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Abstract: The generalized linear model is an important class of models that has wide variety of applications mainly 
because of its inherent flexibility and generality. The present paper provides an important application of GLM in order to 
examine different constituents of bile acid in the development of gallstones as well as carcinoma among the gallbladder 

patients. These constituents may be broadly categorized as primary and secondary bile acids. The paper, in fact, 
considers two particular cases of GLM based on normal and gamma modelling assumptions and provides the complete 
Bayes analysis using independent but vague priors for the concerned model parameters. It then analyzes a real data set 

taken from SS Hospital, Banaras Hindu University, with primary (secondary) bile acids as response variables and 
secondary (primary) bile acids as the predictors. The authenticity of the assumed models for the given data set is also 
examined based on predictive simulation ideas. 
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1. INTRODUCTION  

We may often come across a kind of 

epidemiological study where the interest centres on 

studying the changing pattern of the results of a few 

tests taken from different groups of patients available in 

the form of case-control scenarios so that one can 

easily try to find an association, if any, between the test 

constituents and the disease. Normally, the medical 

practitioners are interested to know if the particular test 

results are primarily responsible for the development of 

a disease but such answers are difficult, in general, as 

the data may not often be available in a way we require 

to answer these issues. 

The medical practitioners undertaking such studies 

suggest the patients to undergo for a number of tests 

so that they may establish a link between the outcome 

of various tests and the disease. These tests may be 

based on physical examinations of the patients or may 

also be based on a number of pathological or other 

investigations often suggested by the practitioners 

depending on his/her expertise. Let us consider, for an 

instance, a group of patients suffering from non-small 

cell lung cancer (NSCLC) or leukemia. In order to 

assess what actually caused the disease a number of 

factors such as the age at diagnosis, sex of the patient, 

marital status, occupation, education, smoking habits, 

blood pressure, status of any other disease other than  
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the leukemia or NSCLC, etc. may be recorded. 

Besides, the patients may also be examined for blood, 

urine, etc. and sometimes even for histological types of 

cells like Adenocarcinoma, Squamous cell carcinoma, 

large cell carcinoma, Adenosquamous carcinoma, etc.  

The linking between the outcome of various tests 

and the disease may be important in several ways. 

First, it may help in ascertaining the actual cause of the 

disease and, second, it may help in diagnostics as well. 

For researchers in the medical field, such a linking may 

be equally important as it helps in understanding how 

the test results change from a normal group of persons 

to a diseased group. It is, therefore, important for the 

practitioners to know the results of various test 

constituents so that they may attempt to know the 

relationship, if any, among the test constituents and the 

disease or among the test constituents from a normal 

group to a diseased group. 

In statistical terms, any such linking can be 

regarded as the problem of regression analysis. 

Variables in the study may include demographic 

factors, physiological factors, histological factors, etc. 

to name a few. The regression analysis actually defines 

a relationship between the main (response) variable of 

interest and several other concomitant variables so that 

the quantitative effect of the causal variables upon the 

variable that they influence can be ascertained. Based 

on the types of relationships several regression models 

have been defined in the literature. These may include 

linear, non-linear, generalized linear, and generalized 

non-linear models, etc. A detailed discussion of these 
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relationships is beyond the scope of the present paper; 

however, the interested readers may refer to Draper 

and Smith (1998), Congdon (2003), Gelmam et al. 

(2006), Vittinghoff et al. (2005), [1-4] etc. The present 

paper mainly concerns the generalized linear model 

(GLM) and, therefore, our discussion will henceforth 

focus on GLM only although we shall finally switch over 

to two particular cases of GLM based on normal and 

gamma modelling assumptions for the response 

variables. The primary objective of the paper is to focus 

on three groups of patients suffering from gallbladder 

disease including carcinoma who were examined for 

four different constituents of bile acid so that the effect 

of different constituents on the disease can be studied. 

