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Abstract: In observational studies with two measurements when the measured outcome pertains to a health related 

quality of life (HRQoL) variable, one motivation of the research may be to determine the potential predictors of the mean 
change of the outcome of interest. It is very common in such studies for data to be missing, which can bias the results. 
Different imputation techniques have been proposed to cope with missing data in outcome variables. We compared five 

analysis approaches (Complete Case, Available Case, K- Nearest Neighbour, Propensity Score, and a Markov Chain 
Monte Carlo algorithm) to assess their performance when handling missing data at different missingness rates and 
mechanisms (MCAR, MAR and MNAR). These strategies were applied to a pre-post study of patients with Chronic 

Obstructive Pulmonary Disease. We analyzed the relationship of the changes in subjects HRQoL over one year with 
clinical and socio-demographic characteristics. A simulation study was also performed to illustrate the performance of 
the imputation methods. Relative and standardized bias was assessed on each scenario. For all missingness 

mechanisms, not imputing and using MCMC method, both combined with mixed-model analysis, showed lowest 
standardized bias. Conversely, Propensity Score showed worst bias values. When missingness pattern is MCAR or 
MAR and rate small, we recommend using mixed models. Nevertheless, when missingness percentage is high, in order 

to gain sample size and statistical power, MCMC is preferred, although there are no bias differences compared with the 
mixed models without imputation. For a MNAR scenario, a further sensitivity analysis should be made.  

Keywords: HRQoL, Imputation, Missing data, Pre-post design. 

INTRODUCTION 

Missing data are a common problem among various 

types of medical design studies [1]. It is especially 

problematic in longitudinal studies that require repeated 

measures, in which the missingness rates can become 

high and relevant. This loss of information may be 

related to patient dropout, unavailability, death, or other 

reason, and can often reach missingness rates up to 

30-40%. Missing data yield a form of selection bias that 

is related to the cohort design. Many methodologic 

difficulties can arise from missing data: (a) loss of 

efficiency and power due to reduction of the sample 

size; (b) complications in data handling and analysis; 

(c) presence of bias due to differences between cases 

with observed and lost data [2]. These problems are 

common in studies evaluating health related quality of 

life (HRQoL). Some observational HRQoL studies are  
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designed to identify important associations between 

patients’ socio-demographic or clinical characteristics 

and the response variable related to a specific disease. 

For these studies, at least two measurements are 

sufficient to detect these relationships: the first at 

baseline and the other at a predefined point during 

follow-up. In this situation, missing data of the outcome 

may arise due to patient death or worsening of disease. 

In addition, some patients with good baseline quality of 

life may abandon the study. Thus, the patients with 

complete information on quality of life are not usually 

representative of the population under study. Many 

researchers tend to ignore missing data and analyze 

the subsample with complete information, which may 

bias results. The appropriate statistical approach for 

analyzing the entire population, not just those with 

complete data, is a relevant problem that statisticians 

are now addressing. This area of research has become 

very active in last couple decades [3-6]. Little and 

Rubin [3] defined three possible missingness 

mechanisms. Briefly, when missing data are unrelated 

to the outcome, the missingness pattern is classified as 
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missing completely at random (MCAR). When the 

probability of missing data is related to patient 

characteristics and the observed outcome, the pattern 

is classified as missing at random (MAR). Finally, if the 

probability of missing data is also related to 

unobserved values of the outcome, then the pattern is 

missing not at random (MNAR). Several statistical 

methods have been proposed as appropriate 

techniques for handling missing data, providing 

alternatives to naive methods that deleted cases with 

missing values (known as complete case (CC) 

analysis) and to procedures that discard missing 

variable values (known as available case (AC) 

analysis). One of the suggested approaches involves 

imputing values. Imputation replaces missing data with 

numerical values obtained from the subset of observed 

values. The most commonly used imputation methods 

are based on single imputation. The mean imputation 

method and the K-nearest neighbor imputation (K-NNI) 

methods are good examples of single imputation 

methods used as alternatives to CC and AC analysis. 

Mean imputation replaces the missing value by the 

average value of the non-missing data, whereas K-NNI 

is a donor-based method in which the imputed value is 

either a value that was measured for another record in 

the dataset or the average value obtained from a 

subset of records. In general, single imputation 

methods are easy to implement. However, as the 

missingness rate increases, they introduce bias. 

Multiple imputation (MI) methods are based on more 

complex strategies, such as the propensity score (PS) 

or the Markov chain Monte Carlo (MCMC) method, 

both of which impute more than one set of values 

(generally 3 to 10) for the missing data using sampling 

variability and uncertainty [7]. The most recent 

literature in the field suggests that imputation is always 

better than ignoring missing data [8,9]. Knowing the 

missing data mechanisms is advisable to identify the 

most appropriate method of analysis. However, this 

knowledge is unavailable in many studies. Previous 

studies have evaluated imputation methods such as 

single methods (including the null value compared to 

either complete data or the mean value) and MI 

methods in different settings: longitudinal studies, and 

handling missing outcomes or covariates [10-12]. 

