the GLWD(α, β) are obtained through the 
following results, the proofs of which follow directly 
from (19), (20), and (21) respectively, in the light of (9). 
We have also calculated the values of SG, SB, and L of 
the GLWD(α, β)  for particular values of its parameters 
and plotted them in Figure 5. 

Result 2.5 The Galton’s and Bowley’s percentile 
measures of skewness, denoted by SG and SB 
respectively, of the GLWD are given 

by !! =
! !!.!!!!.! !!
!!! !!.!!!!.!

  !"#  !! =
! !!.!"!!!.! !! !!.!"!!!.! !!
! !!.!"!!!.! !! !!.!"!!!.!

,   in which   !! = −!" 1 −

!!!!
!!!

, for 0 < p < 1. 

Result 2.6 For the !"#$(!,!), the Schmid-Trede 
percentile measure of kurtosis (L) is given by 
L  = !!!.!"#!!!!.!"#

!!!.!"!!!!.!"
,  where ηp is as defined in Result 2.5. 

In the light of Results 2.5 and 2.6, we have the 
following observations. 

• The GLWD is symmetric when !!!.! + !!!.! =
2!!!.!and is negatively (or positively) skewed if 
!!!.! + !!!.! is less than (or greater than) 2!!!.! . 

• The GLWD is mesokurtic when !!!.!"# −
  !!!.!"# = 2.9058(!!!.!" −   !!!.!")  andplatykurtic 
(or leptokurtic) when !!!.!"# −   !!!.!"# is less than 
( or greater than)  2.9058 !!!.!" −   !!!.!" . 

The following result gives an expression for the 
geometric mean (GM) of the GLWD(α, β), the proof of 
which follows directly from the definition of the GM as 
ln(GM)=E[ln(Y)]. 

Result 2.7 The GM of the !"#$(!,!) is 

!" !" =
  !" 1 + !

!
!!!
!

!!!
!!! −1 ! ! + 1

!!
!
!!, !"  ! ∈ !

  !" 1 + !
!

! − ! !
!
!!! −1 ! ! + 1

!!
! !!, !"# ∉ !.
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The stress-strength reliability concept, initially 
considered by [13] is used for describing the life of a 
component having strength Y2, subjected to a stress Y1, 
where both Y1 and Y2 are random variables. The 
component fails if !1 > !2 and will survive otherwise. 
The stress-strength reliability measure R, defined as 

!   =   !(!! < !!)      (22) 

is the probability that a randomly selected device 
functions successfully and is a measure of component 
reliability, having significant applications in areas of 
engineering, genetics, psychology, physics, and 
economics. We obtain expressions for the 
stress-strength reliability measure R of the GLWD(α, β) 
for fixed values of its parameters through the following 
results. 

Result 2.8 Let Yi be a random variable following the 
GLWD(αi, βi), for i=1,2; with p.d.f. fY(.) as defined in (4). 
Then the stress-strength reliability measure R is the 
following, in which β(p, q) is the Beta function. 

R= !! !! − ! + 1 !
!! !

!!
! !!!!!!! + 1,!!!

!!! 	   	   (23) 

Proof. By the definition of R as given in (22), 

R = f! y! dy!

!!

!

f! y!   dy!

!

!

  

  =
β!α! y!!!

!
! 1 − e ! [!" !! ]!! !! 1 −

e ![!" !! ]!! !!!!e ![!" !! ]!! ln y! !!!! dy!.  (24)  

Integrating (24) using the substitution !   =   !!!" !2 !2 , 
we get (23) in the light of (12).  

Result 2.9 When Yi follows the GLWD(α, β i), for 
i=1,2; with p.d.f. fY(.) as defined in (4), the system 
reliability  ! = !!

!!!!!
. 

Proof. By definition, 

R = f! y! dy!

!!

!

f! y! dy!

!

!

 

= β!α! y!!!
!

!

1

− e ! [!" !! ]!! !!!!!!!e ![!" !! ]!! ln y! !!!! dy!

=
β!

β! + β!
. 

