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Abstract: Objective: To demonstrate the use of robust Cox regression in estimating adjusted relative risks (and 
confidence intervals) when all participants with an identical follow-up time and when a common outcome is investigated. 

Methods: In this paper, we propose an alternative statistical method, robust Cox regression, to estimate adjusted relative 
risks in prospective studies. We use simulated cohort data to examine the suitability of robust Cox regression. 

Results: Robust Cox regression provides estimates that are equivalent to those of modified Poisson regression: 
regression coefficients, relative risks, 95% confidence intervals, P values. It also yields reasonable probabilities 
(bounded by 0 and 1). Unlike modified Poisson regression, robust Cox regression allows for four automatic variable 
selection methods, it directly computes adjusted relative risks for continuous variables, and is able to incorporate time-
dependent covariates.  

Conclusion: Given the popularity of Cox regression in the medical and epidemiological literature, we believe that robust 
Cox regression may gain wider acceptance and application in the future. We recommend robust Cox regression as an 
alternative analytical tool to modified Poisson regression. In this study we demonstrated its utility to estimate adjusted 
relative risks for common outcomes in prospective studies with two or three waves of data collection (spaced similarly). 
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BACKGROUND 

The relative risk is commonly used in prospective 
studies to determine the effect of an exposure on a 
binary outcome. When confounding exists, the 
unadjusted relative risk cannot correctly estimate the 
effect of the exposure, and an adjusted relative risk 
should be estimated. When researchers use data from 
two waves of collection to evaluate the effect of an 
exposure on an outcome, logistic regression is 
generously used. For instance, Johnsen et al. (2005) 
used a cohort study to explore whether monocyte count 
is a predictor of novel plaque formation among 2610 
persons without carotid plaque at baseline [1]. The 
baseline ultrasound examination was conducted in 
1994-1995, with a follow-up in 2000-2001 [1]. In this 
article, logistic regression was used to calculate an 
odds ratio, but the ratio may overestimate the relative 
risk because the rate of plaque formation (40%) is a 
common outcome [1, 2]. 

Several other methods also can be used to estimate 
adjusted relative risks, such as the Mantel–Haenszel  
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method, log-binomial regression, and Poisson 
regression. However, the Mantel–Haenszel method 
cannot adjust for continuous covariates; log-binomial 
regression does not always converge well; [3] and 
Poisson regression provides a wider 95% confidence 
interval [3]. To solve these problems, modified (or 
robust) Poisson regression with robust error variance 
was proposed and first published in 2004 by Zou [3]. 
Zou adopted the SAS PROC GENMOD procedure with 
the REPEATED statement to obtain unbiased 
estimates of adjusted relative risks [3]. Modified 
Poisson regression converges more reliably than log-
binomial regression, and displays more accurate 95% 
confidence intervals than Poisson regression [3]. Since 
its publication, modified Poisson regression has gained 
popularity in medical and public health research. By 
September 30, 2016, Zou’s paper had been cited by 
more than 2500 scientific publications. However, 
modified Poisson regression has a number of practical 
limitations. First, the method permits probability 
estimates exceeding 1, which is implausible. Second, 
the SAS PROC GENMOD procedure does not allow for 
automatic variable selection methods (such as 
stepwise selection), which are sometimes desirable. 
Third, the PROC GENMOD procedure provides 
regression coefficients but cannot directly provide 
adjusted relative risk estimates for continuous 
explanatory variables—an extra antilogarithm 
transformation is needed to obtain these. Furthermore, 
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when repeated data from three or more waves are 
used to evaluate the effect of an exposure, time-
dependent covariates may exist. However, modified 
Poisson regression is not able to incorporate time-
dependent covariates. 