However, the published literature evaluating different 

methods or recommending any of them in pre-post 

observational HRQoL studies is still scarce. The 

special case of pre-post observational studies is a 

simple design where recommending that issue would 

be very helpfull for researchers.  

The goal of our study was to compare the 

performance of various imputation techniques under 

different missingness mechanisms and rates when 

handling missing data of the outcomes in a pre-post 

study design. The selected imputation methods we 

employed were K-NNI, PS, and MCMC (widely used 

procedures for missing entries) under the three 

mentioned missingness patterns with 10% and 30% of 

data missing.  

The rest of the manuscript is divided into four 

sections. In Section 2 we describe the three imputation 

methods. Section 3 focuses on the results after 

applying the imputation methods to the HRQoL-COPD 

study. Section 4 describes the simulation study and 

presents its results. Section 5 discusses the results and 

presents some general conclusions.  

MATERIAL AND METHODS 

K-Nearest Neighbor Imputation Method 

K-NNI imputation is part of a machine learning and 

classification method [13,14]. It is based on the 

existence of similarities among the cases within a 

dataset: the more similarities between two cases, the 

closer the cases are.  

Assume that a data set of size n  can be expressed 
as the following pattern:  

 
{(xi , yi , ri )} for i = 1,…,n           (1) 

where xi = [xi1,xi2 ,…xip ]
T  is the vector of p  covariates, 

yi  is the outcome of interest, and ri  is the missingness 

indicator, for each subject 
 
i = 1,…,n . 

Given a subset where ri = 0,  for each variable in 

the subset and based on a metric distance, K closest 
cases to variables are selected. Once these K cases 
are selected, missing values are replaced upon the 
character of the variable to be imputed: mean average 
is used for the continuous data and mode for qualitative 
data.  

Two parameters are needed in the K-NNI algorithm: 
the metric distance and the number of neighbors (K). 

The distance between two observations, say xa  and 

xb , is defined as:  

d(xa ,xb ) = dj (xaj , xbj )
2

j=1

p

         (2) 
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where  

dj (xaj , xbj ) =
dcat (xaj , xbj ) if xaj and xbj are categorical

dcont (xaj , xbj ) if xaj and xbj are continous
     (3) 

The distance dcat  function for categorical variables 

assings a value of 0 if the discrete values are the 

same; otherwise, the value is 1 [13]. In addition, dcont  

unction for continous instances is the Euclidean metric 
distance [14,15].  

Multiple Imputation Methods 

Using the MI methods, several imputation values 
(M) are calculated for every missing value [3]. With the 
M imputations, M complete data sets are generated, 
and for each data set created in this way, standard 
statistical procedures are performed. Finally, the results 
obtained from the M complete data sets (e.g., the 
regression coefficient) are pooled into a summary 
statistic. The point estimate of the summary statistic is 
calculated as the average of the M imputations 
whereas the variance of the summary statistic is 
calculated from two components: the within-imputation 
variance (W, the average of the variances of the 
summary statistics of the M imputations) and the 
between-imputation variance (B, the difference 
between the summary statistic of each imputation and 
the average of the summary statistics of the M 
imputations). Then, the total covariance matrix is given 
by  

V =W +
M +1

M
B            (4) 

There are many techniques for performing MI. 

These approaches assume that the missingness 

pattern is MAR. Two of the most-used MI algorithms 

are described in the following subsections.  

Markov Chain Monte Carlo (MCMC) Method  

The MCMC method is a popular approach within MI 
methodology. Given a general missingness pattern, 
this method is used to generate pseudorandom draws 
from multidimensional and otherwise intractable 
probability distributions by means of Markov chains [7]. 
Supposing that data come from a multivariate normal 
distribution, the MCMC method involves two basic 
steps: I-step (imputation) and P-step (posterior 
predictive distribution). By repeating these two steps, 
MCMC works as follows: For the I-step, a mean and 
covariance matrix is computed from the complete 
dataset. Values for missing data are then simulated 
randomly, selecting a value from the available data. 
The P-step comes next. In this phase, the posterior 
population mean vector and covariance matrix is 

simulated and updated, given the observed values 

(Yobs ) and the obtained simulated missing values (Ymiss ) 

in the I-step.  

Both the I-step and P-step provide in the first 
iteration a starting value, and posterior iterations create 
a stochastic Markov chain which converges in a 
function that approximates the real unknown 

P( ,Ymiss Yobs )  . To produce multiple imputations, one 

iterates over the I-step and P-steps and over Ymiss  

repeatedly until the distribution is stationary. This 
means that the mean vector and covariance matrix ( ) 

is unchanged. When this process converges, all the 
missing values in the dataset are substituted by 
imputed values.  

