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Abstract: The daily number of hospital admissions due to mosquito-borne diseases can vary greatly. This variability can 
be explained by different factors such as season of the year, temperature and pollution levels, among others. In this 

paper, we propose a new class of non-homogeneous Poisson processes which incorporates seasonality factors to more 
realistically fit data related to rare events, and in particular we show how the modifications applied to the special NHPP 
intensity function improve the analysis and fit of daily hospital admissions, due to dengue in Ribeirão Preto, São Paulo 

state, Brazil. 
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1. INTRODUCTION 

Non-homogeneous Poisson processes (NHPPs) 

have become an important alternate tool to 

homogeneous processes. In fact, in many cases they 

are considered more realistic than the classic ones to 

model different day-to-day random phenomena. This is 

due, in part, to the fact they consider the intensity 

function as time-dependent. The Cox process stands 

out as an extension of NHPP. It is characterized by the 

fact that its intensity function can itself be a stochastic 

process. The Cox process, also known as the doubly 

stochastic Poisson process or mixed Poisson process 

has been applied in various areas such as meteorology 

to data on Atlantic hurricanes affecting the United 

States [1], neural computation to model generation of 

spike trains with controlled auto-and-cross-correlation 

functions [2], and financial mathematics [3], to estimate 

return on risky securities through the same issues 

present when modeling the structure of interest rates. 

Particularly, this article deals with the daily number 

of admissions to public hospitals in Ribeirão Preto, São 

Paulo state, Brazil, and the large variations due to 

several factors: season of the year, climatic changes, 

variation in levels of different pollutants, among many 

others. Modeling these daily numbers is of great 

interest to public health administrators to avoid 

problems in the hospitals such as shortage of beds, 

equipment, drugs and health professionals. 

The variation in the number of hospital admissions 

due to different causes has been modeled through 

various methods (see for example, [4-6]). 

 

*Address correspondence to these authors at the Universidad Nacional de 
Colombia, Bogotá-Colombia; Tel: (+571) 3165000; Fax: (+571) 3165000 Ext. 
13210; E-mail: mvcifuentesa@unal.edu.co, ecepedac@unal.edu.co 

Among the various diseases that lead to 

hospitalization, are malaria and dengue, which are very 

common in public hospitals in Ribeirão Preto. 

The data for the current study were provided by the 

Hospital Data Processing Center (PCHR, 2010) of the 

Department of Social Medicine, Ribeirão Preto School 

of Medicine, University of São Paulo. We analyzed the 

period ranging from January 1, 1998 to December 31, 

2007. This database was composed of variables 

characterizing each patient's sex, age, occupation and 

city of residence, and variables characterizing the 

hospitalization as the time of entry and exit, exit 

condition, and the city where the disease was 

diagnosed and the patient was hospitalized namely. 

According to [7] the dataset covers a total of 25 

cities and 80,967 hospitalizations due to diseases 

(such as malaria and dengue), with an average of 22.4 

admissions per day and median of 22. The threshold 

for overcrowding corresponds to 28 hospital 

admissions or more in a day. Figure 1 shows the 

distribution of all daily admissions between January 1, 

1998 and November 31, 2007. 

Our main goal is to propose seasonal count models 

of hospital admissions due to dengue fever using non-

homogeneous Poisson processes with different 

intensity functions. Different intensity functions are 

considered and inferences for the proposed models are 

obtained under the Bayesian paradigm and using the 

standard MCMC (Markov chain Monte Carlo) method. 

The paper is organized as follows: in Section 2 we 

introduce some special cases of NHPP intensity 

functions and their uses (MMOP, GOP, etc); in Section 

3 we propose the intensity and mean value functions of 
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the new non-homogeneous Poisson process for 

seasonal events; Section 4 contains some comments 

about the likelihood function and its usefulness in 

Bayesian parameter estimation; Section 5 contains the 

application of NHPP to data of Riberão Preto and 

shows the fit of non-homogeneous Poisson process 

superposition to these cases, particularly the behavior 

of the new NHPP proposed in Section 4 (with 

seasonality included); and Section 6 summarizes our 

conclusions regarding the advantage of using a 

seasonal NHPP model to count epidemic cases. 

2. NHPP: SOME INTENSITY FUNCTIONS 

Let {Nt : t 0}  be a continuous process through 

time such that the basic NHPP properties are satisfied: 

• N0 = 0.  

• P(Nt+h Nt ) = 1) = (t)h + o(h)  

• P(Nt+h Nt >1) = o(h)  

• Non-overlapping increments are independent. 

