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Abstract: In analyzing longitudinal data the correlations between responses obtained from same individual need to be 
taken into account. Various models can be used to handle such correlations. This article focuses on the application of 
transition modeling using Bayesian approach for analyzing longitudinal binary data. For Bayesian estimation asymmetric 
loss functions, such as, linear exponential (LINEX) and modified linear exponential (MLINEX) loss function and Tierney 
and Kadnae (T.K.) approximation has been used. Comparison is made using Bayes factor and Bayesian approach under 
LINEX loss function can be suggested to estimate the parameters of transition model. 
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1. INTRODUCTION 

In longitudinal studies, subjects are followed over a 
specific period of time and information regarding 
occurrence of a particular event of interest is collected 
at each follow-up. These repeated observations of the 
outcome and the associated risk factors characterize 
the longitudinal data for the subjects of a certain 
population. Markov chain is a suitable probability model 
for longitudinal data in which at a given time, the 
outcome is a categorical variable. The choice of 
Markov chain arises because they are often a good 
approximation to the structure of serially dependent 
data. The dependence relationship is commonly 
assumed to be of first order. Korn and Whittemore [1] 
proposed a model to incorporate role of previous state 
as a covariate to analyze the probability of occupying 
the current state. Regier [2] introduced a two state 
transition matrix for estimating odds ratio. Kalbfleisch 
and Lawless [3] proposed models for analyzing under a 
continuous time Markov process. Azzalini [4] examined 
the influence of time dependent covariate on the 
marginal distribution of the binary outcome variables in 
serially correlated data. Muenz and Rubinstein [5] 
proposed a model for analyzing longitudinal data 
assuming that the sequence of states follows a binary 
Markov chain. In their study, Muenz and Rubinstein 
considered a heterogeneous group of individual 
followed over time and each individual can be in state 0 
or state 1 at each time point. They introduced a 
discrete time Markov chain for expressing the transition 
probabilities in terms of function of covariates for a 
binary sequence of presence or absence of a 
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disease. The Markov chain model is one of the most 
important and effective model for analyzing repeated 
categorical data. Muenz and Rubinstein [5] employed a 
logistic regression model to analyze the transitional 
probabilities from one state to another. Liu [6] showed 
the application of Markov chain in time series data. 
Islam et al. [7] applied higher order Markov chains, 
where estimation and test procedure become quite 
complex due to the increased order of the model. 
Sirdari et al. [8] proposed the goodness of fit test for 
higher order binary Markov chain models based on 
marginal distribution. Dey and Islam [9] applied GEE 
approach in conditional count model for repeated data. 
Sirdari and Islam [10] employed higher order binary 
Markov chain model using Health and Retirement 
Study (HRS) data. Following Muenz and Rubinstein, 
among the more recent works, noteworthy are Islam 
and Chowdhury [11, 12], Islam et al. [13, 14] and 
Chowdhury et al. [15]. All of them applied classical 
approach for decision-making. 

In some cases, nature of the parameter is random. 
In that situation classical approaches cannot be 
applied. Bayesian approach helps us to deal such a 
situation. Bayesian estimation is extending rapidly in 
many areas. Hanson et al. [16] proposed an 
informative g-prior for logistic regression. Bayesian 
approach was applied in many distributions, also 
applied in Markov model by Markov Chain Monte Carlo 
(MCMC) algorithm. Noorian and Ganjali [17] was 
applied Bayesian analysis of transitional model for 
longitudinal ordinal response data, but in their study, 
they applied Markov Chain Monte Carlo (MCMC). 
Acquah [18] also used MCMC applied Bayesian logistic 
regression for economic data. Although MCMC method 
is well known and popular but this method is to be 
solved by programming. There is no theoretical idea 
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about the procedure of estimating parameter. To get 
proper idea of the estimating procedure, this paper, 
Muenz-Rubinstein model has been estimated 
theoretically and the numerical findings were obtained 
using R programming. Mahanta et al. [19] applied 
Bayesian approach under squared error loss function 
were then compared method of maximum likelihood 
approach in Muenz-Rubinstein model. Mahanta and 
Biswas [20] employed Bayesian approach in Azzalini 
model. In Bayesian approach, loss function is the most 
important ingredient. Mahanta et al. [19] applied 
Bayesian approach under squared error loss function 
to estimate the parameters of Muenz-Rubinstein 
model. Squared error loss function is the symmetric 
loss function, but most of the practical cases loss is 
asymmetric in nature. In that situation asymmetric loss 
function is applied. This paper has been employed 
Bayesian approach under LINEX and MLINEX loss 
functions to estimate the parameters of the Muenz-
Rubinstein. 