The incidence of the carcinoma of biliary tract varies 

greatly in different parts of the world. The high 

incidence areas are Israel (7.5 per 100, 000 population 

for males and 13.8 per 100, 000 population for 

females) and American Indians (5.1 for males and 8.7 

for females; the incidence in rest part of the USA is 1.0 

per 100, 000). In the Varanasi region of India, it 

accounts for 4.44% of all the malignancies. The 

efficacy of the disease may be based on the different 

concentration levels of basic constituents of biliary acid 

which are believed to be primarily responsible for the 

development of gallbladder stones and then to cancer 

(see, for example, Shukla et al. (1993)) [5] although a 

statistical authenticity of such a conclusion is difficult 

due to the limitation of the study. These constituents 

are termed as colic acid (CA), chenodeoxycholic acid 

(CDCA), deoxycholic acid (DCA) and lithocholic acid 

(LCA). Since it has been argued that gallstones are the 

major risk factor for biliary neoplasm (see Fraumeni 

(1975)) [6], it is not surprising that the gallbladder is the 

most common site of the biliary tract cancer (see 

Shukla et al. (1985)) [7]. Therefore, attempts have 

always been made to examine the question of 

carcinogenesis by comparing the distribution of primary 

(CDCA and CA) and secondary (DCA and LCA) bile 

acids in the patients with carcinoma of the gall bladder, 

cholelithiasis, and in a control group. Shukla et al. 

(1993) [5] is an important reference where a successful 

attempt has been made in this direction based on a 

realistic data obtained from SS hospital, Banaras Hindu 

University. Their treatment was, however, classical and 

mostly based on significance testing. A careful review 

of their work provides an impression that it has enough 

scope to offer for further statistical exploration.  

The present paper analyzes the work of Shukla et 

al. (1993) [5] in a Bayesian framework under the 

assumption of normal and gamma based regression 

models, both of which can be considered to be 

particular cases of GLM. It is well known that GLM is 

an important class of statistical models that allows us to 

sort out many complications that cannot be handled 

within the framework of familiar linear models. The 

fitting of such models has been the subject of a great 

deal of research over the past decade. In fact, the 

model offers a unifying class which is widely used in 

the regression analysis incorporating variety of 

application areas. Although initially introduced in a 

classical framework (see, for example, Nelder and 

Wedderburn (1972), McCullagh and Nelder (1989), 

etc.) [8, 9], the past decade has witnessed rapid growth 

employing these models in the Bayesian context as 

well. This is not only due in part to their attractiveness 

with the familiar hierarchical structuring but also due in 

part to the wide availability of high speed computing 

resources to implement simulation based fitting of 

these models. 

The GLM can be considered as a generalization of 

the general linear model. In its simplest form, a linear 

model specifies the (linear) relationship between a 

response variable Y and a set of predictor variables, 

say X's. However, there are many relationships that 

cannot be adequately summarized by simple linear 

equation mainly because of the two reasons. First, the 

response variable of interest may have a non-

continuous distribution, and thus, the predicted values 

should also follow the respective distribution; any other 

predicted values are not logically possible. The second 

reason might be based on the fact that the effect of the 

predictors on the response variable may not be linear 

in nature.  

In statistics, there are two types to model one which 

has simplicity and other that has completeness, simple 

models are not very cumbersome to understand and 

computationally more tractable but often show odds 

with the data, whereas complicated models are better 

fit to the data and capture more realistic scenarios, but 

they can be computationally awkward or intractable. 

When they are too complicated, they are hard to 

replicate. in a realistic circumstances, the classical 

model like as the general linear model have had to be 

computationally manageable. Initially Many things that 

were impossible before—iterative algorithms such as 

Monte Carlo methods, repeated tests, the whole range 

of Bayesian approaches—now can be routine (or 

nearly so). Nevertheless, this model is widely 

acceptable in classical as well as Bayesian paradigm. 

We do not intend to provide further details on GLM due 

to space restriction although the interested readers 

may refer to McCullagh and Nelder (1989) [9]. 
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The inferences to the GLMs are available in bulk. 

The evolution of these models as well as the details 

regarding model fitting, model checking and inferences 

in a classical framework are thoroughly documented by 

McCullagh and Nelder (1989) [9]. The other important 

classical references that deal with the estimation and 

testing for the concerned model parameters include 

Nelder and Wedderburn (1972), Breslow (1984), 

Lawless (1987a, b), Smyth (1989), Fahrmeir and Tutz 

(1991), Lindsey (1997), etc. (see also Dey and 

Ravishanker (2000)) [8, 10-16]. Besides, Breslow and 

Clayton (1993), and Vittinghoff et al. (2005) [4, 17] are 

two other significant references where the authors have 

explored this model by introducing random effects in 

addition to the fixed effects. 

Bayes inferences to the model are also available in 

bulk. This happened only after the fact that the 

computational complications were well taken care of by 

MCMC based approaches (see, for example, Gelfand 

et al. (1999), Delaportas and Smith (1993), etc) [18, 

19]. Among important Bayesian references, one can 

refer to Ibrahim (1990), Ibrahim and Laud (1995), Das 

and Dey (2006) [20-22], and more recently, Das and 

Dey (2007) [23], etc. The last reference is quite 

elaborative and besides providing a detailed 

accountability of various important works, it also details 

the Bayesian analysis entirely in a new perspective. 