When time-to-event survival data are used, Cox 
regression is generally regarded as an appropriate 
approach to estimate the effects of an exposure. In 
time-to-event studies, subjects are followed-up for the 
outcomes of interest. Survival (or failure) times are 
censored when subjects are lost to follow-up, when 
participants die for reasons other than the outcome of 
interest, or when the study is completed before the 
outcome is reached. In prospective studies, when all 
participants are assigned the same follow-up time, the 
hazard ratio equals the relative risk [4, 5]. Although the 
Cox model yields correct point estimates, it tends to 
overestimate the variance in coefficients, leading to 
wider confidence intervals when follow-up time is the 
same [6]. This problem can be solved by computing 
robust variance estimates, which was initially proposed 
to obtain a robust inference for Cox regression when 
using small sample sizes [7]. Barros and Hirakata 
(2003) have demonstrated that robust Cox regression 
is equivalent to modified Poisson regression when 
analyzing binary outcomes in cross-sectional studies—
the parameters estimated are the same [6]. Although 
Barros and Hirakata recommended that robust Cox 
regression could also be used in longitudinal studies 
when a constant risk period is assigned to all 
participants, this method was not well accepted in the 
applied statistical community. It has also seldom been 
used in medical and public health research. Therefore, 
we conducted this study to demonstrate the use of 
robust Cox regression in estimating adjusted relative 
risks (and confidence intervals) in cases with identical 
follow-up times and in the presence of time-dependent 
covariates. The regression was implemented using the 
SAS PROC PHREG procedure with the 
COVSANDWICH statement. We compared robust Cox 
regression with other available methods based on both 
simulated and real data sets. 

METHODS 

The Partial Likelihood of Robust Cox Regression 

The Cox regression model is formulated as 

λi(t) =λ(t; Zi) =λ0(t) exp(βZi), 

where λ0(t) is an arbitrary and unspecified baseline 
hazard function (the hazard function when all 

covariates equal 0), Zi is a vector of explanatory 
variables for the ith individual, and β is a vector of 
regression parameters associated with the explanatory 
variables [8]. The partial likelihood function is 
formulated as 

PL = 

  

[ exp(!Zi)
exp(!Zj)

j"R( yi)#i=1

n

$ ]%i , 

where  ! i  is an indicator variable with a value of 1 if ti is 
uncensored or a value of 0 if ti is censored, and 

  j ! R( yi)  is a convenient mechanism for excluding 
from the denominator participants who already 
experienced the event. 

When a constant risk period is assigned to all 
participants, the partial likelihood will be reduced to a 
very simple form. This is achieved by using the Breslow 
method to handle the tie, as follows, 

PL =
  

exp(!S )
[ exp(!Zi)]m

i"
, 

where m is the number of the outcome of interest, and 
S = Z1 + Z2 + … + Zm. 

The Advantages of Robust Cox Regression over 
Modified Poisson Regression in Practice 

First, the probabilities estimated by robust Cox 
regression never exceed 1, because Cox regression 
estimates individual probabilities by subtracting the 
survival function from 1. More specifically, 

Probability = 1 – S(t; iZ ) = 1 – S0(t) exp(βZi), 

where S0(t) is the baseline survival function at obser-
vation time t. Clearly, the probability is bounded by 0 
and 1 because the survival rate (calculated by the sur-
vival function) must lie within this range. Second, the 
PROC PHREG procedure allows choice between four 
automatic variable selection methods: forward selec-
tion, backward elimination, stepwise selection, and best 
subsets selection. The SELECTION code in the 
MODEL statement is used to enable this. Finally, the 
robust Cox models directly compute adjusted relative 
risks for continuous and categorical variables [9]. 

RESULTS  

Simulation Study 1: Using Data from Two Surveys 
to Evaluate the Effect of an Exposure 

For illustrative purpose, we created several 
hypothetical studies, each focusing on the association 
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between exposure to a specific risk factor and disease, 
and each requiring adjustment for a confounder. The 
sample size of 500 was assigned a relative risk of 0.33, 
0.50, 1.00, 2.00, or 3.00. The subjects were equally 
split into two groups—one with a confounder, the other 
without (not a dummy variable). Of the 250 subjects in 
the group with a confounder, 150 were assigned to the 
exposure group. In the group without a confounder, 
100 subjects were assigned to the exposure group.  