2. MODEL 

The transition matrix of a two states discrete time-
binary sequence Markov chain. The transition matrix is 
as 

P =
p00 p01
p10 p11

!
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where, P  is the transition probability matrix, p00  
denotes the transition probability from state 0 to 0 and 
p10  is the transition probability from state 1 to 0. At 

each time point, a vector of length two contains the 
probability of outcome of interest and its complement. 

Muenz and Rubinstein proposed model the 
transition probabilities p00  and p10  by logistic 
regressions. 

Where,  

p00 =
exp !" X( )
1+ exp !" X( )

          (1) 

and 

p10 =
exp !" X( )
1+ exp !" X( )

          (2) 

The vector X contains covariates and for the qth  
person in the study is Xq = 1, Xq1, ...Xqp( ) . There are two 
logistic regressions, one having parameter vector 

! = !0 , ...,!p( )"  and the other having parameter 

vector! = !0 , ...,! p( ) . Large positive (negative) values 

of !" X  and !" X  yield large (small) transition 
probabilities. The above transition probabilities are 
follows multinomial distribution, for 0 to 0 transitions the 
joint distribution of the above Markov model is  
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where, n00i  and n01i  are the number of transitions. 

3. PRIOR AND POSTERIOR DISTRIBUTION 

Selection of a prior distribution is an important part 
in Bayesian approach. When proper information is 
unavailable, then non-informative has been used an 
extensive tradition in statistics. Mahanta et al. [19] 
applied non-informative prior is Jeffrey’s prior along 
with the uniform prior and defined as g !( ) = I . Where, 

I  represent unit vector and g !( )  for prior density. 

Then the posterior distribution of !  for the given 
sample is 
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4. LOSS FUNCTION AND POSTERIOR RISK 
FUNCTION 

Loss function is the important ingredients for 
Bayesian approach. Linear exponential (LINEX) and 
modified linear exponential (MLINEX) loss functions 
have been applied and by the help of posterior risk 
comparison is made.  

4.1. Bayes Estimator under LINEX Loss Function 

Let us consider the following LINEX [21] loss 
function of the form  
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We know, Bayes estimator of the parameter !  
under LINEX [21] loss function is 
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Therefore, 
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The above Bayesian integral appeared in the 
computation cannot be solvable for this type of model. 
Tierney and Kadnae [22] approximation have been 
used to estimate the value of the integral. Tierney and 
Kadnae [22] proposed that if the form of the integral is 

I(X)=E u(!) / X( )=
u(!)eL0 !( )+p(! )d!"
eL0 (! )+p(! )d!"

 

where, u !( )  is the functional form of the expected 
value with respect to posterior density, L0  is the log-
likelihood and p !( )  is the log of prior. 

Then it can be approximately evaluated as 
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where, 
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where, 
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differentiate equation (8) successively with respect to 
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Equation (9) and (10) represent score vector and 
information matrix respectively and using above two 
equations likelihood estimator of parameter !  have 
been estimated. Again, for estimating the parameter 
!* , we differentiate equation (7) both sides with 
respect to !*  successively. 
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Likelihood estimator of !*  can be estimated by 
using equation (11) and (12). 