Some other important Bayesian references worth to 

mention include Robert and Casella (1996), Gelfand 

and Sahu (1999), and Marin and Robert (2007), [24-26] 

etc.  

The plan of the paper is as under. The next section 

briefly outlines the GLM and the associated 

discussions. The section divided in two subsections 

then provides two particular cases of GLM based on 

normal and gamma assumptions for the response 

variables. The corresponding Bayesian modelling 

formulations for the two particular cases are also given 

in these subsections. It is to be noted that the normal 

based regression model could have been described 

without a reference to GLM but the main advantage in 

switching from GLM is to maintain the uniformity of 

presentation. Section 3 provides a review discussion of 

Bayes information criterion (BIC), a criterion that has 

been used in the latter sections to deal with the model 

comparison. This section may appear as an odd 

combination although it makes the paper self-content. 

Section 4 provides a real data example taken from SS 

hospital, Banaras Hindu University, on different 

constituents of bile acid from three categories of 

gallbladder patients. Section 5 provides Bayes analysis 

of the real data example using the modelling 

formulations given in subsections 2.1 and 2.2. The 

section divided in three subsections finally examines 

the compatibility of the two regression models for the 

data in hand using predictive simulation ideas and uses 

the results to examine the changing pattern of different 

constituents of bile acid from one category of patients 

to another. The results of model comparison based on 

BIC have also been given. It is worth mentioning that 

the same data set was initially reported and analyzed 

by Shukla et al. (1993) [5] in a classical framework 

based on simple and non-validated modelling 

assumptions. Finally, a brief conclusion and 

recommendation are given at the end. 

2. THE GENERALIZED LINEAR MODEL  

The linear models are quite important in the 

regression analysis and they often arise in situations 

where a linear relationship is expected between a 

dependent (response) variable and a set of predictor 

variables. The assumption of linearity is done party 

because we are more accustomed to visualize linear 

relationships and partly because of the fact that such 

relationships are easy to analyze with generally closed 

form results. Such models normally embody both 

systematic as well as random (error) components, with 

the errors often assumed to have normal distributions. 

The associated analytic technique is based on least 

squares theory in a classical paradigm and often easily 

manageable posteriors in a Bayesian paradigm. 

Techniques for non-normal data include probit analysis 

involving binomial variate and contingency tables 

involving multinomial variate with systematic part of the 

model usually multiplicative in the latter case. In both 

these situations, there is a linear aspect to the 

relationship although sometimes it may not be 

visualized directly. In another extension to linear 

relationship, certain transformation might be desired to 

obtain linearity which is otherwise not obvious (see, for 

example, Nelder (1968)) [27]. A further class of models 

based on chi-square or gamma distributions arises in 

the estimation of variance components with systematic 

component of the model again having somewhat linear 

structure (see, for example, Nelder and Wedderburn 

(1972)) [8]. 

The GLM is a generalization of the general linear 

model which includes all the above examples (and a 

few more) as special cases and, as a matter of fact, 

enjoys a great deal of interest from the viewpoint of 

both statistical researchers and the practicing data 

analysts. The class of GLM was introduced by Nelder 
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and Wedderburn (1972) [8] who also provided a unified 

procedure for fitting them based on the likelihood. In 

fact, their procedure can be regarded as a 

generalization of the procedure described by Finney 

(1952) [28] for maximum likelihood estimation in probit 

analysis. 

GLM considers the response variable belonging to 

the exponential family with covariates and it is capable 

of modelling various kinds of data whether they are 

available in the form of binomial, count, or even 

continuous structure. A regression model determines 

the structure of the covariate information with the link 

function specifying the relationship between the 

regression model and the expected values of the 

observation. To provide a mathematical framework for 

the model, let us assume that y1, y2,…, yn are 

independent observations with yi having the density 

from the natural exponential family given by  

f(yi i ) = exp ( iyi ( i )) + c(yi ){ } ,      (1.1) 

where the density in (1.1) is parameterized by the 

canonical parameter i (i = 1, 2, ..., n). We further 

assume that the functions (·), and c(·) are known and 

i’s are related to the regression coefficients by the link 

function 

i = h( i ),          (1.2) 

and  

i = xi          (1.3) 

is the systematic component of the GLM. In (1.3), 

xi = (1, xi1,xi2 ,...,xip-1 ) is a 1 p vector denoting the i
th

 row 

of a (n , p) matrix of covariates X, = ( 0 , 1, 2 , ..., p-1 )  

is a p-vector of regression coefficients, and h(·) is 
monotonic differentiable function (which we call the link 
function) (see also Nelder and Wedderburn (1972), and 
Das and Dey (2007)) [8, 23].  

