
 International Journal of Statistics in Medical Research, 2018, 7, 33-44 33 

 
 E-ISSN: 1929-6029/18  © 2018 Lifescience Global 

Exploring the Performance of Methods to Deal Multicollinearity: 
Simulation and Real Data in Radiation Epidemiology Area 

Mickaël Dubocq1,2,3, Nadia Haddy1,2,3, Boris Schwartz1,2,3, Carole Rubino1,2,3,  
Florent Dayet1,2,3, Florent de Vathaire1,2,3, Ibrahima Diallo1,2,3 and Rodrigue S. Allodji1,2,3,* 

1Radiation Epidemiology Group, INSERM U1018, Villejuif, F-94805, France 
2Gustave Roussy, Villejuif, F-94805, France 
3Univ. Paris-Sud, Villejuif, F-94800, France 

Abstract: The issue of multicollinearity has long been acknowledged in statistical modelling; however, it is often 
untreated in the most of published papers. Indeed, the use of methods for multicollinearity correction is still scarce. One 
important reason is that despite many proposed methods, little is known about their strength or performance. We 
compare the statistical properties and performance of four main techniques to correct multicollinearity, i.e., Ridge 
Regression (R-R), Principal Components Regression (PC-R), Partial Least Squares Regression (PLS-R), and Lasso 
Regression (L-R), in both a simulation study and two real data examples used for modelling volumes of heart and 
Thyroid as a function of clinical and anthropometric parameters. We find that when the statistical approaches were used 
to address different levels of collinearity, we observed that R-R, PC-R and PLS-R appeared to have a somewhat similar 
behavior, with a slight advantage for the PLS-R. Indeed, in all implemented cases, the PLS-R always provided the 
smallest value of root mean square error (RMSE). When the degree of collinearity was moderate, low or very low, the L-
R method had also somewhat similar performance to other methods. Furthermore, correction methods allowed us to 
provide stable and trustworthy parameter estimates for predictors in the modelling of heart and Thyroid volumes. 
Therefore, this work will contribute to highlighting performances of methods used only for situations ranging from low to 
very high multicollinearity. 

Keywords: Lasso Regression, Multicollinearity, Organs volume modelling, Partial Least Squares Regression, 
Principal Components Regression, Ridge Regression. 

1. INTRODUCTION  

The issue of multicollinearity is very common in 
many research areas [1]. It has long been 
acknowledged in statistical modelling; however, it is 
often untreated in analyses and in the most of 
published papers [2]. Typically, multicollinearity is a 
problem in multiple regressions that develops when 
one or more of the explanatory variables are highly 
correlated with one or more of the other explanatory 
variables. If it is regressed on the other explanatory 
variables, then the matrix of intercorrelations among 
the explanatory variables is singular and there exists 
no unique solution for the regression coefficients [3]. 
Consequently, regression coefficients biased by 
multicollinearity might cause variables that demonstrate 
no significant relationship with the outcome when 
considered in isolation to become highly significant in 
conjunction with collinear variables, yielding an 
elevated risk of false-positive results (Type I error). 
Alternatively, multiple regression coefficients might 
show no statistical significance due to incorrectly 
estimated wide confidence intervals, yielding an 
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elevated risk of false-negative results (Type II error). A 
broad variety of methods for multicollinearity correction 
have been developed [4], but these methods have 
rarely been applied possibly because their ability to 
correct multicollinearity is poorly understood. 

The aim of this paper was to compare the statistical 
properties and performance of four main techniques to 
correct multicollinearity, i.e., the Ridge Regression 
method denoted R-R, the Principal Components 
Regression method denoted PC-R, the Partial Least 
Squares Regression method denoted PLS-R, and the 
Lasso Regression method denoted L-R. Comparisons 
were performed using a simulation study and within two 
datasets used for modelling organs volume as a 
function of clinical and anthropometric parameters.  

2. MULTIPLE LINEAR REGRESSIONS AND 
MULTICOLLINEARITY EFFECTS 

2.1. Multiple Linear Regression 

Assume that there are N observations (  y, x1,..., xk ), 
and the purpose is to build a predictor for the scalar 
dependent variable or response y based on the K-
dimensional vector x of regressors. Say that x is easier 
or cheaper to measure than y. The data used for 
regression can be collected in the matrix X and the 
vector y. Assume that the relationship between X and y 
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is linear. Without loss of generality, we assume that X 
is centred. The model can then be written as: 

   y = 1!0 +X!  + e            (1) 

for the residual vector e.  

The main problem is to estimate the regression 
vector b in order to obtain a predictor 

  ŷ = y +! t "̂             (2) 

which gives as good predictions of unknown y’s as 
possible. A measure of prediction accuracy, which is 
much used, is mean square error (MSE) defined by: 

  MSE( ŷ) = E(ŷ ! y)2             (3) 

The most frequently used method of estimation for 
the regression vector is least squares [4]. The sum of 
squared residuals (RSS) is minimised over the space 
of b values. If we assume that X has rank k, then so 
does   Xt X  and so   Xt X  is invertible and the least 
squares estimator has a very nice closed form solution: 

   !̂ = (Xt X)"1 Xt y            (4) 

The covariance matrix of !  is equal to: 

   COV(!̂) = " 2 (Xt X)#1            (5) 

This can also be written as follows: 

   
COV(!̂) = " 2 pk (1 / #k )pk

t

k=1

K

$           (6) 

where the p’s are the eigenvectors of   Xt X  and the 
! ’s are the corresponding eigenvalues. 