Propensity Score Method 

Rosenbaum and Rubin [16] introduced this 

statistical tool as a bias reduction technique to estimate 

the treatment effect in non-randomized studies of 

causal effects. By definition, PS method is defined as 

the conditional probability that the patient receives the 

treatment in the presence of its baseline 

characteristics. A formal mathematical expression of 

this method is denoted as:  

e(X) = Pr(Z = 1 X)            (5) 

X  is the set of considered covariates and Z = 1  
denotes if the subject receives the treatment and Z = 0   
otherwise. PS is basically estimated by means of 

multiple logistic regression.  

As the PS method uses many covariates, in 
observational studies a large proportion of subjects 
could have missing values in at least one covariate. 
Several approaches have been suggested for handling 
missing data in covariates using the PS method. It 
could also be applied for imputing missing data in 
outcomes when the missingness pattern is monotone 
( Z = 1 R = 1 ). In this missingness setting, the 
following steps are used to fill in unknown values: 
Firstly, a logistic regression model is fitted, indicating 
the probability of being missing:  

logit(Pr(Ri Xi , )) = (1,Xi )           (6) 

where Ri = 1  if Yi  is missing, Xi = (Xi1,Xi2 ,…Xip )  is the 

set of covariates for the ith observation, , the 

coefficients for the Xi  design matrix and 

logit(p) = log
p

1- p
.  

After that, a propensity score for each observation 
to estimate the probability of being missing is created. 



Assessment of the Performance of Imputation Techniques International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 3      243 

Based on propensity score values, the observations 
are divided into a fixed number of groups and an 
approximate Bayesian bootstrap is applied to each 

group [17]: Given a k  group, suppose that Yobs  

denotes the n1  observations with nonmissing Yj  

values and Ymis  denotes the n0  observations with 

missing Yj . The approximate Bayesian bootstrap 

imputation first draws n1  observations randomly with 

replacement from Yobs to create a new data set Yobs
* . 

The process then draws the n0  alues for Ymis  randomly 

with replacement from Yobs
* . 

Modeling and Imputation Procedures 

To assess the influence that covariates may have 

on the change of the response variable, we framed this 

problem as a longitudinal data analysis or a repeated 

measures framework. Under this scenario, both the 

measurement at baseline and one-year follow-up are 

considered as outcome measures in the statistical 

approach. The most appropriate method to handle this 

issue is called the general linear mixed-effects (GLMM) 

model. The GLMM model is a multivariate regression 

model that generalizes the analysis of variance and 

general linear regression models. This is a statistical 

tool for modeling continuous outcome measures as a 

function of fixed (population factors) and random 

effects (individual parameters) [18]. Furthermore, we 

defined dummy variables for each categorical variable 

considered in the modelling approach. These statistical 

procedures were implemented using SAS System for 

Windows 9.3 release [19].  

The three methods (K-NNI, PS, and MCMC) were 
developed using SAS System 9.3 release. In the case 
of the K-NNI methodology, two parameters were 
established: the distance and the number of neighbors 
(K) considered for the imputation. We used the 
previously described metric distance. As regards the K 
value, three different values -1, 5, and 7- were 
evaluated: This approach was developed using an ad 
hoc SAS Macro. With regard to the PS and MCMC 
methods, M = 20 imputations were considered. Two 
procedures available in the SAS system- PROC MI (for 
imputation) and PROC MINIANALYZE for summarizing 
the estimates - were applied.  

APPLICATION: THE HRQoL-COPD STUDY 

The HRQoL-COPD study was conducted between 

2003 and 2004, patients diagnosed with chronic 

obstructive pulmonary disease (COPD) who visited an 

outpatient clinic were consecutively recruited [20]. This 

study was approved by the research committee of the 

Hospital Galdakao-Usansolo. Patients provided 

informed consent to take part in the study.  

In addition to providing socio-demographic data, 

clinical variables were also collected and participants 

completed questionnaires related to their HRQoL at 

baseline and one year later. A subset of patients with 

no missing values in the clinical and socio-

demographic variables was selected for this work. We 

applied three methods, K-NNI, PS, and MCMC to 

impute missing values to this subset in the outcome.  

The outcome of interest is the change in the total 

score of the HRQoL status measured by the St. 

George’s Respiratory Questionnaire [21]. This score 

measures the impact on overall health, daily life and 

perceived well-being in patients with COPD. The total 

score ranges from 0 (best status) to 100 (worst status) 

points. As covariates, apart from the above mentioned, 

we also selected the patients’ baseline HRQoL status 

and their scores on the health status [20], which 

prognosticates the severity status of patients with 

stable COPD. The higher score in the health index 

indicates better overall clinical condition.  