From Result 2.8 and Result 2.9, it can be observed 
that the system reliability between two variables 
following the GLWD depends only on the values of 
those parameters that vary between the two variables. 

We derive an expression for the mean residual life 
(MRL) function of the GLWD(α, β) through the following 
result. 

Result from 2.10 The MRL function M(.) of the 
GLWD(α, β) with c.d.f. FY (.) as defined in (3) and mean 
!!  is the following, 

! ! = !
!! !

!! − !!! ! + !! ! − !,   (25) 

in which for any for y > 1, 

  !!   !

=

!
!
−1 ! !

!"!
!
! + 1
!

, !" ! ! , !"# ∈ !
!

!!!

!

!!!

! + 1 − ! ! −1 ! !
!"! !!

!
! + 1
!

, !" ! !
!

!,!!!

, !"  ! ∉ !  

 

where !(!, !) is the incomplete gamma function as 
given in (13). 

Proof. By definition, 

M y = !
!! !

t − y f! t dt
!
! = !

!! !
t  f! t dt

!
! − y.	   	   (26) 

By considering I! = t!
! f! t = µμ!,  the mean of the 

GLWD and   I! = t!! f! t dt  , we can represent the 
integral I = t  f! t dt

!
!   as  I! − I!. 

Then, I = µ1 − I2 . 

Now I! can be written as  I! = yF! y − F! t dt
!
! =

yF! y − υ! y ,  in which υ! y  can be evaluated using 

 
   (a)     (b)     (c) 

Figure 5: Plots of the percentile measures of skewness and kurtosis of the GLWD for arbitrary values of its parameters.  

(a) Galton’s measure of skewness. (b) Bowley’s measure of Skewness. (c) Schmid-Trede measure of Kurtosis. 
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the binomial expansion or (12) depending on whether β 
is an integer or a real number, respectively. Evaluating 
(26) using expressions for I1 and I2 gives (25).  

3. SOME STRUCTURAL PROPERTIES 

In this section, we present some structural 
properties of the GLWD(α, β)  through the following 
results. The proofs of Results 3.4 to 3.6 are omitted as 
they are straightforward and can be obtained directly 
by the method of transformation of variables. 

Result 3.1 If Y be any continuous random variable 
with c.d.f. FY (y), FY (y) > 0, for every y ∈ (1, ∞), then 

! − !" 1 − 1 − ! ![!" ! ]! !
/! > ! = − !" 1 −

1 − ! ![!" ! ]! !
+ 1, for y ∈ [1, ∞) if and only if Y has 

the  !"#$(!,!). 

Proof. The proof follows from Theorem 6 ([12], pp. 
259) with 

h y = − ln 1 − 1 − e ![!" ! ]! !
and d =

exp − ln 1 − 1 − e!! !!! !!!
, since h(y) is strictly 

an increasing differentiable function in [1, ∞] onto [0, ∞) 
and d is a positive constant with h(d) = 1 so that for y ∈ 
[1, ∞), 

F! y = 1 − e
!! !
! !   = 1 − e ![!" ! ]! !

,   which is the 
c.d.f. of the GLWD(α, β). 

Result 3.2 If Y be any continuous random variable 
with c.d.f. FY (y) for every y ∈ (1, ∞), then 

! !"  1 −  ! ![!" ! ]! /! ≤ ! = !" 1 − ! ![!" ! ]! − !
!  

, 
for y ∈ [1, ∞) if and only if Y has the GLWD(α, β). 

Proof. The proof follows from Theorem 9 ([12], pp. 
264) with   h y =   ln  1 −  e ![!" ! ]! and   d = − !

!
since 

E h Y = − !
!
, and lim!→! h y = 0  so that for y ∈ [1, 

∞), 

F! y = e
!
! ! ! !! !   = 1 − e ![!" ! ]! !

,  which is the 
c.d.f. of GLWD(α, β). 

Result 3.3 The c.d.f. FY (y) of the GLWD(α, β) tends 
to the c.d.f. of the EWD(1, α, β) for extremely small 
values of y. 

Proof. The c.d.f. FY (y) of the GLWD(α, β) given in 
(3) can be written as the following, for y >1. 