2.2. Multicollinearity Effects 

A common situation in many applications of linear 
models is that there are highly correlated among the x-
variables. When the linear relations are exact, the 
inverse of   Xt X  does not exist and no unique   b̂  can be 
produced. This problem is a form of ill conditioning in 
the (  Xt X ) matrix. If there is at least one near 
dependency in the data, one or more of the 
eigenvalues will be small. This implies that there are 
near dependencies among the columns of X [5]. It is 
well known that multicollinearity tends to produce least 
squares estimates that are too large in absolute value 
and whose signs may actually reverse [6]. While the 
method of least squares will generally produce poor 
estimates of the individual model parameters when 
strong multicollinearity is present, the estimated 

coefficients are correlated (confounding) with each 
other. Along with this correlation, multicollinearity has a 
multitude of other ramifications on our analysis, 
including: inaccurate regression coefficient estimates 
(leading to a high MSE), inflated standard errors of the 
regression coefficient estimates, deflated t-tests for 
significance testing of the regression coefficients, false 
non significance determined by the p-values, and 
degradation of model predictability. 

3. METHODS FOR CORRECTING 
MULTICOLLINEARITY EFFECTS 

3.1. Ridge Regression (R-R) 

Hoerl and Kennard have suggested the Ridge 
regression as an alternative procedure to the method of 
least squares in regression analysis, especially when 
multicollinearity exists [7]. The Ridge regression was 
originally developed to invert the matrix   Xt X  and is 
based on adding a positive scalar !  to the diagonal 
elements of ! . If !  is not null, the new matrix 
  Xt X + !I  will be invertible. By using an improved least 
square method, ridge regression sought standardized 
coefficients. !  is called ridge parameter, and usually 0 
< !  < 1. !  value was selected when all the regression 
coefficients were relatively stable and the sign of the 
coefficients did not change. The ridge estimator, 

 
!̂Ridge  

is defined as follows: 

   
!̂Ridge (") = (Xt X + "I)#1 Xt y          (7) 

where !  is a positive scalar and I an identity matrix. If 
 ! = 0 , the ridge estimator become as the least squares 
[8]. An appropriate value of !  may be determinate by 
examination of the ridge trace, of the variance inflation 
factor (VIF) and of the RMSE. The ridge trace is a plot 
of the elements of 

 
!̂Ridge  as function of !  [9]. Further 

details on the efficient choice of biasing constant for 
Ridge Regression are given in several papers [10]. The 
SAS regression procedure ‘proc reg’ can be told to 
generate a ridge trace, so that ridge regression is easy 
to implement [11]. 

3.2. Principal Components Regression (PC-R) 

One of the simplest ways that the collinearity 
problem is solved in practice is by the use of principal 
component regression (PC-R). In PC-R instead of 
regressing the dependent variable on the explanatory 
variables directly, the principal components of the 
explanatory variables are used. This method usually 
gives much better results than least squares for 
prediction purposes when used successfully [12]. With 
this method, the original k explanatory variables are 
transformed into a new set of orthogonal or 
uncorrelated variables called principal components of 
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the correlation matrix. This transformation ranks the 
new orthogonal variables in order of their importance 
and the procedure then involves eliminating some of 
the principal components to effect a reduction in 
variance. After elimination of the least important 
principal components, a multiple regression analysis of 
the response variable against the reduced set of 
principal components is performed using ordinary least 
squares estimation. Because the principal components 
are orthogonal, they are pair-wise explanatory and 
hence ordinary least squares is appropriate. Once the 
regression coefficients for the reduced set of 
orthogonal variables have been calculated, they are 
mathematically transformed into a new set of 
coefficients that correspond to the original or initial 
correlated set of variables. These new coefficients are 
principal component estimators. The computational 
technique of PC-R method may be summarized as 
follows. Let X be the centered scaled  n! k  data matrix 
as given in equation (1). The  k ! k  correlation matrix of 
the explanatory variables is then   C = Xt X . Let 

   !1 ,!2 ,… ,!k  be the eigenvalues of the correlation 

matrix, and 
    
V = v1 v2 … v k

!" #$  be the  k ! k  matrix 

consisting of the normalized eigenvectors associated 
with each eigenvalue. The eigenvectors are the 
solutions of the determinant equation 

   
Xt X + !I = 0 , 

and associated with each eigenvalue, 
 
! j , is a vector, 

 
v j , that satisfies the set of homogeneous equations 

   
Xt X + ! jI( ) v j = 0 . The vectors, 

    
v j = v1 j v2 j … vkj( )t

 

are orthogonal to one another, hence  V  is 
orthonormal, where    V

t V = I  that is the identity matrix. 
Now consider the model formulation given in equation 
(1), that is,    y = 1!0 +X!  + e . One can write the original 
regression model (equation 1) in the form: 

   y = 1!0 +X(V t V)!  + e           (8) 

or 

   y = 1!0 + Z"  + e            (9) 

where   Z = XV  and  ! = Vt" .  Z  is an  n! k  data matrix 

of principal components and 
    
! = !1 !2 … !k( )t

 is 
an   n!1  vector of new coefficients. The model 
formulation in equation (9) is nothing more than the 
regression of the response variable on the principal 
components, and the transformed data matrix  Z  
consists of the k principal components. Therefore, if the 
response variable ( y ) is regressed against these k 
principal components using the model in equation (12), 
then the least squares estimator for the regression 
coefficients in vector !  is the vector:  