The stratum-specific risks, calculated adjusted odds 
ratios, relative risks, and 95% confidence intervals 
derived from each method are shown in Table 1 
(logistic regression, the Mantel–Haenszel test, log-
binomial regression, modified Poisson regression, Cox 
regression, and robust Cox regression). When the true 
relative risk was 1, the adjusted odds ratio estimated by 
logistic regression equaled the relative risk (Table 1). 
However, the odds ratio overestimated the true relative 
risk when it exceeded 1, and underestimated the true 
relative risk when it was below 1 (Table 1). All the other 
methods yielded the same point relative risks (Table 1). 
Although Cox regression estimated wider 95% 
confidence intervals, the confidence intervals estimated 
by robust Cox regression were equivalent to those 
obtained using modified Poisson regression (Table 1). 

We used a macro (Macro 1 in the Appendix) to 
create 1,000 random data sets according to stratum-
specific risks. The sample size for each run was set at 
500. For each statistical method, the adjusted relative 
risks were estimated on the 1,000 random data sets. 
Here, the relative bias percentage was calculated as 
follows: [(median of adjusted relative risk estimated 
from 1,000 random data sets − true relative risk) / true 
relative risk] × 100. The coverage of 95% confidence 
interval is defined as the proportion of runs with an 
estimated 95% confidence interval including the true 
relative risk. The simulation results are shown in Table 
2. We note that the risk bias of robust Cox regression 
was equivalent to that of modified Poisson regression. 
As expected, the Cox regression produces wider 
confidence intervals for the adjusted relative risk. 
However, the results demonstrate that the coverage 
percentage obtained by robust Cox regression was 
close to 95%, and also equivalent to that of modified 
Poisson regression (Table 2).  

Simulation Study 2: Using Data from Three Surveys 
with the Same Time Interval to Evaluate the Effect 
of an Exposure 

When data are collected in three waves (spaced 
similarly), two different time values exist. For example, 

we conducted a cohort study to evaluate the effect of 
hypertension on the incidence of carotid plaque. The 
first survey was conducted in 2002, with follow-ups in 
2007 and 2012. Participants were included in analyses 
if they were without plaques at baseline and attended 
at least two surveys. There are therefore five 
categories of participants and two follow-up times, as 
presented in Table 3. 

In this simulation study, the 500 simulated subjects 
according to the structure in Simulation study 1 were 
assigned to the group with 10 years of follow-up. 
Another group containing 250 subjects with 5 years of 
follow-up was also assigned a relative risk of 0.33, 
0.50, 1.00, 2.00, or 3.00. The 250 subjects were 
equally split into two groups: one with a confounder, 
the other without. Of the 125 subjects in the group with 
a confounder, 50 were assigned to the exposure group. 
In the group without a confounder, 75 subjects were 
assigned to the exposure group. We used a macro 
(Macro 2 in the Appendix) to create 1,000 random data 
sets according to stratum-specific risk (Table 4). 

As shown in Table 4, after adjusting for the 
confounder and follow-up time, the point relative risks 
and 95% confidence intervals estimated by robust Cox 
regression (assigning a constant time to all 
participants) were equivalent to those estimated by 
modified Poisson regression. When using the follow-up 
time as the failure time variable, robust Cox regression 
estimated relative risks with relatively larger relative 
bias percentages. 

Simulation Study 3: Using Data from Three Surveys 
with the Same Time Interval to Evaluate the Effect 
of an Exposure when a Time-Dependent Covariate 
Exists 

Time-dependent covariates are those that may 
change in value over the follow-up period. For 
example, some participants without hypertension at 
baseline may become hypertensive during the first 5-
year follow-up (see Table 3). Therefore, these 
participants should be analyzed as part of the exposure 
group during the second 5-year follow-up. Based on 
Simulation study 2, we used a macro (Macro 3 in the 
Appendix) to create 1,000 random data sets. These 
assumed that 80% of participants with 10-year follow-
ups were in the 5th category, and 30% of participants 
without hypertension at baseline became hypertensive 
during the first 5-years of follow-up. As expected, the 
median adjusted relative risk was closer to 1 (Table 5), 
because the participants that were reclassified in the 
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Table 3: Five Categories of Participants Identified in a Prospective Cohort Study to Evaluate the Effect of 
Hypertension on Carotid Plaque Formation 

