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Short title:



Abstrat. 

 

This paper is devoted to an electromagnetic modeling of a lithography mask in E.U.V. For that 

purpose, a modal method based on a spline nodal expansion is presented. The results are successfully 

compared with those obtained from the F.D.T.D. (Finite Difference method in Time Domain) and from 

other modal method such as M.M.F.E. (Modal Method by Fourier Expansion) The spline nodal basis 

function implemented in this paper is the first step toward a multiresolution scheme that is expected to 

perform much more efficiently.    



 
I. Introduction 

The aim of the electromagnetic modeling of the Extreme UV lithography mask is the study of the 

interaction between the electromagnetic field and the mask or a possible defect within or on top of the 

multilayer mirror. The EUV mask is a Bragg mirror which is made of fourty sequence of Mo/Si (with 

refractive index 0.9227 - 0.0062i/ 0.9999 - 0.0018iυ υ= = ) bilayer, called the blank, under an Cr-

absorber. The structure is supposed to be illuminated by a plane wave. We denote by 2 /k π λ=  the 

wave number (λ  is the wavelength) and 0θ  the incident angle. Time dependence is expressed by the 

factor exp( )i tω  (ω  is the angular frequency). The canonical problem is the so-called lamellar grating 
i.e. in the geometry to be considered the refractive index is a step function. This refractive index has to 

be expanded into a sum of weighted basis functions in order to solve the Maxwel equations using a 

method of moments. One usually uses a discrete set of Fourier functions as basis and test functions 

(Moharam and al. 1986 ), (Lalanne 1995), (Granet 1996). However, it is well known that the 

expansion of sharp functions into Fourier series needs a large number of terms to provide a good 

description of the refractive index function and of sharp variation of the electromagnetic field. 

 It is known in the signal or image processing applications that multiresolution analysis is a way to 

overcome this issue. The principle is to analysis a local discontinuity of the field or the refractive index 

function using different scales. Applying a multiresolution expansion to the field and the refractive 

index  function consist in an expansion on a scaling function at a lowest resolution, plus wavelets at a 

lowest resolution subsequent higher resolution. This multiresolution analysis is equivalent to an 

expansion that were using only the highest resolution basis. However in this paper, we describe only 

this latter expansion and view it as a preliminary step towards multiresolution. Namely the refractive 

index and the electromagnetic field are expanded here on one scale of basis function. 

II. Formulation 

In this section, we derive an operator that takes into account the inhomogeneity of the medium. For 

sake of simplicity, we assume 1D features and TE polarization (the problem is invariant according to 

the z-direction). Of course, the method holds for TM polarization, which will not be described in this 

paper. We consider Maxwel’s curl equations for 1D  homogeneous or inhomogeneous isotropic media: 
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where , ,z x yE H H  are the non-zero Cartesian components of the electric and magnetic field, 

respectively. 0Z the vacuum impedance and ( )xυ  the refractive index. From these equations, it can be 

deduced that the electromagnetic field zE  satisfies the Helmholtz equation: 
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where 2( ) ( )x xε υ= is the dielectric function. This function can be expanded as ( ) ( )x xε ε ε= + ∆ , ε  
being a constant. 

Eq.(2) can be rewritten in the following form: 
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where: 
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We seek solutions of the form ( , ) ( ) ( )zE x y x yχ κ= , and we assume a complex exponential 

dependance of the field in the y -direction 0( ) exp( )y ik ryκ = − . Thus we get an eigenvalue problem: 
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0 0 0( ) ( ) ( )H k x x k r xε χ χ + ∆ =    (6) 

In the following, we will adopt the “braket” notation ( i i ). 

A moment method using the Galerkin scheme is used to solve numerically the above eigenvalue 

equation (6). In our investigation, the basis and test functions ( )N

k xΦ  are spline functions. They show 

the advantage of having a compact support. N  denotes the scale factor, it controls the dilation of the 

scaling function ( )N

k xΦ  and k  relates to the position of the test function. For a given value of 

N , ( ) ( )N N

k x x kΦ = Φ − . 

Nχ  and ( )N xε∆ are expressed as follows: 
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By substituting Eq.(7) in Eq.(6), and projecting on ( )j

n xΦ , the eigenvalue problem becomes: 
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"NnΦ  denotes the second derivative of N

nΦ  with respect to x . 

Thus we get the following matrix relation: 
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N

qϕ   is a column vector. We can associate to any eigenvalue qr an eigenmode: 

0( , ) exp( ) ( )N N N N

q q nq n

n

F x y ik r y xϕ χ= − ∑  (10) 

Thus the general solution at the thN  scale level is written as a linear combination of the 

eigenfunctions: 

( , ) ( , )N N N

z q q

q

E x y R F x y=∑    (11-a) 

Two sets of modes are observed: 

1. those propagating or decaying in the positive y direction: 
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2.  and those traveling in the opposite direction: 
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The electromagnetic field is then expressed under the following form: 
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The field coefficients N

qR
−  and N

qR
+ are determinated by the boundary conditions of continuity of the 

tangential component of the fields at the interfaces. For that purpose, the tangential component of the 

magnetic field ( , )xH x y , which is needed for these boundaries conditions is drawn from Maxwell 

equation as follows: 
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III. Nodal B-Spline Expansion  

We have chosen to use B-spline as basis functions. The first order B-spline function is defined as 

following: 

[ ]

[ ]

, 1
1

( )
( 2)( ) ( )

1, 2

N

k N N

k k

kd d
x x k k

N N
x

k d dx x
x x k k

N N

 − ∈ +Φ =  +Φ Φ − + ∈ + +


(12) 

where d denotes the size of the analysis domain. 