We aimed to assess the effects of the health status 

on the change of the aforementioned outcome in the 

observed data. We performed a multivariate model 

using GLMM models and the St George’s Respiratory 

Questionnaire measured at both time points (baseline 

and at one year after) as outcome. Covariates related 

to the outcome or to the missingnes of the dependent 

variable (a logistic regression was performed to 

determine the variables) with a p-value < 0.20 [22], 

time, and the interaction of between each covariate and 

time effect - the change in HRQoL - were considered 

as fixed effects. Time was set as categorical. Random 

effects within the model was the intercept for 

individuals participants. In addition, the proposed 

imputation methods were applied in order to evaluate 

differences in the beta value of the interaction term 

between the health status variable and the time effect 

in the model when handling missing data using 

different approaches.  

RESULTS 

Relevant clinical and socio-demographic 

characteristics of the sample are shown in 

Supplementary Table 1. More detailed information can 

be found in [20].  
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One year after the start of the study, of the 543 

participants in the study, 63 (11.60%) did not complete 

the St. George’s Respiratory Questionnaire, and 

consequently their COPD-related HRQoL could not be 

measured.  

In the final model, baseline HRQoL status, health 

status, patient’s age and previous hospital admissions 

were included. Shown in Tables 1 and 2 are the 

estimates of the intercept and slope from the different 

analyses for handling missingness and modeling their 

COPD-related HRQoL as a function of its baseline 

value and the health status, adjusted by patient’s age 

and previous hospital admissions. Health status and 

the time health status effects were found to be 

significant in all performed analyses. More precisely, 

the beta estimates obtained from the analysis of the 

original data set without imputing (AC, CC) and after 

the application of the proposed methods of imputation 

(1-NNI, 5-NNI, 7-NNI, PS and MCMC) showed different 

values. They ranged between 1.02 (CC) and 2.39 (7-

NNI). Standard errors varied across the three 

imputation methods: 7-NNI and PS showed highest 

values.  

SIMULATION STUDY 

To illustrate and compare the performance of the 

three imputation techniques, we conducted a 

simulation study. It allowed us to evaluate the variability 

of the results obtained from the methods described 

earlier.  

We used the subsample of the HRQoL-COPD study 
as the natural framework for designing the simulation 

study. We first assigned each subject 
 
i, i = 1,…,n,  the 

generated Xi  variables with the same sizes as 

observed in the subsample ( n  = 400). For each 
measurement t, t = 0,1 , we created longitudinal 

responses via the linear model 

Yit
*
= 0 + 1t + i Xi +i=2

5

i Xi 4t+ iti=6

9
 where it  is 

an error component. An unconstrained covariance 

matrix y  was used to generate the error components 

for the responses, such that the upper triangular part of 

the covariance matrix y  is defined by 

vech( y ) = (243.78,149.57) . As described in previous 

sections, our main of interest was in making inference 

about the  estimate of the interaction between the 

health status and time effect.  

HRQoL outcomes are, by definition, bounded 
variables: their score values range from 0 to 100. 

Because of that, Yit
*  simulated variable was truncated 

as follows:  

Yit
*c
=

0, if Yit
*
< 0,

Yit
*c , if 0 Yit

* 100,

100, if Yit
*
>100.

  

with Yit
*c  as the truncated simulated variable.  

After that, values of the covariates were associated 
to the simulated outcome, using the same structure 
and correlations of the HRQoL-COPD study.  

The next step was to generate the different 
missingness mechanisms and rates to assess the 
variability of the results. Given the database, the 

missingness probability, pi , was defined as a function 

Table 1: Mixed Model Analysis Results for the HRQoL-COPD Study without Imputation (n = 543) 

AC (original analysis) CC  

ˆ  (s.e.) p-value ˆ  (s.e.) p-value 

Intercept 98.41 (6.00) <0.001 97.27 (6.39) <0.001 

Age -0.27 (0.08) 0.002 -0.24 (0.09) 0.005 

health status -6.85 (0.35) <0.001 -6.85 (0.38) <0.001 

Adm1 -0.53 (1.88) 0.78 -1.34 (2.03) 0.51 

Adm2 3.20 (2.34) 0.17 4.29 (2.60) 0.10 

time effect -7.09 (5.45) 0.19 -6.66 (5.52) 0.23 

time x Age effect -0.02 (0.07) 0.76 -0.03 (0.07) 0.68 

time x health status effect 1.02 (0.32) 0.002 1.02 (0.33) 0.002 

time x Adm1 effect 1.10 (1.73) 0.53 1.41 (1.76) 0.42 

time x Adm2 effect 3.62 (2.20) 0.10 3.20 (2.25) 0.16 

AC: Available Case. CC: Complete Case. ˆ  (s.e.): Beta regression coefficient (standard error). Adm1: presence only one previous hospital admission. Adm2: 

presence of two or more previous hospital admission. Time x (Age, health status, Adm1, Adm2) effect : Follow-up coefficients.  
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of a random process, of covariates and observed 
values of the outcome at the baseline measurement, or 
of covariates and the response missing variable. 