F! y = 1 − e !!" ! ! !
	   	   	   	   	   (27) 

Using y = 1 + t for extremely small t > 0 in (27), we 
get 

F! t = 1 − e !!" !!! ! !
.    (28) 

On expanding the term ln 1 + t    in (28) and 
discarding the second term onwards, we obtain 

F! t = 1 − e !! ! !
, which is the c.d.f. of the EWD(1, α, 

β), as given in (1). 

Result 3.4 For any α > 0 and β > 0, the random 
variable Y follows the !"#$(!,!)  if and only 
if!!∗ = !" !  follows the EWD(1, α, β) having c.d.f. (1). 

Result 3.5 For any α > 0 and β > 0, the random 
variable Y follows the !"#$(!,!)  if and only 
if  !!∗ = !" ! ! follows the exponentiated exponential 
distribution, EED(1, β) of [14]. 

Result 3.6 For any a ∈ (−∞, ∞), b > 0, α> 0 and β> 0, 
the random variable Y follows the GLWD(α, β) with 
p.d.f. (4), if and only if   !!∗ = !"; ! > 0,! > 0  follows a 
four parametric version of the GLWD(α, β) having 

c.d.f.!! ! = 1 − !!(!!! !" ! !! )! !
, with a = ln(ν), 

and b = β. 

4. DISTRIBUTION AND MOMENTS OF ORDER 
STATISTICS 

Let Yi:n be the ith order statistic based on a random 
sample Y1, Y2, ..., Yn of size n of theGLWD(α, β),  with 
p.d.f. fY(y) = fY(y; β) as given in (4) and let µr = µr(β) be 
the rth raw moment of the GLWD(α, β) as given in (15). 
The distribution and moments of Yi:n can now be 
derived through the following results. 

Result 4.1 For y > 1, the p.d.f. of the ith order 
statistic Yi:n is given by 

!!:! ! = !!:!:!!!!
!!! !! !;!!"∗ ,    (29) 

in which   !!"∗ = ! ! + ! − 1  and 

!!:!:! =
!
!!!

!!!!!
! !! ! !!!!!!! !

!!! !!
. 

Proof. Consider a random sample of size n from an 
GLWD(α, β)  with p.d.f. fY (y) and c.d.f. FY (y). Then the 
p.d.f. of the ith order statistic Yi:n can be defined as 

f!:! y = !!
!!! ! !!! !

F! y !!! 1 − F! y !!!f! y .  (30) 

By applying the binomial theorem in (30), we have 

f!:! y =
!! !!!!

!!! !   !!! !
F! y !!!f! y −1 ! F! y !!!!

!!!   

                          =
!! !!!! !! !!"

!!! ! !!! !!
1 −!!!

!!!

e ! !" ! ! ! !!! !!
e ! !" ! ! ln y !!! .   (31) 

On further simplification, (31) gives 

f!:! y =
!! !!!!

!!! !   !!! !
−1 ! !

! !!! !!
!!!
!!! f! y; β!"∗ , 
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which reduces to (29). 

As a consequence of Result 4.1, we have the 
following corollaries. 

Corollary 4.1 For y > 1, the p.d.f. of the smallest 
order statistic Y1:n= min(Y1, Y2, ...,Yn) is 

!!:! ! =
!

! + 1

!!!

!!!

!! !; ! + 1 ! . 

Corollary 4.2 For y > 1, the largest order statistic 
Yn:n= max(Y1, Y2, ..., Yn) has the GLWD(α,nβ) with 
c.d.f.!!:! ! = 1 − !! !" ! ! !"

. 

Corollary 4.3 The largest order statistic Yn:n follows 
the GLWD(c, nβ) if and only if Y1 follows the GLWD. 

Corollary 4.4 For y > 1, the p.d.f. of the median 
Ym+1:n, for a sample of size n = 2m+1, is 

!!!!:! !

= −1 ! 2! + 1
!

!
!

! + 1
! + ! + 1

!

!!!

!! !;   ! ! + !

+ 1 . 