The number of the basis ( )k k
xΦ elements that we need to describe the whole space from 0  to d is 

N for a perfectly conducting boundary condition in the x-direction ( [ ]0, 1k N∈ − ). For non-zero 

boundary conditions, it takes 2N + elements to describe properly the field at the boundaries 

( [ ]1,k N∈ − ). An example of first order spline basis is shown in figure 2. For this kind of polynomial 

type basis functions, all the scalar product can be computed analytically. We get:  
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In the case of periodic boundary conditions, additional contraints are put on the side elements:  
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The periodic condition at x d=  and 0x =  may be numerically translated onto the following form: 
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These relations are also valid for ' ( )k xΦ  since the derivative have also to be periodic. 

In order to improve the accuracy of the expansion. We also used second order B-spline nodal basis 

function which are defined as follows: 
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In this case, the previously described periodic conditions must include in addition the 

kets max ( ) ,N xΦ 2 ( ) ,xΦ  max 2 ( )N x−Φ  and 2 ( )x−Φ . The number of the basis ( )k k
xΦ elements that 

we need to describe the whole space from 0  to d is here N+4  for non-zero boundary condition 

( [ ]2, 1k N∈ − + ). as illustrated in figure 3. 

IV  Application to EUV lithography mask 

The above formalism is applied to an extreme UV lithography mask. We consider in the present paper 

a gaussian defect perfectly replicated along the multilayer as illustratred in figure 1. The defect height 

is 7nm  and its width is 60nm . For that purpose, the “blank” is divided in 600 sublayers which 

refractive index is a succession of step functions. The handling of the boundary conditions is done 

using a S-matrix scheme (G. Granet 2001). The reflected intensity (P. Schiavone and al. 2001), is 

computed at the top of  the blank from the expression of Eq (11-b).  

The figure 4 presents the convergence results obtained from a first, second and third order B-spline 

nodal basis, for differents values of the truncation order N. The computed diffracted efficiencies are in 

a good agreement with those obtained from the MMFE (Modal Method by Fourier Expansion) and 

FDTD (Finite Difference method in Time Domain), (M. Besacier and al. 2003). Nevertheless figure 5 

shows that the RCWA and the quadratic B-spline nodal basis are performing the best. On this figure, 

we represent the convergence of the total normalised reflective power, versus to the truncation order. 

The MMSNE offers certain advantages such as the implementation of a non-periodic boundary 

conditions in the x-direction, this is not possible with the MMFE because of the natural periodicity of 

the basis function. Other advantage of the MMSNE is due to the compact support of the basis 

elements. This property allows the implementation of a local multi-level analysis that will be presented 

in a future paper. 

IV. Conclusion 

In this paper, we have adapted a B-spline expansion to a modal method to simulate a defect in EUV 

mask.  The global conception of the MMSNE is the same as the other modal methods such as C- 

method and MMFE: we solve in an eigenvalue problem and the solutions are matched using a S-matrix 

formalism. The fundamental difference between these three methods is the resolution of the eigenvalue 

equation. Both C-method and MMFE are implemented with a Fourier based expansions although their 

eigenvalue equation are differents. The MMSNE and the MMFE have the same eigenvalue equation 

whereas they are implemented with different basis functions. However the Fourier expansion in not 

adapted to handle abrupt edges, for example the absorber pattern on the EUV lithography mask and it 

is well kwnon that a wavelet analysis is more efficient to described these kind of discontinuty.  

Although the structure is treated here without using the multiresolution analysis, the MMSNE is 

already competitive compared to the MMFE. Nevertheless, the addition of a hierarchical basis will 

allow to implement a multi-level analysis, preferably located around the fast variation of the field. 

Thus the MMSNE will certainly be performing better than the MMFE. This next step of our work will 

be presented in a subsequent paper. 
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Figures caption: 

 

Figure 1: Shematic of a multilayer mirror with a gaussian defect. 

 

Figure 2: Set of a first order B spline used for expansion of field with non-zero periodic boundary      

condition. 

 

Figure 3: Set of a second order B spline used for expansion of field with non-zero periodic boundary      

condition. 

 

Figure 4: Intensity reflected from a defective EUV mask blank at 315 nm from the mirror surface: 

solid line: MMSNE with third order B-spline, 

dashed line: MMSNE with second order B-spline, 

dotted line: MMSNE with first order B-spline, 

 

Figure 5: Total reflected power vs troncation order: 

solid line: MMSNE with third order B-spline, 

dashed line: MMSNE with second order B-spline, 

dash-dotted line: MMSNE with first order B-spline, 

dotted line: MMFE 
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Figure 5 