Specifically, pi = P( i ),  where i  depends on the 

missingness patterns:  

MCAR : i =  

MAR : i = X  

MNAR : i = X + Yi
*c  

where ,  are vectors of coefficients of the X  

covariate design matrix and the Yi
*c  censored 

simulated variable.  

We analyzed two specific missingness rates, 10% 
and 30%, within each pattern, varying the values of the 

 and  parameters in the defined probability. 

After that, the proposed methods were applied to 
obtain a complete dataset in order to estimate the beta 
coefficients and standard errors by means of 
generalized mixed-effects models. This simulation 
process was developed in two ways: (1) N = 500 and 
(2) N = 1000 runs with the aforementioned 
characteristics were used.  

Given that our objective was to assess the 
performance of AC, K-NNI, PS, and MCMC imputation 
methods and their effects on the estimation and 
significance of beta values over time, we focused on 
the regression coefficient of the interaction between the 

time effect and the covariate (time health status). We 

compared the obtained results from the different 

simulated scenarios ( ˆ ) with the true values ( , 

observed in the original sample without missing 
values), computing the following parameters [23]:  

Table 2: Point Estimate Results for the HRQoL-COPD Study after Handling Imputation Techniques (n = 543) 

K-Nearest Neighbour Imputation (K-NNI) 
methods  

1-NNI 5-NNI 7-NNI 

 ˆ  (s.e.) p-value ˆ  (s.e.) p-value ˆ  (s.e.) p-value 

Intercept 98.41 (6.04) <0.001 98.41 (5.95) <0.001 98.41 (6.89) <0.001 

Age -0.27 (0.08) 0.001 -0.27 (0.08) 0.001 -0.27 (0.09) 0.004 

health status -6.85 (0.35) <0.001 -6.85 (0.35) <0.001 -6.84 (0.40) <0.001 

Adm1 -0.53 (1.89) 0.78 -0.53 (1.86) 0.78 -0.53 (2.16) 0.81 

Adm2 3.20 (2.35) 0.17 3.20 (2.31) 0.17 3.20 (2.68) 0.23 

time effect -7.68 (5.19) 0.14 -7.67 (5.01) 0.13 -0.16 (7.10) 0.98 

time x Age effect -0.01 (0.07) 0.90 -0.02 (0.07) 0.79 -0.30 (0.09) 0.001 

time x health status effect 0.96 (0.30) 0.02 1.07 (0.29) <0.001 2.39 (0.41) <0.001 

time x Adm1 effect 1.45 (1.62) 0.37 1.26 (1.57) 0.42 1.04 (2.22) 0.64 

time x Adm2 effect 2.10 (2.02) 0.30 2.57 (1.95) 0.19 -0.79 (2.76) 0.78 

Multiple Imputation (MI) methods   PS MCMC 

   ˆ  (s.e.) p-value ˆ  (s.e.) p-value 

Intercept   98.41 (6.30) <0.001 98.41 (6.03) <0.001 

Age   -0.27 (0.08) 0.002 -0.27 (0.08) 0.001 

health status   -6.85 (0.37) <0.001 -6.85 (0.35) <0.001 

Adm1   -0.53 (1.97) 0.79 -0.53 (1.89) 0.78 

Adm2   3.20 (2.45) 0.19 3.20 (2.34) 0.17 

time effect   -15.73 (6.73) 0.02 -6.79 (5.47) 0.21 

time x Age effect   0.04 (0.09) 0.66 -0.03 (0.07) 0.70 

time x health status effect   1.79 (0.41) <0.001 1.04 (0.329 0.001 

time x Adm1 effect   0.86 (2.12) 0.69 1.25 (1.78) 0.48 

time x Adm2 effect   0.97 (2.64) 0.71 3.38 (2.27) 0.14 

(1,5,7)-NNI: 1,5,7 –Nearest Neighbour Imputation. PS: Propensity Score. MCMC: Markov Chain Monte Carlo. ˆ  (s.e.): Beta regression coefficient (standard error). 

Adm1: presence only one previous hospital admission. Adm2: presence of two or more previous hospital admission. Time x (Age, health status, Adm1, Adm2) effect 
: Follow-up coefficients.  
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Table 3: Bias and Relative Width Assessment Parameters Obtained after N = 500 and N = 1000 Simulations 