Risk factor and carotid ultrasound survey 
Categories 

In 2002 In 2007 In 2012 

Follow-up time 

(years) 

1st Attended Attended Non-attended 5 

2nd Non-attended Attended Attended 5 

3rd Attended Non-attended Attended 10 

4th Attended Attended and detected a new plaque Attended 5 

5th Attended Attended and did not detect a new plaque Attended 10 

 

Table 4: Results from Simulation Study 2: Modified Poisson Regression and Robust Cox Regression to Evaluate Risk 
Bias and 95% Confidence Interval (CI) Coverage, Based on 1,000 Runs 

Stratum-specific risk Methods 

Follow-up time=10 Follow-up time=5 

C=1 C=0 C=1 C=0 
Modified Poisson* Robust Cox** Robust Cox† True 

RR 

E=1 E=0 E=1 E=0 E=1 E=0 E=1 E=0 relative 
bias% 

95% CI 
converge 

relative 
bias% 

95% CI 
converge 

relative 
bias% 

95% CI 
converge 

0.33 0.2 0.6 0.1 0.3 0.1 0.3 0.05 0.15 0.13 95.3 0.13 95.3 –4.18 95.4 

0.50 0.2 0.4 0.1 0.2 0.1 0.2 0.05 0.1 0.75 94.4 0.75 94.4 –3.49 93.7 

1.00 0.4 0.4 0.2 0.2 0.2 0.2 0.1 0.1 –0.06 94.8 –0.06 94.8 –3.65 94.1 

2.00 0.8 0.4 0.4 0.2 0.4 0.2 0.2 0.1 0.17 94.0 0.17 94.0 –3.11 93.7 

3.00 0.6 0.2 0.3 0.1 0.3 0.1 0.15 0.05 0.58 96.0 0.58 96.0 –2.08 95.2 

Abbreviations: C, confounder; E, exposure. 
*Adjusting the follow-up time as a confounder. 
**Assigning a constant time to all participants, and adjusting the follow-up time as a confounder. 
†Using the follow-up time as the failure time variable. 

 

Table 5: Results from Simulation Study 3: Using Robust Cox Regression to Evaluate Relative Risk (RR) when a Time-
Dependent Covariate Exists (1,000 Runs) 

Stratum-specific risk 

Follow-up time=10 Follow-up time=5 

C=1 C=0 C=1 C=0 
Assigned RR 

E=1 E=0 E=1 E=0 E=1 E=0 E=1 E=0 

Median of adjusted 
RR 

0.33 0.2 0.6 0.1 0.3 0.1 0.3 0.05 0.15 0.41 

0.50 0.2 0.4 0.1 0.2 0.1 0.2 0.05 0.1 0.55 

1.00 0.4 0.4 0.2 0.2 0.2 0.2 0.1 0.1 0.95 

2.00 0.8 0.4 0.4 0.2 0.4 0.2 0.2 0.1 1.78 

3.00 0.6 0.2 0.3 0.1 0.3 0.1 0.15 0.05 2.60 

Abbreviations: C, confounder; E, exposure. 

second 5-year follow-up had a higher risk when 
assigned a relative risk <1, or a lower risk when 
assigned a relative risk >1. The SAS code used to 
estimate adjusted relative risks when a time-dependent 
variable exists is presented in the Appendix. 

DISCUSSION 

In this paper, we proposed robust Cox regression 
as a convenient and efficient relative risk estimation 
approach for prospective studies of common outcomes. 
This was demonstrated using simulated and real 
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examples where two or three waves of data were used 
(with similar time intervals between them). Cox 
regression is widely used in cohort studies and clinical 
trials; we suggest that robust Cox regression could also 
be used in these contexts, and would be readily 
understood. 