Therefore, the Bayes estimator under LINEX loss 
function is 
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"

BL  represent Bayes estimator under LINEX loss 
function, c is the shape parameter of the loss function, 

!
"

and !*
"

are the maximum likelihood estimates [5] of 
!  and !*  respectively. 

4.2. Posterior Risk Function under LINEX Loss 
Function 

Posterior risk under LINEX loss function is obtained 
by 
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where, Rp !( )  represent the posterior risk and !
"

BSE  is 
the Bayes estimator under squared error loss function 

4.3. Bayes Estimator under MLINEX Loss Function 

MLINEX [23] loss function is defined as  
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For MLINEX loss function Bayes estimator [23] of 
parameter !  is 
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Functional form under MLINEX loss function of !  is 
u(!)=!"c . 

Therefore,  
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To estimate the parameter !* , differentiate both 
sides successively in equation (16) with respect to !* . 

We have, 
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Therefore, Bayes estimator of !  under MLINEX 
loss function 

!BML
"

=!*
"

#
c

!
" *2

+ n00i + n01i( )
i=1

n

$ Xi
2 p00

*
"

p01
*
"

%

&

'
'

(

)

*
*

#
1
2

n00i + n01i( ) Xi
2 p
"

00 p
"

01
i=1

n

$
%

&
'

(

)
*

#
1
2

+ D

%

&

'
'
'
'
'
'
'
'

(

)

*
*
*
*
*
*
*
*

#1c

    (17) 

where, !
"

 and !*
"

 are the maximum likelihood 
estimates [5] of !  and !*  respectively. 

4.4. Posterior Risk Function under MLINEX Loss 
Function 

Posterior risk is the expectation of loss function with 
respect to posterior density 
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The parameters of transition state 1 to 0 can be 
estimated in similar way.  

5. BAYES FACTOR 

Considering M1  and M 2  be the two candidate fitted 
Markov models of Bayes estimator under LINEX and 
MLINEX loss function respectively, each specifying a 
set of data and a prior distribution on this set. Same 
priori that the models are assigned equal odds. The 
posterior under model Mk , k =1, 2  is given by 

posterior \ Mk{ } =
likelihood \ Mk{ }! prior \ M k{ }

normalizing cons tan t
 

The normalizing constant, which is simply the 
integral of likelihood \ Mk{ }! prior \ M k{ }  over the 
parameter space is called the marginal likelihood under 
Mk , denoted by m data \ Mk( ) . 
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The Bayes factor [24] for comparing model M1  and 
M 2  is 

BF12 =
m data \ M1( )
m data \ M 2( )

 

A `large' value of BF12  indicates support for M1  
relative to M 2 , and a `small' value (> 0) indicates 
support for M 2  relative to M1 . Bayes factor 
consistency refers to the stochastic convergence of 
BF12 , under the true probability distribution, such that 
BF12 !"  if M1  is the best model, BF12 ! 0  if M 2  is 
the best model also if BF12 >1  then M1  is preferable 
than M 2 , if BF12 <1  but positive then M 2  is preferable 
than M1  and if BF12 <1  then M1  and M 2  are same 
effect. 

6. RESULTS 

A repeated measures data on Maternal Morbidity in 
Bangladesh is used. The survey was conducted from 
November 1992 to December 1993 by the Bangladesh 
Institute for Research for Promotion of Essential and 
Reproductive Health and Technologies (BIRPERHT). 
The subjects comprised of pregnant women with less 
than 6 months of duration and were followed on regular 
basis (roughly at an interval of 1 month) throughout the 
pregnancy. The data of first four consecutive antenatal 
visits is considered from 548 such women’s information 
for the analysis. Age at marriage, economic status and 
any miscarriage are the three highly significant 
covariates have been applied for fitting the model. 

Table 1: Number of Transitions for Pregnancy 
Complications 

Transition Counts 

States 0 1 Total 

0 1338 250 1588 

1 250 354 604 

 

Bayesian approaches have been applied for 
estimating the parameters of the Muenz-Rubinstein 
model considering three highly significant covariates. 