 N = 500 simulations N = 1000 simulations Missingness mechanism Missingness 

Rate 

Imputation 

Method RB SB Relative 
Width 

RB SB Relative 
Width 

MCAR 10%        

  CC 9.90 23.18 1.49 10.63 24.89 1.49 

  AC 16.78 39.28 1.48 17.51 40.98 1.48 

  1-NNI 13.10 30.67 1.41 13.84 32.41 1.41 

  5-NNI 17.99 42.11 1.38 18.73 43.84 1.38 

  7-NNI 21.01 49.19 1.38 21.74 50.91 1.38 

  PS 67.51 162.72 1.70 70.19 164.32 1.70 

  MCMC 17.84 41.77 1.47 18.58 43.49 1.46 

 30%        

  CC 14.08 32.96 1.71 14.77 34.58 1.71 

  AC 21.36 50.01 1.66 22.05 51.62 1.66 

  1-NNI 22.48 52.63 1.42 23.21 54.33 1.42 

  5-NNI 22.41 52.46 1.25 23.15 54.19 1.25 

  7-NNI 25.80 60.41 1.24 26.52 62.09 1.24 

  PS 172.14 402.99 1.99 172.70 404.31 1.99 

  MCMC 19.67 46.04 2.13 19.67 46.04 2.14 

MAR 10%        

  CC 2.90 6.99 1.51 3.75 8.78 1.51 

  AC -9.98 -23.37 1.49 -9.21 -21.57 1.49 

  1-NNI 16.28 38.11 1.44 16.99 39.79 1.44 

  5-NNI 10.94 25.62 1.39 11.67 27.33 1.36 

  7-NNI 10.35 24.24 1.36 11.09 25.95 1.36 

  PS 68.02 159.24 1.83 252.86 591.97 2.16 

  MCMC -4.61 -10.79 1.51 -3.88 -9.09 1.51 

 30%        

  CC 18.09 42.34 1.75 18.88 44.20 1.74 

  AC 20.87 48.85 1.67 21.66 50.70 1.67 

  1-NNI 58.55 137.07 1.37 59.39 139.05 1.37 

  5-NNI 62.74 146.87 1.23 63.54 148.75 1.23 

  7-NNI 70.35 164.77 1.23 71.14 166.55 1.22 

  PS 252.35 590.78 2.16 252.86 591.97 2.16 

  MCMC 21.27 49.79 1.64 22.06 51.64 1.64 

MNAR 10%        

  CC 6.06 14.18 1.49 6.97 16.32 1.49 

  AC 3.91 9.14 1.47 4.76 11.14 1.47 

  1-NNI 7.13 16.69 1.41 8.73 20.44 1.41 

  5-NNI 13.52 31.65 1.37 14.56 34.09 1.37 

  7-NNI 15.25 35.71 1.36 16.21 37.95 1.36 

  PS 65.94 154.37 1.70 67.12 157.14 1.70 

  MCMC 5.09 11.92 1.48 6.00 14.06 1.48 
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(Table 3). Continued. 

 N = 500 simulations N = 1000 simulations Missingness mechanism Missingness 

Rate 

Imputation 

Method 
RB SB Relative 

Width 
RB SB Relative 

Width 

 30%        

  CC 26.68 62.46 1.77 27.29 63.89 1.77 

  AC 25.32 59.28 1.70 25.84 60.49 1.70 

  1-NNI 64.34 150.64 1.39 64.95 152.05 1.39 

  5-NNI 83.11 194.57 1.24 83.27 194.95 1.24 

  7-NNI 82.12 192.24 1.23 82.07 192.13 1.23 

  PS 224.83 526.34 2.21 225.27 527.39 2.21 

  MCMC 27.70 64.85 1.73 28.46 66.62 1.73 

MCAR: Missing Completely at Random; MAR: Missing at Random; MNAR: Missing Not at Random. RB: Relative Bias; SB: standardized bias. (1,5,7)-NNI: 1,5,7 –
Nearest Neighbour Imputation. PS: Propensity Score. MCMC: Markov Chain Monte Carlo. 

Relative bias (RB): Relative bias was calculated by 
dividing the raw bias (difference between the mean 
value over simulation results and the true parameter) 
by the true value.  

ˆ
             (7) 

Standardized bias (SB): We compared the true 

value of the beta regression coefficient of the 

considered interaction factor in the model with the 

corresponding value obtained with each of the 

analyzed methods, relative to the standard error of the 

simulated value. Standardized bias was calculated as it 

follows:  

ˆ

SE( ˆ)
             (8) 

where ˆ  is the value of the estimates obtained in the 

simulation study, ˆ  the average estimate of interest 

over the performed simulations,  the true value and 

SE( ˆ)  defined as [1 / (N 1)] ( ˆi
ˆ)2

i=1

N
. As useful 

rule, a standardized bias exceeding 50% in a negative 
or positive direction, the bias is having a considerable 
impact on efficiency, coverage and error rates [24]. 

Coverage: The coverage of a confidence interval is 
the proportion of times that the obtained 

ˆ
i ± Z1 /2SE(

ˆ
i )  confidence interval contains the true  

specified parameter value. If the coverage value is 
below the 90%, the performance of the interval 
procedure will be troublesome.  

Relative width: If one procedure has a similar or 

higher rate of coverage than another but yields 

intervals that are substantially shorter, then it should be 

preferred. Shorter intervals translate into greater 

accuracy and higher power.  