   
!̂ = Z t Z( )

"1
Z t y          (10) 

and the variance-covariance matrix of the estimated 
coefficients in vector  !̂  is given by: 

    
Var(!̂) = "̂ 2 Z t Z( )

#1
= "̂ 2diag $1

#1,$2
#1,…,$k

#1( )       (11) 

Even though the new variables are orthogonal, the 
same magnitude of variance is retained. But if 
multicollinearity is severe, there will be at least one 
small eigenvalue. An elimination of one or more 
principal components associated with the smallest 
eigenvalues will reduce the total variance in the model 
and thus produce an appreciably improved diagnostic 
or prediction model. 

Suppose with k variables and hence k principal 
components,  r < k  components are eliminated. From 
equation (9), with the retention of all components, 

 ! = Vt" , and the coefficients for the centered and 
scaled explanatory variables are obtained as: 

 !PC"R = V#          (12) 

The PC-R can be implemented in SAS relatively 
easily using PRINCOMP procedure [11]. 

3.3. Partial Least Squares Regression (PLS-R) 

Partial Least Squares (PLS) is a method for 
constructing predictive models when the variables are 
too many and highly collinear. Besides collinearity, 
PLS-R is also robust against other data structural 
problems such as skew distributions and omission of 
regressors [13]. Like principal component analysis, the 
basic idea of PLS is to extract several latent factors 
and responses from a large number of observed 
variables [14]. More specifically, the aim is to predict 

the response by a model that is 
  
CÔV(Y, F) = 1

n
v tX tY  

based on linear transformations of the explanatory 
variables. Therefore, the acronym PLS is also taken to 
mean Projection to Latent structure [13]. The latent 
factors are then used for prediction in place of the 
original variables [15]. In order to specify the latent 
component matrix  F  such that  F = XV , PLS-R 
requires finding the columns of 

    
V = v1 v2 … v k

!" #$  

from successive optimization problems. The sample 
covariance between the response variable  Y  and the 
random variable    F = v1X1 +!+ vkXk  can be computed 
as  

  
CÔV(Y, F) = 1

n
v tX tY         (13) 
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since the matrices  X  and  Y  contain the centered 
data. Similarly, for the sample variance of the random 
variable  F , we have 

  
Vâr(F) = v tX tXv = 1

n
v tv        (14) 

The criterion to find the  k th  direction vector  vk  for 
univariate  Y  is formulated as  

  vk = arg maxv cor 2(Y , Xv )var( Xv ) ,      (15) 

where   v
tv =1 , for    j =1,… ,k !1 . 

As evident from this formulation, PLS-R seeks 
direction vectors that not only relate  X  to  Y  but also 
capture the most variable directions in the  X  space 
[13]. The maximal number of such latent factors that 
have nonzero covariance with  Y  is 

  Cmax = min( n !1,k ) .        (16) 

The weight vectors    v1 v2 … v k  can be 
computed sequentially via a simple and fast non-
iterative algorithm given, e.g. in and denoted as 
‘algorithm with orthogonal scores’ because the matrix 
  F tF  is diagonal [16]. Finally, the matrix  B  of 
regression coefficients for the model in equation (1) is 
given as  

  B = V(FtF)!1 FtY .        (17) 

It can be shown that the resulting regression 
coefficients in matrix  B  are the same with both 
algorithms [16]. The PLS-R can be implemented in 
SAS relatively easily using PLS procedure [11]. 

3.4. Least Absolute Shrinkage and Selection 
Operator (Lasso) Regression 

The Lasso is a form of regularized or “penalized” 
regression proposed by Tibshirani [17]. When there are 
high correlations between predictors, lasso is useful as 
R-R, PC-R and PLS-R. This method allows to obtain an 
estimator of regression coefficient which minimizes the 
residual sum of squares subject to the sum of the 
absolute value of the coefficients being less than a 
constant  ! " 0 . When !  is small, some regression 
coefficients will be necessarily to zero or very close to 
zero, else the sum of the regression coefficients will 
exceed !  value. In view of shrinking the regression 
coefficients by imposing a penalty on their size, the 
Lasso is similar in spirit to Ridge regression. However, 
ridge regression cannot produce a parsimonious 

model, as it always keeps all the predictors in the 
model [18].  

Without loss of generality, throughout this article, we 
assumed that the data were standardized to have 
mean 0. That was,   1

t y = 0 , 
  
1t x j = 0 , and 

 
x j

tx j =1  for 

   j =1,… ,k . The Lasso estimate was the solution to  

  
min
!

(y "X!)t (y "X!) , subject to 
  

! j
j=1

k

" # $ .     (18) 

Tibshirani noted that the lasso constraint 
  

! j
j=1

k

" # $  

was equivalent to adding the penalty term 
  
! " j

j=1

k

#  to 

the residual sum of squares, so there was a direct 
correspondence between parameters  ! " 0  and 

 
! " 0,+#$% )  [17]. Thus, an alternative formulation of the 

Lasso was defined by  

  
min
!