Table 2 (shown in the next page) represents that, 
for c=1, posterior risk of the Bayes estimates under 
MLINEX loss function is smaller than the posterior risk 
of the Bayes estimates under LINEX loss function in 
both transitions 0 to 0 and 1 to 0. Where, any 

miscarriage and age at marriage are positively and 
economic status is negatively associated with 
pregnancy complication in 0 to 0 transition and in 1 to 0 
transition, any miscarriage and economic status are 
positively and age at marriage is negatively associated 
with pregnancy complication. 

In addition, Bayesian approach under LINEX loss 
function have been found better estimate for the 
covariate any miscarriage, whereas Bayes estimate 
under MLINEX loss function have shown better result 
of the covariates economic status and age at marriage 
for c=-1 in 0 to 0 transition. Better estimates have been 
given by Bayes estimate under LINEX loss function for 
all covariates in transition 1 to 0. Where, Economic 
status is negatively associated in 0 to 0 transition and 
all others estimates are positively associated with 
pregnancy complication.  

In both transitions posterior risk of the Bayesian 
approach under LINEX loss function is smaller than 
posterior risk of the Bayesian approach under MLINEX 
loss function when c=3. In transition 1 to 0 any 
miscarriage is positively associated and remaining all 
of the covariates is negatively associated with 
pregnancy complication. 

For c=-3, all the Bayes estimates under LINEX loss 
function have smaller posterior risk than Bayes 
estimator under MLINEX loss function in both 
transitions. All the estimates are positively associated 
with pregnancy complication. 

Getting preferable estimate, Bayes factor, 112 >BF  
for all cases, which indicate that Bayesian approach 
under LINEX loss function gives better estimate than 
Bayesian approach under MLINEX loss function. 

The performances of estimator between two types 
of loss function have been shown in the following 
figures given in the after next page. 

The patterns of the above figures are approximately 
same. From the above figures, it is observed that, 
Bayes estimator under LINEX loss function have 
smaller posterior risk than MLINEX loss function except 
for c=1, where c is the shape parameter of the loss 
functions. 

From the above result we have,  

RBL < RBML ; for c !1
RBML < RBL ; for c =1
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Table 2: Estimates of Parameters of Covariate-Dependent Markov Chain Models Using Pregnancy Complication Data 

Loss Function LINEX MLINEX 
Bayes 
Factor 
( 12BF ) 