Logistic regression is widely used to study the 
factors associated with binominal outcomes, adjusting 
for covariates. When the incidence is low (<10%), the 
odds ratio is close to the relative risk. However, for 
common outcomes (>10%), the odds ratio always 
overestimates the relative risk (when it is more than 1) 
or underestimates the relative risk (when it is less than 
1) [2]. To solve this problem, Zhang and Yu (1998) 
proposed a method that corrects the adjusted odds 
ratio from logistic regression [2]. They also derived an 
estimate of an association or treatment effect that 
better represents the true relative risk [2]. 
Nevertheless, McNutt et al. (2003) revealed a potential 
bias in their method, and proposed that unbiased 
estimates of relative risk in common outcome studies 
could be obtained from log-binomial and Poisson 
regression analyses [10]. However, both of these 
alternatives are known to be unsatisfactory. Log-
binominal regression is prone to convergence 
problems, while Poisson regression generates wider 
confidence intervals [3]. To help resolve this, Zou 
proposed modified Poisson regression with robust error 
variance, which has been widely accepted and applied 
in recent years [3]. Subsequent studies have proposed 
modified log-binominal regression using the COPY 
method [11], nonlinear programming [12], and 
Bayesian methods [13] to estimate the relative risk in 
prospective studies. However, these three methods 
have yet to be widely used in medical and public health 
research. The first method is inherently limited by 
PROC GENMOD and yields estimators based on an 
expanded dataset rather than the original dataset [11]. 
The main disadvantage of the latter two methods is 
their lack of familiarity and accessibility to researchers. 

Cox regression is widely used for survival analysis 
with censored data. Lee (1994) was the first to 
recommend Cox regression for estimating prevalence 
ratios in cross-sectional studies, but wider standard 
errors were obtained [4]. Barros and Hirakata tried to 
use robust Cox regression to estimate prevalence 
ratios in cross-sectional studies, and found that the 
estimates were the same as those obtained from 
modified Poisson regression [6], which our results 
support. Additionally, we identified four advantages of 
robust Cox regression over modified Poisson 

regression. First, the method restricts the estimated 
probabilities to a realistic range. Second, four 
automatic variable selection methods can be used, and 
are readily available in standard statistical packages. 
Third, the method directly provides adjusted relative 
risk estimates for continuous explanatory variables. 
Finally, it has the capability to incorporate time-
dependent covariates. 

We have used the robust Cox regression in the 
analysis of several cohort studies. In all cases we used 
the same modeling strategy and generated the same 
results of relative risk. We consider that robust Cox 
regression could be a useful and alternative method to 
help identify abnormal results from robust Poisson 
regression when assessing the predicted individual 
probabilities. In this article, we proposed to apply 
robust Cox model to analysis binary data. Meanwhile, 
the robust error estimate is widely used to deal with 
variance underestimation in correlated data analysis. 
Future studies should be focus on applying the method 
with correlated binary data from cohort studies or 
clinical trials. On the other hand, the virtue of the Cox 
regression is its capability to incorporate time-depen-
dent covariates. It is thus interesting to investigate 
whether robust Cox model can still retain the interpre-
tation of relative risk with time-dependent covariates. 

CONCLUSION 

In summary, estimates provided by robust Cox 
regression are equivalent to those obtained from 
modified Poisson regression, while the former also 
confers several advantages. Given the popularity of 
Cox regression in epidemiologic research, we believe 
that robust Cox regression may become widely used 
and accepted in the near future. We therefore 
recommend robust Cox regression as an alternative 
approach to estimate adjusted relative risks in 
prospective studies. Findings from this study 
particularly support its use when analyzing data from 
two or three waves, when the same interval is used 
between waves, and when a common outcome is used. 
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APPENDIX 

Macro 1 for Simulation Study 1 

%let seed=12345; 
%macro ds (risk1, risk2, risk3, risk4); 
%do k =1 %to 1000; 
data ds&k; 

do id =1 to 500; 
if id<=150 then do; confound=1;expose=1;disease=ranbin(&seed,1,&risk1);end; 

 else if 150<id<=250 then do; confound=1;expose=0;disease=ranbin(&seed,1,&risk2);end; 
 else if 250<id<=350 then do; confound=0;expose=1;disease=ranbin(&seed,1,&risk3);end; 
 else if id>350 then do; confound=0;expose=0;disease=ranbin(&seed,1,&risk4);end; 

runs=&k; 
 output; 