Further, the rth raw moment of the ith order statistic 
Yi:n of the GLWD(α, β) is provided through the following 
result, the proof of which follows from Results 2.3 and 
4.1. 

Result 4.2 The rth raw moment of Yi:n is 

  !! !:! ! = !!:!:!!!!
!!! !! !!"∗ ,    (32) 

in which r > 0 and νn:i:k and βik∗  are as defined in (29). 

5. ESTIMATION 

In this section, we discuss the maximum likelihood 
estimation of the parameters of the GLWD(α, β) and 
derive the likelihood equations for complete and 
right-censored cases. A data set of observations 
without any missing value is termed as an 
uncensored/complete set. The likelihood function for a 
complete data set having X1, X2, ..., Xn is given by 

!! Θ = ! !! ,Θ! .  

Censored data is regularly encountered in survival 
and reliability analysis as the information regarding the 
survival time of some of the observations understudy 
may remain incomplete or unknown. According to [15], 
censored data sets represent a particular type of 
missing data. Assume that we have a random sample 
of n units with true survival times T1, T2, ..., Tn having 
p.d.f. f(x) and c.d.f. F(x). However, due to right 
censoring such as staggered entry, loss to follow-up, 
competing risks (death from other causes) or any 
combination of these, it might be impossible to observe 
the survival times in all of these n cases. Thus, a 
subject can either be observed for its full lifetime or can 

be censored. Clearly, the observed data are the 
minimum of the survival time and censoring time for 
each unit. Assume that C1, C2, ..., Cn are the censoring 
times of the n units drawn independently of Ti, i = 1, 
2, ..., n. On each of n units, we observe n random pairs 
(Xi, ηi), in which Xi = min(Ti, Ci) and 

η! =
1, for  T! < C!
0, for  T! > C!

	    

for i = 1,2,...,n. Clearly η i, the censorship indicator 
indicates whether Ti is censored or not. Then, the 
likelihood function for the censored data set is given by 

L! Θ = f x!;Θ!!!! F x!;Θ!!!! .	   	   	   (33)	  

5.1. Estimation of Parameters for the GLWD for 
Complete Data Sets 

Consider a random sample constituting of Y1, Y2, ..., 
Yn observations taken from the GLWD(α, β) . The 
log-likelihood function for the vector of parameters Θ = 
(α,β) is given by 

l! Θ =
ln βα − ln y! + β − 1 ln 1 − exp − ln y! ! −!

!!!
ln y! ! + α −   1 ln ln y! .    (34) 

Differentiating the log-likelihood function (34) with 
respect to the parameters α and β respectively, and 
equating to zero, we obtain the following likelihood 
equations. 

dl! Θ
dα

= nα!! + ln ln y!

!

!!!

1 − ln y! !Β! y! = 0 

and   

  !!! !
!!

= nβ!! + ln 1 − exp − ln y! !!
!!! = 0,  (35) 

in which Β! y! = !!! !"# ! !" !! !

!!!"# ! !" !! ! . 

5.2. Estimation of Parameters for the GLWD(α, β) 
for Censored Data Sets	  

Let r be the number of failures among the n units. 
Then, using (4) and (3) in (33) the likelihood function of 
the GLWD(α, β)  for censored data set is given by 

L! Θ = βαy!!! ln y! !!! exp − ln y! ! 1 −!!!!

exp − ln y! ! !!! [1!!!! − 1 − exp − ln y! ! !].
        (36) 

From (36), we obtain the corresponding 
log-likelihood function as 

l! Θ =
r ln α + r ln β − ln y!!!!! − ln y! !

!!!! +
α − 1 ln ln y!!!!! + β −   1 ln 1 −!!!!

exp − ln y! ! + ln 1 − 1 − exp − ln y! ! !
!!!! .

        (37) 
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Differentiating (37) with respect to the parameters α 
and β , we have the following likelihood equations for 
censored observations. 

dl! Θ
dα

=
r
α + ln ln y! 1 − ln y! !Β! y!

!!!!

− β
1 − exp − ln y! ! !!! exp − ln x !! ln y! !! ln ln x

1 − 1 − exp − ln y! ! !
!!!!