0 to 0 Transition 

Value of 
c 

Covariate Estimate Posterior risk Estimate Posterior risk  

Constant 0.7491 0.9773 1.7553 0.0130 

Any miscarriage -0.8298 0.9904 0.1633 0.0028 

Economic Status -1.3018 0.9943 -0.3126 0.0001 
1 

Age at Marriage -0.9466 0.9914 0.0456 0.0395 

6.8901 

Constant 2.7326 1.0061 1.7264 1.9770 

Any miscarriage 1.1537 0.9930 0.1606 0.9936 

Economic Status 0.6817 0.9891 -0.3074 0.9220 
-1 

Age at Marriage 1.0369 0.9921 0.0448 0.9751 

2.4886 

Constant 1.4103 0.9484 1.7456 0.6942 

Any miscarriage -0.1686 0.9877 0.1624 36.937 

Economic Status -0.6406 0.9995 -0.3109 9.3640 
3 

Age at Marriage -0.2854 0.9906 0.0453 486.15 

1.6520 

Constant 2.0715 1.0351 1.7360 8.0883 

Any miscarriage 0.4925 0.9958 0.1615 1.0409 

Economic Status 0.0206 0.9840 -0.3092 1.0238 
-3 

Age at Marriage 0.3758 0.9929 0.0451 0.9146 

1.3083 

 1 to 0 Transition 

Constant -1.7145 0.9888 -0.8015 0.0387 

Any miscarriage -0.6325 0.9358 0.3350 0.0034 

Economic Status -0.6657 0.9374 0.3001 0.0078 
1 

Age at Marriage -1.1393 0.9606 -0.1974 0.0194 

3.2723 

Constant 0.1884 0.9141 -0.7257 0.5342 

Any miscarriage 1.2704 0.9671 0.3033 1.0109 

Economic Status 1.2371 0.9654 0.2717 1.0335 
-1 

Age at Marriage 0.7636 0.9422 -0.1787 1.0870 

3.9772 

Constant -1.0802 1.0636 -0.7754 0.6465 

Any miscarriage 0.0018 0.9046 0.3241 8.6310 

Economic Status -0.0315 0.9094 0.2903 10.987 
3 

Age at Marriage -0.5050 0.9791 -0.1909 26.593 

1.4145 

Constant -0.4459 0.8393 -0.7501 0.7662 

Any miscarriage 0.6361 0.9983 0.3135 1.1995 

Economic Status 0.6028 0.9934 0.2808 1.2162 
-3 

Age at Marriage 0.1293 0.9238 -0.1847 1.2559 

1.4833 

 
where, RBL and RBML  stands for posterior risk under 
LINEX and MLINEX loss functions respectively. All the 
calculations have been performed by R-Language 
(Version-2.10.0). The program has been shown in 
appendix. 

7. CONCLUSIONS 

Longitudinal data are widely used in biological 
science, social science, engineering etc. This paper 
has been applied Muenz-Rubinstein model. Bayesian 
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Figure 4: Posterior risk of Bayesian approach under LINEX 
and MLINEX loss function for covariate Economic Status in 1 
to 0 transition. 

 
Figure 5: Posterior risk of Bayesian approach under LINEX 
and MLINEX loss function for covariate Age at Marriage in 0 
to 0 transition. 

 
Figure 6: Posterior risk of Bayesian approach under LINEX 
and MLINEX loss function for covariate Age at Marriage in 1 
to 0 transition. 

 
Figure 1: Posterior risk of Bayesian approach under LINEX 
and MLINEX loss function for covariate Any Miscarriage in 0 
to 0 transition. 

 
Figure 2: Posterior risk of Bayesian approach under LINEX 
and MLINEX loss function for covariate Any Miscarriage in 1 
to 0 transition. 

 
Figure 3: Posterior risk of Bayesian approach under LINEX 
and MLINEX loss function for covariate Economic Status in 0 
to 0 transition. 
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APPENDIX 

library(foreign,MASS) 
data<-as.matrix(read.table("D:/three.txt")) 
initial<-c(.1,.1,.1,.1) 
c<-(1) 
Rub1<-function(data,initial) 
{  
id<-data[,1] 
fup<-data[,2] 
A<-data[,3] 
B<-data[,4] 
C<-data[,5] 
count<-0 
k<-0 
repeat { 
b0<-initial[1] 
b1<-initial[2] 
b2<-initial[3] 
b3<-initial[4] 
b<-as.vector(c(b0,b1,b2,b3)) 
infb=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),ncol=4,byrow=T) 
infb1=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),ncol=4,byrow=T) 
k<-k+1 
x=cbind(1,A,B,C) 
g00=exp(x%*%b)/(1+exp(x%*%b)) 
g01=1/(1+exp(x%*%b)) 
sb=colSums(x*as.vector(data[,8]-(data[,8]+data[,9])*g00)) 
sb1=colSums(x*as.vector(data[,8]-(data[,8]+data[,9])*g00))+(1/b) 
for(i in 1:ncol(x)){ 
for(j in 1:ncol(x)){ 
for(l in 1:ncol(x)){ 
infb[i,j]=(sum(x[,i]*x[,j]*(as.matrix(data[,8]+data[,9]*(g01)*(g01))))) 
} 
} 
} 
b1<-b%*%(t(b)) 
b2<-(1/b1) 
infb1<-b2+infb 
Fisinvb=solve(infb) 
Fisinvb1=solve(infb1) 
count<-count+1 
lik<-b+Fisinvb%*%sb 
lik1<-b+Fisinvb1%*%sb1 
e<-matrix(cbind(lik,lik1),ncol=2) 
conv<-abs(initial-lik) 
if(conv[1]<=0.001 && conv[2]<=0.001 && conv[3]<=0.001 && 
conv[4]<=0.001) 
 break 
initial<-lik 
} 