• (t ) =
d

dt
E{Nt}  

• a,b = (t)dt
a

b
 

• 
 

P[(N(b) N(a)) = k] =
e a ,b ( a,b )k

k!
, k = 0,1,…  

where t {t : t T}, [0,T ]  is the observed interval, 

(t )  is the intensity function,  is a possibly 

unknown vector of parameters and o(h)  is a function 

such that, in little-o notation, satisfies 

limh 0

o(h)

h
= limh 0

P(N(t + h) N(t) >1)

h
= 0.

Different variations of this notation have been 

applied to the intensity function (t )  to model many 

phenomena through new approaches. Some of the 
special cases of NHPP, which are used in fields such 
as software reliability, are: 

1. Power-law-process (PLP), whose expected 
number of failures in the first t hours is 

m(t) =
t

, for , > 0 , so its intensity function 

is: 

PLP (t) =
t

1

: , > 0           (1) 

It is the model most commonly used to analyze data 
from a repairable system. 

MOP or Musa-Okomoto process [8], which is used 

when failure detection is done according to a non-

uniform operation profile. In this testing, the faster the 

defects are detected, the better the result is. The 

expected number of failures at time t is: 

E(t = ( , )) = Log 1+
t

for , > 0  

Therefore the respective intensity function is: 

(MOP ) (t ) =
t +

: , > 0.          (2) 

GOP or Goel-Okumoto process. In this case we 

have that the failure intensity function is proportional to 

the residual fault content. So that:

E(t = ( , )) = 1 e t( ) for , > 0  

Therefore the respective intensity function is: 

(GOP ) (t ) = ( )e t : , > 0.          (3) 

 

Figure 1: Daily number of dengue cases. 
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GGOP or generalized Goel-Okumoto process, 

which represents the often found situation that the 

failure rate initially increases up to a time t0 , and then 

decreases. For this process, the expected number of 

failures is given by: 

E(t = ( , , )) = 1 e t( ) for , , > 0  

And the respective intensity function is:

(GOP ) (t ) = ( )(t 1)e t : , , > 0.         (4) 

In the next subsections, we mention relevant 

research accomplished related to malaria and dengue 

prevention and reliable occurrence forecasts, so as to 

reduce the chance of death caused by collapses of 

health services. The mentioned methods that have 

been used for this purpose are highly varied, so we 

focus on the NHPP approach. 

Let N = {Nt : tM [0,T ]}  be a non-homogeneous 

Poisson process with mean value functio m(t ) , 

where  is a vector of parameters. The function 

m(t )  represents the expected number of events 

registered by N ( )  up to time t (number of days with 
hospital overcrowding when the threshold is 28 
admissions). 

Equivalently, the process can be specified by its 

intensity function 

(t ) =
d

dt
m(t )           (5) 

In this paper we explore some special cases of 

NHPP to analyze the hospital admissions data due to 

dengue disease of Riberão Preto: the power law 

process (PLP); Musa-Okumoto process (MOP) [8]; 

Goel-Okumoto process (GOP) [9]; and a generalized 

form of the Goel-Okumoto (GGOP) process. 

Some relevant observations of these four special 

NHPP cases are: 

1. The intensity function, given by the derivative of 
the expected value function m(t) , defines the 

hazard rate of the time between occurrence of 
events in the respective models. 

2. The intensity function (PLP ) (t )  gives the 

different behavior for the PLP (power law 
process) depending on the value of . As a 

function of time, that intensity function can be 
constant, decreasing or increasing depending on 

whether = 1, <1or >1,  respectively. The 

intensities (MOP ) (t )  and (GOP ) (t )  present 

decreasing behavior as functions of t; and 
(GGOP ) (t )  describes the situation where the 

intensity increases slightly at the beginning and 
then starts to decrease from t onward. 

3. A NEW NON-HOMOGENEOUS POISSON 
PROCESS 

Once PLP, MOP, GOP and GGOP processes are 

introduced, it is possible to build new non-

homogeneous Poisson process, by superposition or 

addition of new terms, for example. 

In the present section, we introduce some Poisson 

processes functions based on variations and overlap of 

MOP and GOP to measure their adjustment to the 

Ribeirão Preto data set. 