1
n

(y "X!)t (y "X!)+ # ! j
j=1

k

$ .       (19) 

There were, however, ways to estimate the lasso 
coefficients. Indeed, Tibshirani provided an algorithm 
that finds the lasso solutions by treating the problem as 
a least squares problem with  2k  inequality constraints, 
and applying the constraints sequentially [17]. An even 
more attractive way to solve the lasso problem is 
proposed by Efron et al. [19], who solve the lasso 
problem with a small modification to the least angle 
regression (LARS) algorithm, which is a variation of the 
classic forward selection algorithm in linear regression. 
The modification ensures that the sign of any non-zero 
estimated regression coefficient is the same as the sign 
of the correlation coefficient between the corresponding 
explanatory variable and the current residuals. 
Grandvalet [20] showed that the lasso was equivalent 
to adaptive ridge regression and develops an 
expectation–maximization (EM) algorithm to compute 
the lasso solution. In some of the lasso algorithms, 
such as the modified LARS algorithm and the algorithm 
Tibshirani [17] described the shrinkage parameter !  
(or  z ) must be estimated before finding the lasso 
solutions. Hastie et al. [21] estimated the parameter 

   
! =

"̂ j
j=1

k

#

z
         (20) 

through ten-fold cross-validation, where  z  was some 
positive scalar that reduced the ordinary least squares 
coefficient estimates. Tibshirani [17] used five-fold 
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cross-validation, generalized cross-validation, and a 
risk minimizer to estimate the parameter  z , with the 
computational cost of the three methods decreasing in 
the same order. Efron et al. [19] also recommended 
using cross-validation to estimate the lasso parameter. 
If  z  was one or less, there was no shrinkage and the 
lasso solutions for the coefficients were the least 
squares solutions. One can also view the lasso 
shrinkage parameter as the fraction of the ordinary 
least squares solution that was the lasso solution. The 
lasso can be implemented in SAS relatively easily 
using GLMSELECT procedure [11].  

4. COMPARISON OF METHODS ON SIMULATED 
DATA 

4.1. Data Simulation and Analysis 

To compare the relative performance of methods for 
dealing with collinearity (R-R, PC-R, PLS-R, L-R), we 
simulated datasets with various range of predictor 
collinearity. For our simulation experiment, we created 
training and test datasets that had sample size n (n = 
1000) and 15 explanatory normally distributed variables 
(predictors).  

These were grouped into three clusters (A, B, C). 
The cluster A involved five correlated variables (X1-
X5), the cluster B included five variables (X6-X10) 
obtained by various combinations of variables of the 
previous cluster and at last, the cluster C that involved 
five (X11-X15) uncorrelated variables. In order to 
assess the performance of selected methods according 
to the degree of collinearity, we have simulated 
variables within of cluster A with very low (0.09) 
correlation, moderate (0.50), high (0.75) or very high 
(0.99) correlation. Then, to explore the performance of 
R-R, PC-R, PLS-R, L-R methods for dealing with 
collinearity according to its shape of the combinations 
of variables, we have generated variables within of 
cluster B as linear, exponential, quadratic or reciprocal 
combinations. We have also simulated variables for 
some cases more complex with both different levels of 
correlation and with various combinations as that may 
be often the case in practice. For all training and test 
data sets, the response variable was calculated as a 
function of predictors X1-X15 plus random normal 
noise (standard deviation = 0.1).  

We analysed each data set with the selected 
collinearity methods (R-R, PC-R, PLS-R, L-R) and two 
other naïve or without correction methods, in which the 
analyses are performed ignoring exposures collinearity. 
The first of these two naïve methods is a standard 

multiple linear regression and the second method is a 
stepwise linear multiple regression. For each set, the 
estimates  !̂ , the standard deviation of the estimates 

 !̂ , as Root Mean Squared Error 

(
  
RMSE =

(y ! ŷ)2"
n

) and total MSE were derived.  

4.2. Simulation Results 

4.2.1. Performance of Correction Methods 
According to the Degree of Collinearity 

Results of the analyses to assess the performance 
of selected methods (R-R, PC-R, PLS-R, L-R) 
according to the degree of collinearity are presented in 
Table 1. Firstly, when the collinearity in exposures was 
ignored, as expected the stepwise linear multiple 
regression appears to be the best model for prediction 
compared to the standard multiple linear regression. It 
is also noted that the number of selected variables 
within of cluster A after the stepwise procedure varied 
according to the degree of collinearity. Indeed, when 
the correlations of variables within of cluster A were low 
(0.20) to high (0.70) all variables X1-X5 were 
considered after the stepwise procedure; that was not 
the case when the correlation was very high. 
Furthermore, it is also noted that regression 
coefficients were biased according to the degree of 
collinearity. Secondly, when the statistical approaches 
(R-R, PC-R, PLS-R, L-R) were used to address 
different levels of collinearity, we observed that R-R, 
PC-R and PLS-R methods appeared to have a 
somewhat similar behavior, with a slight advantage for 
the R-R and PLS-R methods. Indeed, in all 
implemented cases, the R-R and PLS-R methods 
always provided the smallest value of RMSE or AIC. As 
expected, regression coefficients were very close when 
the degree of collinearity is high, moderate or very low.  