Density plots of the different distributions generated 

by the proposed imputation methods were also 

depicted. To this end, for each imputation method 

within each simulation scenario, we summarized the 

values obtained in the replications using the median, 

since the distributions were skewed for many 

scenarios. All statistical analyses were conducted with 

SAS for Windows Version 9.3, and graphical displays 

were obtained with R 3.0 release [25].  

Simulation Results 

Relative and standardized bias of the change over 

time of the covariate of interest (time health status) as 

well as coverage and relative width for N = 500 and  

N =1000 replicates are presented in Table 3. At 10% of 

missingness, and for the MCAR setting, CC method 

showed lowest RB and SB values whereas PS method 

presented the highest values. Focusing on the MAR 

scenario, MCMC and CC methods showed SB values 

lower than 50% (6.99% and -10.79%, respectively). As 

for MNAR missingness mechanism, SB and RB values 

obtained from AC analysis were the lowest.  

Increasing the missingness rate at 30%, 7-NNI and 

PS yielded higher SB than did MCMC, AC or even the 

CC method in MCAR and MAR scenarios. Moreover, 

CC and AC approaches showed a SB value lower than 

50% (42.34% and 48.85%, respectively). As for the K-

NNI method, they provided a bias exceeding 50% in a 
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positive or negative direction regardless of the K 

values. When missingness was considered MNAR at 

10% of loss of information, all the studied methods 

except PS presented a nonsignificant SB value.  

Regarding the coverage, in all studied methods at 

different scenarios (10% and 30% missingness rate, 

MCAR, MAR and MNAR mechanisms) coverage 

values were higher than 99. Figure 1 shows density 

functions of the imputed distributions, related to 

different missingness mechanisms and percentages of 

loss of information with N =1000 replicates. At 10% 

rate of missingness, and for the MCAR setting, all three 

imputation methods showed similar goodness of fit. As 

regards to the MAR pattern, MCMC and K-NNI had 

better results than the PS technique. In the MNAR 

setting, however, density plots corresponding to the 

three imputation methods are far from the observed 

distribution, indicating a poor goodness of fit. Similar 

behavior can be observed at 30% of loss of 

information.  

DISCUSSION 

Observational studies, clinical trials, and other 

biomedical study designs must assess changes in the 

outcome(s) of interest over time and evaluate its 

relationship with other variables. These are the main 

objectives in observational HRQoL studies. The 

assessment becomes complicated when data are 

missing.  

Several statistical approaches have been developed 

for longitudinal data or repeated measures analysis to 

account for missing data. Nevertheless, there is small 

literature published in this area applied to pre-post 

observational HRQoL studies. In this study, we 

explored different methods of handling missing data in 

a repeated measures study with only two 

measurements. We compared the results of five 

analysis approaches: two of them based strictly on 

observed data - CC, AC- and the other three based on 

imputation of the unobserved data - K-NNI, PS, and 

MCMC to assess their performance in handling missing 

 

Figure 1: a) Density plots of the imputed distributions according to the missingness mechanisms (MCAR, MAR, MNAR) at 10% 
of loss of information. b) Density plots of the imputed distributions according to the missingness mechanisms (MCAR, MAR, 
MNAR) at 30% of loss of information. MCAR= missing completely at random, MAR = missing at random, MNAR = missing not at 
random. 
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data in HRQoL outcomes. The comparison of methods 

for the treatment of missing data in this context is very 

useful as a guide for the real practice. One major 

problem with missing data is that it is usually not known 

how non-response is generated. Thus, it is generally 

recommended to perform sensitivity analyses (i.e., a 

set of analyses showing the effect of the proposed 

methods according to different values of parameters on 

which the analyses are based) to determine the 

effectiveness of the statistical methods. In our 

simulation, we generated the missingness pattern 

assuming that the mechanism is known. This makes it 

easier to assess the performance of the evaluated 

imputation methods across the three missingness 

classifications. The percentage of lost information 

should also be taken into account when evaluating 

results obtained from different methods. In this way, 

one could apply to the population covering all real and 

possible loss information cases, especially when a 

small number of complete cases were used. We also 

assessed the bias yielded from different approaches for 

handling missing data and determined the technique 

that minimized bias.  

To evaluate the performance of the various 

statistical methods and to compare their results over 

different missingness mechanisms, we computed the 

relative and standardized bias in a simulation study. 