First of all, we introduce the mean value function, 
denoted by m(t) : 

m(t) = 0Log 1+
t

0

+ (1 e t )[1+ sin(2 ft + )]+ 2 ft  (6) 

As can be observed, this mean value function 
emerges from a superposition of the MOP model and a 
modification of the GOP one by a cyclical term plus a 
term depending on t. The first part of this mean function 
can be replaced by another of the special cases of 
NHPP studied in Chapter 2 for future work. In the 
current paper, the parameters of equation (6) are 
determined by MOP and GOP restrictions: 

0, 0 > 0; , > 0  where f refers to the frequency of the 

cyclical behavior and  is a phase parameter. Then its 

intensity function is: 

(t) = 0

t + 0

+ e t [1+ sin(2 ft + )]

+ 2 f [(1 e t )cos(2 ft + )+1]

        (7) 

To illustrate the behavior of the mean value m(t)  

and intensity (t) , we assume the parameter values 

reported in Table 1 and under such values we plot the 
graph in Figure 2. 

As can be observed in Figure 2a, the mean value 
function m(t) shows an increasing and staggered 
behavior in function of t, meaning that its growth is not 
strict, such as the behavior of hospital overcrowding: 
some days, there is no overloading, so during those 
days the accumulated days of overcrowding remains 
equal to previous days. For that reason, equation (6) is 
an appropriate function to model the mean value of the 
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non-homogeneous Poisson process for counting the 
accumulated cases of over-hospitalizations due to 
dengue in Ribeirão Preto, Brazil. On the other hand, in 
Figure 2b, the intensity function shows a cyclical 
dynamic (each about 360 days) and its positivity 
guarantees the non-decreasing property of m(t) , since 

(t) =
d

dt
m(t) . 

Moreover, it is possible to observe more carefully 

the new process's behavior. For example, if we change 

the value of the parameters, one at a time, this reveals 

the influence of each parameter in the model (Figure 

3). 

The first part, Figure 3a shows three curves 

representing changes in m(t) for different values of 0 . 

As can be seen from the dotted line, when 0  

decreases, the values of m(t)  are greater, which was 

expected, since 0  is the divisor in equation (6). 

However, change is more significant for lower values, 

such as 0 = 5, than for 0 = 100, because the last one 

(segmented-line curve) is almost the same as the initial 

curve, when 0 = 50. 

In turn, in Figure 3b the only parameter modified is 

0 , which affects the MOP part of the equation (6), and 

when it has greater values, m(t) also increases, but in 
a much smaller proportion. These graphs measure the 
influence of variations of GOP-part parameters (  and 

) on mean value function behavior, indicating that  

is the most influential parameter for the m(t)  dynamic: 

as shown in Figure 3c, a slight increase in  (from = 

12 to = 20) causes the mean value function to exhibit 

the largest growth in the four graphs. The reason is that 
the last term in the mean value function, defined in 

equation (6), which has the variable t, is multiplied by . 
Likewise, when  decreases to 1, m(t)  reaches the 

lowest value, even if it is nearly a straight line (see 
dotted-line in Figure 3c. On the another hand, the 

GOP-part, which depends on parameter , has the 
smallest influence on m(t) : its graph shows that large  

values, for instance 1000, do not significantly modify 
the mean value function (just a few decimal positions), 

in fact as > 0  then 0 < (1 e t) <1.  

4. THE LIKELIHOOD FUNCTION 

Denoting the data set by 
 
DT = {n;t1,t2,…,tn;T}  

where n  is the number of observed occurrences, such 

that < t1 < t2 < < tn < T , where these values are the 

intervals of hospital over-admissions up to time T, the 
likelihood function for  considering the time truncated 
model is (see for example, [10]) given by 

L( ,Dt) = (ti )
i=1

n
exp[ m(T )]         (8) 

We can obtain inferences about the parameters of 

the model under a Bayesian approach. Bayesian 

Table 1: Initial Parameters Values 

Parameter 0  0     f  

Value 50 10 12 30 0 0.00277778 

 

Figure 2: New process mean value and intensity functions. 
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inferences for NHPP have been discussed by many 

authors (see for example, [11-13]). 

Posterior summaries of interest are obtained using 

standard MCMC methods (see for example, [14-16]). 

Note that (8) has a slight modification in the 

superposition case. In [17], the authors expressed the 

likelihood function for the superposition Poisson 

process, just adding the intensity and mean value 

functions of each compound process: 

 

L( ,Dt) = 1(xi )+ + J (xi )
i=1

n

        (9) 

where 
 
0 < x1 < < xn < t, Dt = {x1,…, xn}  and the 

considered process is the superposition (sum) of J  
processes and each one has intensity function equal to 

i (t)  and mean value mi (t) . 

Later, equation (9) will be used to estimate 

parameters that allow adjusting superposition of the 

special NHPP model to the Ribeirão Preto data set. 