4.2.2. Performance of Correction Methods in Case 
of High Correlation and Various Shape of 
Collinearity 

Results of the analyses to assess the performance 
of selected methods (R-R, PC-R, PLS-R, L-R) in case 
of high correlation and various shape of collinearity are 
presented in Table 2. Also like in the previous analysis, 
it is also noted that regression coefficients are biased 
according to the degree and the shape of collinearity. 
The use of statistical approaches (R-R, PC-R, PLS-R, 
L-R) to address the collinearity problems appeared to 
have a somewhat similar performance, with a slight 
advantage for the PC-R and R-R methods.  
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Table 1: Performance of Correction Methods According to the Degree of Collinearity 

Without correction After correction of collinearity  

Naive 
analyses 

Naive analyses 
with stepwise 

Ridge 
Regression  

PC 
Regression 

PLS 
Regression 

Lasso 
Regression 

X1(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X2(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X3(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X4(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X5(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

RMSE 0.319 0.319 0.322 0.323 0.320 0.319 

AIC -1275.5 -1275.5 -1254.0 -1262.1 -1275.4 -1275.5 

Very low 
correlation X1-

X5 (0.09) 

R² adjusted 0.47 0.47 0.46 0.46 0.47 0.47 

X1(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X2(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X3(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X4(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X5(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

RMSE 0.320 0.320 0.323 0.321 0.320 0.320 

AIC -1275.5 -1275.5 -1253.7 -1270.0 -1274.5 -1275.5 

Moderate 
correlation X1-

X5 (0.50) 

R² adjusted 0.62 0.62 0.61 0.62 0.62 0.62 

X1(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X2(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X3(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X4(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X5(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

RMSE 0.320 0.320 0.325 0.321 0.320 0.320 

AIC -1275.5 -1275.5 -1244.5 -1271.6 -1273.5 -1275.5 

High correlation 
X1-X5 (0.75) 

R² adjusted 0.68 0.68 0.67 0.68 0.68 0.68 

X1(β=0.1) 1.5 1.6 0.1 0.1 0.1 0.5 

X2(β=0.1) -0.1 - 0.1 0.1 0.1 - 

X3(β=0.1) 0.6 - 0.1 0.1 0.1 - 

X4(β=0.1) -1.2 -1.1 0.1 0.1 0.1 - 

X5(β=0.1) -0.4 - 0.1 0.1 0.1 - 

RMSE 0.320 0.320 0.326 0.321 0.321 0.320 

AIC -1275.5 -1275.0 -1235.4 -1271.5 -1271.4 -1272.7 

Very high 
correlation X1-

X5 (0.99) 

R² adjusted 0.73 0.73 0.72 0.73 0.73 0.73 
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Table 2: Performance of Correction Methods in Case of Complex Different Levels and Various Shape of Collinearity 

Without correction After correction of collinearity  

Naive 
analyses 

Naive analyses 
with stepwise 

Ridge 
Regression  

PC 
Regression 

PLS 
Regression 

Lasso 
Regression 

X1(β=0.1) -23.1 - 0.5 -0.2 -0.2 - 

X2(β=0.1) -0.8 -1.6 0.4 -0.2 -0.3 -1.8 

X3(β=0.1) -0.5 - 0.4 -0.2 -0.3 -1.4 

X4(β=0.1) -0.2 - 0.4 -0.3 -0.3 - 

X5(β=0.1) -0.4 - 0.4 -0.3 -0.3 0.5 

X6(β=0.1) 0.0 - 0.5 -0.2 -0.2 - 

X7(β=0.1) 0.0 -1.3 0.1 -0.1 -0.1 - 

X8(β=0.1) 0.0 - 0.0 0.0 0.0 - 

X9(β=0.1) 1.2 0.3 0.0 0.1 0.1 0.1 

X10(β=0.1) 0.0 0.9 0.3 1.1 1.1 1.1 

RMSE 0.179 0.179 0.317 0.182 0.182 0.179 

AIC -2435.4 -2434.5 -1290.5 -2403.2 -2407.4 -2435.0 

Very high 
correlation X1-
X5 (0.99) and 

linear 
combinations 

X6-X10 

R² adjusted 1.0 1.0 1.0 1.0 1.0 1.0 

X1(β=0.1) 1.8 2 0.3 0.8 0.9 - 

X2(β=0.1) -4.6 -4.4 -1.4 -3.9 -4.2 - 

X3(β=0.1) 1.1 1.3 0.7 0.9 0.7 0.2 

X4(β=0.1) -0.1 - -0.1 -0.5 -0.1 - 

X5(β=0.1) 0.6 - 0.1 0.8 0.7 - 

X6(β=0.1) 0.0 - 0.3 0.8 0.9 - 

X7(β=0.1) 0.5 0.5 0.3 0.5 0.5 0.5 

X8(β=0.1) -0.4 -0.4 -0.1 -0.4 -0.4 - 

X9(β=0.1) 0.3 0.3 0.3 0.3 0.3 0.1 

X10(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

RMSE 0.182 0.182 0.215 0.182 0.182 0.211 

AIC -2400.2 -2399.6 -2067.7 -2398.8 -2400.1 -2107.3 

Very high 
correlation X1-
X5 (0.99) and 

quadratic 
combinations 

X6-X10 

R² adjusted 1.0 1.0 1.0 1.0 1.0 1.0 

X1(β=0.1) 0.3 - 0.1 0.1 0.1 0.2 

X2(β=0.1) 0.6 - 0.1 0.1 0.1 0.4 

X3(β=0.1) 0.1 - 0.1 0.1 0.1 - 

X4(β=0.1) 0.0 0.6 0.1 0.1 0.1 - 

X5(β=0.1) -0.4 - 0.1 0.1 0.1 - 

X6(β=0.1) 0.0 - 0.1 0.1 0.1 - 

X7(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X8(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X9(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