end; 
run; 
%let seed=%eval(12345+&k); 
%end; 
%mend; 
%ds(risk1=0.2, risk2=0.6, risk3=0.1, risk4=0.3); 
Macro 2 for simulation study 2 
%let seed=12345; 
%macro ds (risk1, risk2, risk3, risk4, risk5, risk6, risk7, risk8); 
%do k =1 %to 1000; 
data ds&k; 

do id =1 to 750; 
if id<=150 then do;time=10;confound=1;expose=1;disease=ranbin(&seed,1,&risk1);end; 

  else if 150<id<=250 then do;time=10;confound=1;expose=0;disease=ranbin(&seed,1,&risk2);end; 
else if 250<id<=350 then do;time=10;confound=0;expose=1;disease=ranbin(&seed,1,&risk3);end; 
else if 350<id<=500 then do;time=10;confound=0;expose=0;disease=ranbin(&seed,1,&risk4);end; 

 else if 500<id<=550 then do;time=5;confound=1;expose=1;disease=ranbin(&seed,1,&risk5);end; 
 else if 550<id<=625 then do;time=5;confound=1;expose=0;disease=ranbin(&seed,1,&risk6);end; 
 else if 625<id<=700 then do;time=5;confound=0;expose=1;disease=ranbin(&seed,1,&risk7);end; 
 else if id>700 then do;time=5;confound=0;expose=0;disease=ranbin(&seed,1,&risk8);end; 

runs=&k; 
 output; 

end; 
run; 
%let seed=%eval(12345+&k); 
%end; 
%mend; 
%ds(risk1=0.2, risk2=0.6, risk3=0.1, risk4=0.3, risk5=0.1, risk6=0.3, risk7=0.05, risk8=0.15); 
Macro 3 for simulation study 3 
%let seed=12345; 
%macro ds (risk1,risk2,risk3,risk4,risk5,risk6,risk7,risk8); 
%do k =1 %to 1000; 
data ds&k; 
 do id =1 to 750; 

if id<=150 then do;time=10;confound=1;expose=1;disease=ranbin(&seed,1,&risk1);end; 
else if 150<id<=250 then do;time=10;confound=1;expose=0;disease=ranbin(&seed,1,&risk2);end; 
else if 250<id<=350 then do;time=10;confound=0;expose=1;disease=ranbin(&seed,1,&risk3);end; 
else if 350<id<=500 then do;time=10;confound=0;expose=0;disease=ranbin(&seed,1,&risk4);end; 
else if 500<id<=550 then do;time=5;confound=1;expose=1;disease=ranbin(&seed,1,&risk5);end; 
else if 550<id<=625 then do;time=5;confound=1;expose=0;disease=ranbin(&seed,1,&risk6);end; 
else if 625<id<=700 then do;time=5;confound=0;expose=1;disease=ranbin(&seed,1,&risk7);end; 
else if id>700 then do;time=5;confound=0;expose=0;disease=ranbin(&seed,1,&risk8);end; 
runs=&k; 

 x=ranbin(&seed,1,0.8); 
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 if ((x=1 and time=10) and expose=0) then x2=ranbin(&seed,1,0.3);else x2=0; 
output; 

end; 
run; 
data ds&k; 

set ds&k; 
 expose2=expose; 
 start=0; 
 if x2=0 then do; 

disease2=disease; 
stop=time; 

 output; 
end; 

 else do; 
 stop=5; 
 disease2=0; 
 output; 
 start=5; 
 stop=10; 
 expose2=1; 

disease2=disease; 
output; 

end; 
run; 
%let seed=%eval(12345+&k); 
%end; 
%mend; 
%ds(risk1=0.2, risk2=0.6, risk3=0.1, risk4=0.3, risk5=0.1, risk6=0.3, risk7=0.05, risk8=0.15); 
SAS code for estimating adjusted RR when a time-dependent variable exists 
ods output ParameterEstimates= robustcox; 
proc phreg data= database covsandwich; 
 class expose2(reference='0'); 
 model (start,stop)*disease2(0)=expose2 confound/rl ties=BRESLOW; 
 by runs; 
data robustcox; 
 set robustcox; 
 if Parameter="confound" then delete; 
proc means data= robustcox median; 
 var HazardRatio; 
run; 
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