5. APPLICATION TO RIBEIRÃO PRETO DATA 

In this section, we analyze the daily hospital 

admissions count due to dengue infection in Ribeirão 

Preto for the period ranging from January 1, 1998 to 

December 30, 2007. From this dataset, we observe 

that 948 times there were at least 28 hospital 

admissions due to dengue in the period of T = 3670 

days. 

5.1. Modeling Hospital Overcrowding 

To model the number of times that hospital 
overcrowding occurs in a state or city, the number of 
dengue cases in a population through time or the 
number of cases of malaria in a population, can be 
studied and statistically modeled by considering a point 
process to count these occurrences. Let 

N = {Nt : t (0,T ]}  be the process that registers the 

cumulative number of daily (monthly or yearly) cases 
observed during the interval (0,T ) , i.e., for each 

t [0,T ],Nt  is the number of cases (hospital admission 

peaks, number of cases of dengue or number of cases 
of malaria) observed during the time interval (0,t) . We 

assume that N can be modeled by a non-
homogeneous Poisson process (NHPP) with intensity 
function, 

(t) =
d

dt
m(t) =

d

dt
E(Nt )          (10) 

where m(t)  is the mean value function. 

Figure 4 shows that the accumulated number of 

daily hospital admissions has increasing behavior 

during the observed period, taking into account that the 

number of dengue cases has cyclical behavior over 

time. 

 

Figure 3: Sensitivity of the mean value function m(t). 
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Figure 4: Accumulated daily hospital admission. 

Therefore, for initial modeling of the count data, it is 

interesting not only to have intensity functions 

(t), t 0 , that are monotonically decreasing or 

monotonically increasing through t, but also that take 

into account the cyclical behavior of the phenomenon. 

In the current paper, to analyze Ribeirão Preto 

count data, we apply different non-homogeneous 

Poisson processes, by assuming superposition of 

previous intensity functions, and comparing them with 

the new NHPP proposed in section 3. 

5.2. Parameter Estimation 

In Achcar-Cepeda-Edson (2012) [7], the four special 

NHPP intensity functions, reviewed in the first section, 

were fitted to the count of hospital over-admissions in 

Ribeirão Preto, Brazil in the period ranging from 

January 01, 1998 to December 31, 2007 and Bayesian 

approach was assumed to estimate each parameter. 

In this simulation procedure, we used the WinBugs 

software [13]) to get appropriate estimates of the 

parameters. 

The following table was obtained by [7] and has the 

prior distributions for each parameter and the posterior 

summaries accomplished by Open Bugs software for 

PLP, MOP, GOP and GGOP models: 

To get these results, we considering a burn-in-

sample of size 5000 and 20000 simulated samples, 

taking every 20th iteration, using WinBugs. The 

convergence was monitored using trace-plots of the 

Gibbs samples simulated for each parameter. 

In the next sections, we explore the adjustment of 

different variations of NHPP functions, including the 

new one introduced in Figure 6. For this purpose, we 

use Table 2 for prior parameter distributions and in 

some cases, we choose the hyperparameter values to 

have convergence of the Gibbs sampling algorithm. 

5.3. MOP Process and Hospital Overcrowding 

In [7], the authors (Achcar, Cepeda and 

Zangiacomi) showed that the MOP process, among the 

four usual ones, best fits the hospital data. Figure 5 

shows the empirical accumulated number of days of 

overcrowding and the fitted mean value function for the 

MOP process. 

The parameter values which generate the fitted 

MOP curve are those indicated in Table 2 for the MOP 

function. In regard to the accuracy of the estimate, it 

produced a DIC value of 1900450, which is high but not 

as much as the other ones produced by WinBugs for 

PLP, GOP and GGOP. Therefore, MOP gives better fit, 

Table 2: Prior and Posterior Summaries 

Model Parameter Prior Mean S. D. 

 U(0,2) 0.9232 0.03081 
PLP 

 U(0,100) 2.244 0.5621 

 U(0,10000) 6964.0 1511.0 
MOP 

 U(0,3000) 2238.0 399.1 

 U(1,10000) 2818.0 719.0 
GOP 

 U(0,1) 0.0001205 0.0000298 

 U(0,5000) 2229.0 655.6 

 U(0,0.001) 0.000104 0.000028 GGOP 

 U(0.5,1.5) 1.058 0.05368 
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but this could be improved by considering that MOP is 

a strictly increasing function, so the introduction of 

cyclical factor might improve the accuracy. 

 

Figure 5: MOP function and accumulated days with 
overcrowding. 