  

and 

dl! Θ
dβ

=
r
β
+ ln 1 − exp − ln y! !

!!!!

−
ln 1 − exp − ln y! ! 1 − exp − ln y! ! !

1 − 1 − exp − ln y! ! !
!!!!

  

in which BΘ(y) is as defined in (35). 

These likelihood equations may not always provide 
a unique solution and in such cases the maximum of 
the likelihood function is obtained in the border of the 
domain of the parameters. Hence, we have obtained 
the second order partial derivatives of the log-likelihood 
function of the GLWD and by using R software it has 
been verified that the values of the second order partial 
derivatives are negative for the estimated parametric 
values for both the distributions. 

6. APPLICATIONS 

To illustrate the utility of the GLWD(α, β)   as a 
survival model, we make use of the following three data 
sets of which the first and second are complete data 
sets while the third one is a censored data set. All 
these three data sets arise from biomedical fields. 

Data Set 1: Data on remission times for a group of 
leukemia patients given the drug 6-MP from [16]. 
6, 7, 10, 13, 16, 22, 23 

Data Set 2: The data on survival of 40 patients 
suffering from Leukaemia, from the Ministry of Health 
Hospitals in Saudi Arabia taken from [17].  

15, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 
865, 924, 983, 1024, 1062, 1063, 1165, 1191, 1222, 
1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 
1549, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 
1815, 1852. 

Data Set 3: Censored data discussed in [18] and 
given in [15]. The data consist of death times (in 
weeks) of patients with cancer of tongue with aneuploid 
DNA profile. The observations are 

1, 3, 3, 4, 10, 13, 13, 16, 16, 24, 26, 27, 28, 30, 30, 32, 
41, 51, 61∗, 65, 67, 70, 72, 73, 74∗, 77,79∗, 80∗, 81∗, 
87∗, 87∗, 88∗, 89∗, 91, 93, 93∗, 96, 97∗, 100, 101∗, 
104, 104∗, 108∗, 109∗, 120∗, 131∗, 150∗, 157, 167, 
231∗, 240∗, and 400∗, where asterisks denote 
censored observations. 

The maximum likelihood estimates of the 
parameters of the GLWD(α, β)   along with the 
corresponding values of the standard errors and 
P-values are computed for the three data sets using 
the R software. The estimated values of the 
parameters of the GLWD(α, β)  along with the values of 
the standard errors, calculated values of the statistics, 
and corresponding P-values are presented in Tables 1, 
2, and 3 respectively. 

The variance-covariance matrix of the estimators of 
the parameters of the GLWD(α, β)   corresponding to 
Data Sets 1, 2, and 3 are respectively 

Σ ! = 106.9564 0.9441
0.9441 0.0243 ,	  

Σ ! = 0.0245   0.9592
0.9592 107.7790  

and 
Σ ! = 0.0029 0.0883

0.0883   5.1511 . 

The performances of the GLWD(α, β)  as a survival 
model is compared with that of some of its related 
models like the LWD, LIWD, IWD, and the WD by using 
certain information criteria like ‘the Akaike information 
criteria (AIC)’, ‘the Bayesian information criteria (BIC)’, 

Table 1: Fitted Values of the GLWD Corresponding to Data Set 1 

Parameter Estimate Std Error Calculated Value P-value 

α 1.4717 0.1561 934283 <2.2e− 16 

β 28.6396 10.3420 2.7693 0.0056 

 

Table 2: Fitted Values of the GLWD Corresponding to Data Set 2 

Parameter Estimate Std Error Calculated Value P-value 

α 1.0690  0.0122 87.25 <2.2e− 16 

β 1659.0 4.1950 395.50 <2.2e− 16 
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‘the corrected Akaike information criteria (AICc)’ and 
‘the consistent Akaike information criteria (CAIC)’. The 
numerical results obtained are summarised in Tables 4, 
5 and 6. Moreover, to test the significance of the 
parameter β , we have carried out the generalized 
likelihood ratio test (GLRT) procedure for testing the 
hypothesis H0: β = 1 against the alternative H1: β≠ 1 
using the three data sets. The results of the test 
procedure are provided in Table 7.  