X10(β=0.1) 0.1 0.1 0.1 0.1 0.1 0.1 

RMSE 0.371 0.371 0.372 0.371 0.371 0.371 

AIC -978.1 -977.4 -976.2 -977.7 -977.7 -977.9 

Very high 
correlation X1-
X5 (0.99) and 

reciprocal 
combinations 

X6-X10 
 

R² adjusted 0.91 0.91 0.91 0.91 0.91 0.91 
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Table 3: Anthropometric Data of Study Populations  

 N 
Age (years) Mean 

± σ 
[min - max] 

Weight (kg) Mean ± 
σ 

[min - max] 

Height (cm) Mean 
± σ 

[min - max] 

BSA (m²) Mean ± σ 
[min - max] 

BMI (kg/m²) Mean ± 
σ 

[min - max] 

Volume (cm³) 
Mean ± σ 

[min - max] 

Heart 270 
30.2 ± 17.5 
[0.7 - 82.9] 

59.0 ± 20.5  
 [9.0 - 109.0] 

161.0 ± 21.0 [60.0 - 
197.0] 

1.6 ± 0.4 
[0.4 - 2.3] 

21.9 ± 5.0 
[12.4 - 43.6] 

544.2 ± 184.1 
[94.9 - 993.0] 

Thyroid 187 
36.8 ± 21.5 
[1.7 - 88.8] 

58.9 ± 21.8  
[10.5 - 106.0] 

159.5 ± 22.5 [82.0 - 
197.0] 

1.6 ± 0.4 
[0.5 - 2.3] 

22.1 ± 5.2 
[12.3 - 38.3] 

16.8 ± 9.4  
 [2.1 - 49.4] 

 

5. APPLICATION TO REAL EXAMPLES  

To illustrate the effects of collinearity on model 
selection across methods, we ran two case studies with 
real data in radiation epidemiology area. To assess the 
health risks of exposure to ionizing radiation, radiation 
dosimetry is required. In the case of patients treated by 
external beam radiation therapy (EBRT), the radiation 
dosimetry is of high importance because it helps to 
determine the steepness of the dose response curve 
both for organs in target volumes and normal tissue of 
organs apart from the target volume. In the present 
clinical practice, the use of computed tomography (CT) 
images in EBRT planning has allowed to determine the 
organs 3D volume using approaches based on 
contouring and localization of structures [22]. However, 
for scientific purposes, it may be requested to estimate 
the organs 3D volume although they do not justify to be 
including in the RT planning CT. Similarly, for patients 
treated early years, CT images in EBRT planning are 
not available, thus the organ volume is determined by 
another approach, which is often established based on 
clinical and anthropometric data patient’s or anatomy 
phantoms references recommended by the 
International Commission on Radiological Protection 
(ICRP) [23]. The anthropometric data including body 
height, body weight, body mass index (BMI) and body 
surface area (BSA) that are usually available, are often 
used to predict the organ volume [24]. Details of the 
data used in this study are given in Table 3. In all 
datasets attention was restricted to persons exposed in 
a childhood.  

5.1. Datasets for Modelling Heart and Thyroid 
Volumes 

The Dataset for modelling heart volume was the 
one used in the analysis by Badouna et al. [22]. In this 
dataset, 270 patients treated for a childhood cancer at 
IGR, Villejuif, France, between 2003 and 2010, with RT 
planning data including a CT of the thorax archived in 
the Picture Archive and Communication System. CT 

data were acquired before EBRT during the treatment 
planning procedure. These thoracic scanners were 
used to determine the heart volume of these patients. 
Further details on the dataset, image segmentation and 
total heart volume reconstruction are given in the paper 
of Badouna et al. [22]. The Dataset for modelling 
Thyroid volume was that used in the analysis by Veres 
et al. [25]. In this dataset, 187 patients treated for a 
childhood cancer at IGR, with RT planning data 
including a CT of the neck archived in the Picture 
Archive and Communication System. CT data were 
acquired also before EBRT during the treatment 
planning procedure. These neck scanners were used 
to determine the heart volume of these patients. 
Further details on the dataset, image segmentation and 
volume of the thyroid reconstruction are given in the 
paper of Veres et al. [25].  

5.2. Approaches for Collinearity in Heart and 
Thyroid Volumes Modelling 

The correlations matrixes for the heart and thyroid 
database are provided in Table 4. This table showed, 
among other things, that in the heart database, the 
correlation between the weight and height was high. As 
expected BSA was very strongly correlated to both 
weight and height, while BMI was very strongly 
correlated to weight alone and had moderate 
correlation with height. Similar results were obtained in 
the Thyroid database. Hence, in this situation of 
collinearity that violated the assumption of 
independence of predictors, the parameter estimates 
derived from heart and thyroid volumes modelling may 
be unstable and untrustworthy.  