5.4. Overlap between MOP and PLP 

As an intermediate step, in this sub section we 

consider the superposition of MOP and PLP in 

weighted form, thus: 

m(t)MOP+PLP = 0Log 1+
t

0

+
t

      (11) 

With intensity function equal to: 

(t)MOP+PLP = 0

t + 0

+
t

1

       (12) 

Through WinBugs, after of 200000 iterations we ran 

the MOP + PLP model and obtained the values 

presented in Table 3. 

However, we could improve this model by adding a 

p  value in order to assign a weight to each MOP and 

PLP function. For this p , we assumed a non-

informative prior distribution, that is to say, p ~U(0,1)  

and the results were as follows: 

Comparing the DIC values, it looks like the weighted 

option does not offer any improvement in comparison 

with superposition. In fact, in Table 5 the value of p  

shows that the model has assigned greater weight to 

the PLP model. 

Lastly, here are the comparative graphs between 

the MOP + PLP model and the accumulated data of 

hospital overcrowding. 

5.5. New NHPP and Hospital Overcrowding 

For the new NHPP introduced in (6), parameters 

0, 0 ,  and  are estimated assuming the same 

distributions as in Achcar-Cepeda-Martinez (2012) [7] 

for MOP and GOP processes. Therefore the only 

missing parameter is f , the frequency that appears 

inside the cyclical term of the new process. For this 

purpose, we used the RStudio software to apply the 

spectral analysis tool and to get a frequency estimator. 

In Figure 7, the frequency of overcrowding, f , is 

assumed to be about (1/360) which means that each 

360 days, the cycle of over-admissions starts, which is 

consistent with the mosquito cycle life. 

On the other hand, for the new process we 

introduced a new parameter, , which represents the 

phase of the cycle, and it depends on the first 

observation moment. Therefore, we can take a uniform 

prior distribution U(0, ) . 

From the NHPP model run with WinBugs, we got 

the following parameter values: 

For the three reviewed models, the DIC was 1.9E+6 

(because of software rounding effect), but the new 

model captures the cyclical behavior of the data: 

In order to compare the fit of the models to the data, 

their mean squared errors were calculated and 

reported in the next table: 

Table 3: Prior and Posterior Summaries for Superposition of MOP+PLP 

Parameter Prior Mean S. D. Confidence Intervals 95% 

0  U(0,10) 0.2088 0.02467 (0.2108,0.2156) 

0  U(0,30) 0.0033 0.1677 (1.17E-5,0.002832) 

 U(0,2) 0.67 0.078 (0.6745,0.6937) 

 U(0,10) 0.1454 0.037 (0.145,0.151) 
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Table 4: Prior and Posterior Summaries for Weighted Overlap of MOP+PLP 

Parameter Prior Mean S. D. Confidence Intervals 95% 

0  U(0,10) 2.187 0.07011 (2.153,2.236) 

0  U(0,30) 1.319 0.04095 (1.313,1.334) 

 U(0,2) 0.9372 0.0153 (0.9268,0.9508) 

 U(0,10) 2.456 0.1018 (2.468,2.562) 

p  U(0,1) 0.0001036 0.0015 (1.748E-6,7.99E-4) 

 

 

Figure 6: Superposition of MOP and GOP fitted to Ribeirão Preto data. 

 

 

Figure 7: MOP function and accumulated days with over-admissions. 

According with the last results, the new NHPP, 

which includes a superposition and a cyclical factor, is 

the model that fits the hospital overcrowding data most 

accurately. 

6. CONCLUDING REMARKS 

In this paper we introduced new modeling 

approaches to analyze count data due to hospital over-
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admission, in particular, due to malaria and dengue in 

Ribeirão Preto, Brazil. The use of a non-homogeneous 

Poisson processes assuming different intensity 

functions gives great flexibility to fit for the count data. 

We also introduced a new model considering the 

superposition of two models plus the introduction of a 

cyclical term to capture the seasonality of the disease. 

This new modeling approach can be used to analyze 

data regarding many different seasonal diseases and it 

showed better fit to the data, with a lower DIC than the 

other ones studied. 

 

Figure 8: The new NHPP and Riberao Preto data. 

Table 6: Mean Square Errors for the Reviewed Models 

Model MSE 

MOP+PLP 0.849716 

MOP+PLP Weighted 0.474346 

New NHPP 0.233450 

 

The use of Bayesian methods considering standard 

existing MCMC simulation methods to generate 

samples for the joint posterior distribution of interest, 

especially using the WinBugs software, greatly 

simplifies accurate inference and accurate predictions. 

In that respect, it is possible to achieve a substantial 

advance in non-homogeneous process modeling and 

analysis. 
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