From Tables 4, 5, and 6, it can be observed that the 
GLWD(α, β)  gives a relatively better fit to both complete 
and censored data sets as compared to the other 
distributions, since the values of AIC, BIC, AICc, and 
CAIC are minimum. Also, from Table 7, it is evident that 
the parameter β is significant for all three data sets. 

7. CONCLUSION 

Through this paper we have considered a 
generalization of the log-Weibull distribution studied by 
[10], using the name the ’generalized log-Weibull 
distribution (GLWD)’. Some important theoretical 
properties of the distribution were investigated 
including expressions for its characteristic function, 
moments, certain reliability measures as well as the 
distribution and moments of order statistics. The 
maximum likelihood estimation of its parameters for 
complete as well as censored data sets was 
considered and the utility of the model in survival 
analysis was illustrated using three real-life data sets. 
Based on the present study it can be concluded that 
the proposed model has much more flexibility 
compared to many existing models and is relatively 

Table 3: Fitted Values of the GLWD Corresponding to Data Set 3 

Parameter Estimate Std Error Calculated Value P-value 

α 0.66283 0.05439 12.1847 <2.2e− 16 

β 12.0451 2.2696 5.3071 1.1e− 07 

Table 4: Fitting Various Distributions to Data Set 1 

Model Estimates Log-Likelihood AIC BIC AICc CAIC 

GLWD α= 1.4717 β = 28.6396 -22.7589 49.5178 49.1013 53.5178 51.1013 

LIWD  c= 1.4872 -32.4513 66.9027 66.8486 67.7027 67.8486 

IWD c = 0.5345 -33.287 68.575 68.521 69.375 69.521 

LWD c= 0.8601 -34.9802 71.9603 71.9062 72.7603 72.9062 

WD c = 0.3113 -35.7846 73.5692 73.5151 74.3692 74.5151 

 

Table 5: Fitting Various Distributions to Data Set 2 

Model Estimates Log-Likelihood AIC BIC AICc CAIC 

GLWD α = 1.0690  
β = 1659.0 

-316.8007 637.6014 640.9791 637.9257 642.9791 

IWD c = 0.1961 -394.6037 791.2074 792.8962 791.3126 793.8962 

WD c = 0.1165 -407.9905 817.9810 819.6698 818.0862 820.6698 

LIWD  c= 0.7016 -419.8682 841.7364 843.4252 841.8416 844.4252 

LWD c = 0.4183 -433.1577 868.3154 870.0042 868.4206 871.0042 
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more suitable in handling censored and complete 
survival data sets, especially from bio-medical 
applications. 
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APPENDIX A 

Proof of Result 2.2. 

By definition, the characteristic function of the 
GLWD(α, β)is 

ϕ! ! =
!β !!"#!!! 1 − !! !" ! ! !!!

!! !" ! ! ln ! !!! !"!
! .

	   	    

By using the substitution z = [ln(y)]αand hence 

expanding the exponential term  !
!"!!

!!!

, we obtain 

ϕ! ! = β
!" !

!!
!!!!

!!
1 − !!! !!!!!!!"

!

!

!

!!!

 

                      = β !" ! ! !

!!!!
!!!!! 1 − !!! !!!!

!
!
!!! !!!!".  (38) 

 

On expanding the term 1 − !!! !!!  in (38) using 
(12) and thereby integrating with respect to z, we get 
(14) in the light of (11). 

Proof of Result 2.3. 

By definition, the rth raw moment of the 
GLWD(α, β)  is 

µμ! = !β !!!!! 1 − !! !" ! ! !!!
!! !" ! ! ln ! !!! !"!

!
        (39) 

By using the substitution z = ln(y) in (39) we get 

!! = !" !! ! !!!!!! ! ! 1 − !! ! ! !!!
!"!

!   

          = !!

!!
!" !!!!!!!! ! ! 1 − !! ! ! !!!

!"!
!

!
!!! ,  

which reduces to (15) using (12) and the Binomial 
theorem, in the light of the equation: 3.381(4) of [19]. 
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