Table 5 presents naïve and corrected results of the 
analyses of heart and thyroid volumes modelling. As in 
the previous naïve analysis, the stepwise linear 
multiple regression appears to be the best model for 
prediction compared to the standard multiple linear 
regression (in terms of RMSE and R² adjusted). When 
the statistical approaches (R-R, PC-R, PLS-R, L-R) 



Methods to Deal with Multicollinearity in Organs Volume Modelling International Journal of Statistics in Medical Research, 2018, Vol. 7, No. 2      41 

Table 4: Correlation Matrix  

  Age Weight Height BSA BMI 

Age 1     

Weight 
 

0.5489 
<.0001 

1 
 

   

Height 
 

0.4698 
<.0001 

0.8116 
<.0001 

1   

BSA 
 

0.5585 
<.0001 

0.9826 
<.0001 

0.9029 
<.0001 

1 
 

 

Heart database 

BMI 
 

0.5004 
<.0001 

0.8541 
<.0001 

0.4238 
<.0001 

0.7632 
<.0001 

1 
 

Age 1     

Weight 
 

0.6233 
<.0001 

1 
 

   

Height 
 

0.5607 
<.0001 

0.8233 
<.0001 

1   

BSA 
 

0.6387 
<.0001 

0.9837 
<.0001 

0.9092 
<.0001 

1 
 

 

Thyroid database 

BMI 
 

0.5366 
<.0001 

0.8671 
<.0001 

0.4681 
<.0001 

0.7848 
<.0001 

1 
 

 

Table 5: Correction of Collinearity in Heart and Thyroid Volumes Modelling 

  Without correction After correction of collinearity 

  
Naive 

analyses 
β(SE) 

Naive analyses with 
stepwise 
β(SE) 

Ridge 
Regression 
β(SE) 

PC 
Regression 
β(SE) 

PLS 
Regression 
β(SE) 

Lasso 
Regression 
β(SE) 

Intercept 3.913(0.32)* 3.821(0.15)* 3.774(0.13)* 3.084(0.13)* 3.105(0.13)* 3.842(0.15)* 

Age 0.003(0.00)* 0.003(0.00)* 0.004(0.00)* 0.004(0.00)* 0.003(0.00)* 0.003(0.00)* 

Gender -0.103(0.02)* -0.103(0.02)* -0.080(0.02)* -0.098(0.02)* -0.097(0.02)* -0.103(0.02)* 

Weight -0.032(0.01)* -0.030(0.00)* -0.001(0.00)* -0.006(0.00)* -0.009(0.00)* -0.030(0.00)* 

Height -0.156(0.49) - 1.037(0.07)* 1.564(0.07)* 1.450(0.07)* - 

BSA 2.597(0.64)* 2.401(0.20)* 0.336(0.03)* 0.184(0.03)* 0.390(0.03)* 2.373(0.19)* 

BMI 0.010(0.01) 0.012(0.01)* 0.009(0.00)* 0.030(0.00)* 0.029(0.00)* 0.011(0.01)* 

R² 
adjusted 0.909 0.910 0.909 0.910 0.907 0.910 

Heart database 

RMSE 0.129 0.128 0.132 0.128 0.130 0.128 

Intercept 0.231(1.00) -0.335(0.23) -0.110 (0.25) -0.097(0.25) -0.315(0.25) -0.284(0.21) 

Age 0.003(0.00) 0.003(0.00)* 0.003(0.00)* 0.003(0.00)* 0.003(0.00)* 0.003(0.00)* 

Gender -0.047(0.05) - -0.042(0.05) -0.038(0.05) -0.045(0.05) -0.045(0.05) 

Weight -0.013(0.02) - 0.004(0.00)* 0.005(0.00)* 0.002(0.00)* - 

Height -0.193(1.6) 1.191(0.26)* 1.141(0.17)* 1.152(0.17)* 1.271(0.17)* 1.167(0.26)* 

BSA 1.922(2.21) 0.597(0.15)* 0.409(0.05)* 0.398(0.05)* 0.440(0.05)* 0.603(0.16)* 

BMI -0.014(0.03) -0.014(0.03) -0.004(0.01)* -0.007(0.01)* 0.000(0.01)* - 

R² 
adjusted 0.727 0.730 0.734 0.729 0.734 0.730 

Thyroid 
database 

RMSE 0.333 0.332 0.329 0.332 0.329 0.332 

*β statistically significantly at the 5% level.    
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were used to address the collinearity, we observed that 
results from naïve and corrected methods were quite 
similar, but the use of correction methods can 
overcome the violation of the assumption of 
independence of predictors. When investigating in 
detail the performance of selected corrected methods, 
we found that it was somewhat similar in terms of 
RMSE and R² adjusted, with a slight advantage for the 
PC-R and Lasso-R methods from the heart database 
and with a slight advantage for the Ridge-R and PLS-R 
methods from the Thyroid database.  