The model given by (1.1)-(1.3) is called GLM. As 

mentioned earlier, the Gaussian, logistic, binomial, 

Poisson, gamma, and inverse Gaussian regression 

models, etc. are all special cases of the GLM (see, for 

example, McCaullagh and Nelder (1989) [9] for further 

details). In fact, the application of the model to 

individual cases is done in accordance with the 

availability and the nature of the data. For example, if 

the available data is in the form of counts we restrict to 

a Poisson model; if it is in the form of categorical 

observations, we restrict to binomial assumption; and 

for the continuous scenarios gamma, Gaussian, log 

normal and inverse Gaussian relationships can be 

thought of. The choices, however, depend on the form 

of link functions that are defined to link the model 

parameters with the corresponding covariates. 

The GLM can be computationally difficult in a 

Bayesian framework especially when the data 

advocate for the non-Gaussian modelling assumptions. 

In such cases the unusual form of link functions may 

add further computational intricacies (see, for example, 

Delaportas and Smith (1993)) [19]. Most of such 

situations typically require the MCMC implementation 

but there is no unified strategy for the same. One often 

requires a problem oriented, tailored, and hybrid 

algorithm to achieve the desired computational 

efficiency. Recently, Das and Dey (2007) [23] 

considered GLM absolutely in a new perspective which 

often resulted in closed form estimators for the 

corresponding regression parameters. Their 

contribution is certainly significant from the viewpoint of 

applied researchers although we shall not go into the 

details of their strategy rather stick to the model that 

has been used in the paper and proceed in a usual 

way.  

Before we end the section, we shall make a brief 

comment on residuals or error terms. The residuals for 

simple linear model are well defined and 

straightforward to visualize. However, the situation is 

not that straightforward with the GLM. Here the concept 

of residuals can be defined and illustrated both at 

systematic component level and at random component 

level. We do not intend to go into the details of these 

various concepts in a general framework rather stick to 

our own particular cases. The interested readers are, 

however, referred to Das and Dey (2007) [23] (see also 

McCullough and Nelder (1989)) [9] for details. 

2.1. Normal Regression Model as a Particular Case 
of GLM  

As mentioned earlier, the normal regression model 
is, in fact, a general linear model considered 
extensively in the literature and most of the 
expressions based on it are obtainable in closed forms. 
The model can also be defined using a general 
structure of GLM by considering an identity link 
function. To begin with, let us assume the response 
variables y1, y2, …, yn as n independent observations 
from N(μi, 

2
) and let us use the identity link as E(yi)= 

μi= i = xi to establish a connection with the 

explanatory variables xi = (1, xi1,xi2 ,...,xip-1 ).  The 

assumption of common variance 
2
 has been taken for 

simplicity only and it appears natural as well for the 
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intended analysis of gallbladder patients. Accordingly, 
our normal based regression model can be written as  

yi ~ N (μi, 
2
)        (1.4) 

E(yi ,xi ) = μ i = i = xi. .       (1.5) 

Var(yi ,xi ) =
2        (1.6) 

To complete the modelling structure, we finally 

assume that the errors i = yi E(yi ,X)are 

independent normally distributed with mean zero and 
common variance 

2
 (i =1,…, n).  

Thus, in a matrix form, we can consider y = 

(y1,…yn)  as a vector of response variables having 

mean vector X  and the variance-covariance matrix 
2
I 

where I is n x n identity matrix. Obviously, the 

components of y are assumed to be independent with 

common variance as mentioned earlier. The error term 

, which is also a vector of n components and is 

assumed to be homoscedastic, can be written as  = y-

E(y | , X). 

Obviously, (1.4)-(1.6) define a general linear model 

that has also been visualized as a particular case of 

GLM by considering the identity link. The likelihood 

function based on this modelling assumption can, 

therefore, be written as  

L y ,  X, 2( )
1

2

n

exp
1

2 2 (y X ) (y X ) ,  (1.7)  

which, after simplification, reduces to 

L y ,  X, 2( )
1

2

n/2

exp
1

2 2 vs2
+ ( ˆ ) X X( ˆ){ } .