h00=( exp(x%*%(lik )))/(1+exp(x%*%(lik))) 
h01=1/(1+exp(x%*%(lik))) 
s01=1/(1+exp(x%*%(lik1))) 
s00=(1-s01) 
term=exp(sum(as.matrix(data[,8]*x%*%(lik1-
lik)))+sum(as.matrix(data[,8]+data[,9])*log(s01/h01))) 
den=(sum(x[,i]*x[,j]*(as.matrix(data[,8]+data[,9]*(h01)*(h01))))) 
neo=sum((x[,i]*x[,j]*(as.matrix(data[,8]+data[,9]*(s01)*(s01))))) 
neo1<-neo+ (1/(t(lik1)%*%lik1)) 
bse=lik1%*%((neo1/den)^(-1/2))*term 
#calculation of posterior risk 
neo2<- neo+ (2/(t(lik1)%*%lik1)) 
bse2=lik1*lik1%*%((neo2/den)^(-1/2))*term 
bbl<-lik1+(1/(2*c))*log(neo/den)-(1/c)*term 
cat("The Bayes estimate under LINEX is\n") 
print(bbl) 
#calculation of posterior risk 
xtra<-exp(-c*lik1)*((neo/den)^(-.5))*exp(term) 
rbbl<-exp(c*bbl)*xtra-c*bbl+c*bse-1 
cat("The Risk of LINEX is\n") 
print(abs(rbbl)) 
bbml<-lik1%*%(((((-c/(t(lik1)%*%lik1))+neo)/den)^(-1/2))*term)^(-1/c) 
cat("The Bayes estimate for MLINEX is\n") 
print(bbml) 
#calculation of posterior risk 
alik1<-abs(lik1) 
ghj<-(lik1+log(alik1))/(lik1*lik1*log(alik1)*log(alik1)) 
xtra2<-log(alik1)*(((ghj+neo)/den)^(-.5))*term 
xtra1<- (lik1^-c)%*%(((((-c/(t(lik1)%*%lik1))+neo)/den)^(-1/2))*term) 
rbbml<-bbml*xtra1-c*log(abs(bbml))+c*xtra2-1 
cat("The Risk of MLINEX is\n") 
print(abs(rbbml)) 
#Calculation of Bayes factor 
bb00=( exp(x%*%(bbl)))/(1+exp(x%*%(bbl))) 
bb01=1/(1+exp(x%*%(bbl))) 
sbc=colSums(x*as.vector(data[,8]))%*%bbl 
sbd=colSums(as.vector(data[,8]+data[,9])*log(1/bb01)) 
sbf=sbc-sbd 
bm00=( exp(x%*%(bbml)))/(1+exp(x%*%(bbml))) 
bm01=1/(1+exp(x%*%(bbml))) 
sbmc=colSums(x*as.vector(data[,8]))%*%bbml 
sbmd=colSums(as.vector(data[,8]+data[,9])*log(1/bm01)) 
sbmf=sbmc-sbmd 
bfactor=sbf/sbmf 
cat("Bayes factor of LINEX with respect to MLINEX\n") 
print(bfactor) 
} 
Rub1(data, initial) 

 

approach under LINEX and MLINEX loss functions 
have been used to estimate the parameters of the 
model and their comparison is made using Bayes 

factor for different values of c. This paper reveals that 
Bayes estimators under LINEX loss function have 
shown better estimate. That is Bayesian approach 
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under LINEX loss function can be suggested to 
estimate the parameter of Muenz-Rubinstein model 
and predict appropriate result about longitudinal data. 
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