6. DISCUSSION  

6.1. Heart and Thyroid Volumes Modelling 

Previously, studies of Veres et al. [25] and Badouna 
et al. [22] provided evidence of a relationship between 
thyroid or heart volume and anthropometric 
measurements (weight, height, BMI and BSA), gender 
and age. These authors have also developed some 
prediction equations models using anthropometric 
measurements thyroid or heart volume in human 
models used to represent external beam radiotherapy 
(EBRT) patients. Indeed, for patients treated early 
years, for whom CT images in EBRT planning were not 
available, a modelling approach of organ volume based 
on clinical and anthropometric data patient’s may be 
better that recourse to the anatomy phantoms 
references. Because, the volume of some organs may 
be subject to inter-individual variations which must be 
taken into account when evaluating doses [26, 27]. In 
addition, Scarboro et al. demonstrated that better 
knowledge on organ volume could potentially impact 
the design of epidemiological studies of a radiation-
induced late effect for organs that are known to vary in 
size between individuals [28]. Many authors have 
shown that anthropometric measurements (weight, 
height, BMI or BSA) were significantly associated to 
some organs volume. For instance, in adults, the 
volume of the thyroid gland significantly increases not 
only with weight and height, but also with BMI and BSA 
[29]. According to Veres et al., the best fit for children 
was obtained by modelling the log of thyroid volume as 
a linear function of body surface area (BSA) and age 
and for adults, as a linear function of BSA and gender 
[25]. However, Badouna et al. reported that, among 
anthropometric parameters, weight plays an important 
role in predicting heart volume [22]. In these previous 
studies, the issue of multicollinearity was not dealt. 
Therefore, the parameter estimates derived from heart 
and thyroid volumes modelling may be unstable and 
untrustworthy. Nevertheless, the use of variable 

selection procedures to select the “best” subset of 
variables, may allow indirectly reducing the effects of 
multicollinearity in the final model.  

6.2. Methods to Address Collinearity in Statistical 
Models and Practical Recommendations 

Collinearity is a problem recognised by most 
introductory textbooks on statistics [4]. A broad variety 
of methods to address collinearity problems have been 
developed, but, despite the relevance of the problem, 
these methods have rarely been applied in everyday 
routine. The Ridge regression (R-R) method is the first 
method used to deal with collinearity in covariates, 
mainly because of its relative simplicity compared to 
others methods. There is a large body of literature that 
illustrates the multifaceted of this method [30]. Ridge 
regression differs in two aspects from other techniques. 
It does not extract orthogonal components called latent 
variables or latent factors and it applies explicit 
shrinkage to the regression vector. It has been shown 
that it can compete quite well with PLS-R and PC-R 
methods with regard to prediction performance [31]. 
Our results are on the whole consistent with this 
observation. Using simulation studies of complex 
chemical mixtures to compare PLS-R and PC-R 
methods, Wentzell and Montoto reported no significant 
differences in prediction errors between these methods 
[32]. As some authors, our study showed that there 
were fewer numbers of latent variables retained with 
PLS-R than PC-R. With some misuse of language, we 
can say that PLS-R method was clearly more 
parsimonious than PC-R. On the other hand, PLS-R 
can be preferred over other correction methods 
because this method can accept multiple response 
variables. If data both for modelling heart and thyroid 
volumes were based on the same subjects, the PLS-R 
method will remain the only one that is most suitable. 
Moreover, like stepwise regression, the lasso (L-R) can 
explore models with more covariates than 
observations, but the lasso is a “less greedy” procedure 
than stepwise regression in that it tends to find less 
complex models [32]. Tibshirani [17] argued that if 
there are multicollinearity among predictors, R-R 
dominates the lasso (L-R) in prediction performance. 
This statement was somewhat mitigated in our study 
because, we found that the two methods are not per se 
different in terms of prediction, with in some cases 
better performance for L-R.  

Our work did not consider some multicollinearity-
correction methods, for instance the Bayesian 
regression methods that could be an ideal solution for 
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this problem according to Xu [34]. In addition, the 
Bayesian method can be very efficient when p >> N 
[35]. However, the lack of statistical standard software 
to implement Bayesian regression methods to deal with 
multicollinearity and the convergence problems 
encountered often with Bayesian, ruled out the 
consideration of Bayesian methods in our study. 
Moreover, further investigation regarding the four 
methods (R-R, PC-R, PLS-R, L-R) considered in the 
present work and other methods like the elastic net, the 
Octagonal Shrinkage and Clustering Algorithm for 
Regression (OSCAR) and Bayesian method might be 
worthwhile for other models than the linear [35]. 

7. CONCLUSION 

The aim of this paper was to compare the behavior 
of four main techniques to address multicollinearity (R-
R, PC-R, PLS-R, L-R). Comparisons were performed 
using a simulation study and within two datasets used 
for modelling organs volume as a function of clinical 
and anthropometric parameters. Our simulation results 
showed that regression coefficients were biased 
according to the degree of collinearity, in particular 
under severe collinearity. Similarly, when the 
collinearity structure changed non-linearly or was 
completely lost, however, model fit decreased 
substantially. Overall, the RMSE was slightly lower and 
the R² adjusted was slightly higher after correction than 
the naïve results. The performance of four correction 
methods implemented was very close, but with a slight 
advantage for PC-R and PLS-R methods in most 
scenarios implemented. Furthermore, the application of 
correction methods to the heart and Thyroid databases 
allowed us to provide stable and trustworthy parameter 
estimates for heart and thyroid volumes predictors. 
Recommendations to deal with the problem of 
multicollinearity in epidemiological studies have been 
expressed many years ago [36]. In practice, however, 
despite the ubiquity of multicollinearity, the use of 
methods for multicollinearity correction is still scarce. 
One important reason is that despite many proposed 
methods, little is known about their strength or 
performance. Therefore, this work will contribute to 
highlighting performances of methods used only for 
situations ranging from low to very high 
multicollinearity. 
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