Relative bias indicated the degree of deviation of the 

coefficient estimated by each method from the original 

beta estimate relative to the latter value. We also 

calculated the standardized bias to assess whether the 

relative bias was significant. We observed large 

differences in both of these parameters. In the MCAR 

scenario, CC and AC analyses showed low relative 

bias values regardless of the missingness rates (10% 

or 30%) and less biased coefficients than the K-NNI or 

PS methods. Deleting cases with missing data often 

leads to a decrease in the sample size and a loss of 

power and efficiency in the estimates. This loss of 

efficiency affects the significance of the estimates [3] 

and leads to larger standard errors in CC or AC 

methods, hence the benefit of obtaining smaller bias 

values. The MCMC multiple imputation method yielded 

similar relative and standardized biases compared to 

the CC and AC analyses. The main difference between 

the MCMC and CC/AC methods was due to the loss of 

participants, since the MCMC uses the whole sample 

without deleting cases. In the MAR setting, the 

performance of CC and AC methods is as good as in 

the MCAR setting, particularly with a 10% missingness 

rate. When the missingness rate increases to 30%, the 

loss of power is reflected in the results. Low and 

nonsignificant bias values at a 10% rate of missing 

data seems to result from applying the general linear 

mixed-models model approach. Moreover, when 

increasing the percentage of missing data, SB values 

of these three methods (CC, AC and MCMC) for 

handling missing data under the assumed mechanism 

(MAR) were found to be close to a significant bias. In 

previous studies for handling missing data in 

longitudinal studies with more than two measurements, 

MCMC was the preferred method [26-29]. However, 

this is not the case in our study. In our case, using 

MCMC there is no an important bias decrease 

compared to CC/AC methods, which is supported by 

other researchers’ findings [30,31].  

When there are factors related to both the outcome 

and missingness not included in the model, the 

missingness mechanism is considered to be MNAR. All 

methods showed important bias values suggesting 

performing more senstivity analysis.  

The PS imputation method overestimated beta 

values, yielding biased results. This occurred in all 

missingness percentages and patterns. Although the 

missingness in the outcome variable is monotone, it is 

should be pointed out that this method, as it is focused 

on the propensity score values, uses a fixed number 

group division of the observations. In our case, as our 

scenario is based on a pre-post design, observations 

were not divided as the method usually prescribes. 

This agrees with known theoretical findings, that PS 

can give biased estimates of coefficients when data on 

predictor variables are missing [32,33]. Schafer [34] 

found that the PS technique is not appropriate for 

analyses involving relationships among variables. It 

would appear that this recommendation to not use PS 

is supported by the results presented here.  

We also evaluated the K-NNI imputation method. 

Regardless the missingness mechanism and rate, the 

SB value increased as the K value increased.  

Although there is currently no consensus about the 

appropriate acceptable loss rate in repeated measures 

or longitudinal studies [35], it is generally 

recommended that 80% should be used as the 

minimum acceptable follow-up rate (i.e., dropout of 

20%) [36]. In many cases, though, the dropout rate 

fluctuates between 20% and 30%. In our simulated 

data, as the missingness rate increased from 10% to 

30%, the relative and standardized bias also increased, 

especially when the type of non-response followed 
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MAR or MNAR pattern. These methods introduce more 

bias, despite of correcting it and consequently 

obtaining efficient estimates by means of correction 

methods.  

We also considered the modeling approach in our 

analyses. In this study we applied general linear mixed-

effects models to all analyses. With these models, tests 

tend to be more powerful than with standard methods 

such as general linear models. In fact, general linear 

mixed-effects models take into account how 

measurements of the same study unit are correlated. 

Moreover, compared to generalized linear models, 

general linear mixed-effects models provide more 

flexibility in handling missing data and tend to yield 

results that are more powerful when testing and making 

inferences compared with generalized linear models or 

even absolute change tests.  

Our results could be affected by the simulation 

procedure. Despite the fact that correlations between 

variables and the simulated outcome were very close 

to those computed with the original response variables, 

a small bias could have been introduced into the final 

results. To the best of our knowledge, however, there is 

no consensus to carry out a simulation in scenarios like 

the ones we presented.  

The generalizability of our findings is limited to 

settings similar to the scenarios considered in the 

simulation study. First, we assumed that the outcome 

of interest, the total St. George’s Respiratory 

Questionnaire score, followed a normal distribution. 

However, HRQoL outcomes tend to be bounded 

variables - usually between 0 and 100 - and do not fit a 

normal distribution. Furthermore, for the performance 

of this study, we assumed that there were no missing 

values in covariates - which is in some situations may 

be unrealistic - and thus our results could only be 

extrapolated to studies with such features.  

CONCLUSIONS 

Our simulation study shows the comparison of 

imputation techniques for handling missing data in 

HRQoL continuous and bounded outcomes in a pre-

post setting. It can be concluded that MCMC method 

did not show lower bias than AC but it provides more 

power when handling data. When missingness follows 

MCAR or MAR mechanism, we recommend using AC 

analysis combined with generalized linear mixed 

models when missingness rate is small. Nevertheless, 

when missingness percentage is high, MCMC 

imputation method is preferred: after imputing, 

increases sample size and therefore, statistical power 

gets higher. There is no method to determine if the 

dropout is MNAR. In that case, a further sensitivity 

analysis should be made.  
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