     (1.8) 

To complete the Bayesian model formulation, let us 

assume the joint non-informative prior for  and 
2 

as 

g( , 2 )
1
2 , -  < 

i
 < , i =0,…, p-1; 

2
 > 0.    (1.9) 

Combining (1.8) with (1.9) via Bayes theorem yields the 

joint posterior that can be specified up to proportionality 

as 

p( , 2 y,X)
1
2

n/2+1

exp
1

2 2 vs2 + ( ˆ ) X X( ˆ){ }
.   (1.10) 

From (1.10), it can be seen that the conditional 

posterior distribution (see Zellner (1971)) [29] of  

given 
2
 is a p-dimensional multivariate normal with 

mean vector ˆ  and variance-covariance matrix 

(X X) 1 2  where 

ˆ
= (X X) 1X y,       (1.11) 

is the least squares estimate of ,  

s2 =
(y Xˆ) (y Xˆ)

,     (1.12) 

and  = n-p. Further, a simple algebraic manipulation 

can be used to establish that the marginal posterior 

p( y, X)  is a multivariate student’s t distribution with 

degrees of freedom , location parameter ˆ  and the 

scale parameter s2 (X X) 1 . Similarly, it can be shown 

that the marginal posterior distribution of 
2 

is inverted 

gamma with shape parameter (n-p)/2 and scale 

parameter s
2
/2. Thus, we have closed form 

expressions for the posteriors of both  and 
2
 which 

can easily provide the Bayes estimates of  as the 

corresponding least squares estimator and that of 
2
 as 

the corresponding posterior mode (say) of inverted 
gamma distribution. 

2.2. Gamma Regression Model as a Particular Case 
of GLM  

The previous subsection considered a simple form 

of normal regression model as a particular case of 

GLM although it could have been entertained directly 

as a linear model. As mentioned earlier in Sections 1-2, 

there can be several particular cases of GLM. One 

such important subcategory is gamma based 

regression model in a GLM framework that has been 

considered by a number of authors (see, for example, 

Aitkin et al. (1989), Green and Silverman (1994), 

Lindsey (1997), Gill (2001), Dobson (2001), etc.) [30-

34] and that has often been advocated when the 

response variables are positive. To provide a 

mathematical framework, let us assume that the 

response variables y = (y1,…, yn)' are n independent 

observations from a gamma distribution with probability 

density function given by 

f(yi , i ) =
1

( )
( i ) yi

1 exp yi i[ ] ,   (1.13) 

where i is the scale parameter and  determines the 

shape of the distribution. Thus we have assumed that 

the scale parameter changes from variate to variate 
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whereas the shape parameter of the distribution 

remains constant. The mean and variance of the 

distribution can be written as 

E(yi ) = μgi =
i

, 

V(yi ) =
i
2 =

μgi

i

.  

A simple reparameterization in the model (1.13) 

results in the probability density function given as 

f(yi ,μgi ) =
1

( ) μgi
yi

1 exp yi
μgi

,  (1.14) 

which now has mean μgi and variance 
μgi

2

. The 

coefficient of variation based on the model is constant 
and, therefore, we should roughly require the data to 
have this characteristic.  

For gamma based regression model, there can be 

several link functions which can combine E(yi) with the 

corresponding covariates. One such function is 

logarithmic link function that can be written as 

log {E(yi ,xi )} = log (μgi ) = i = xi.    (1.15) 

Obviously, the link function has been chosen such 

that the negative values μgi can be avoided. Moreover, 

it is to be noted that the gamma model originally given 

in (1.13) cannot be directly considered to provide the 

particular case of GLM but the form given in (1.14) 

does the thing routinely with the link function given in 

(1.15).  

The error term (residual) can be defined similarly as 

it has been done earlier for normal regression case. 

The likelihood function based on this modelling 

assumption can, therefore, be written as 

L(y , ,X) =

1

(v)
{ /exp(xi )} yi

1 exp { yi /exp(xi ) }[ ]
i=1

n (1.16) 

To complete the Bayesian model formulation, let us 

consider the normal priors for the regression 

coefficients and uniform prior for the shape parameter 

(see, for example, Congdon (2007)) [35], that is, 

g ( i)  N ( , 
2
), i = 0,1,…,p-1 

g( )  U(0, ),        (1.17) 

where , , and  are the hyperparameters. It is to be 

noted that if we consider large values of  and , the 

resulting prior affect will be nearly vague. In addition, 

we have assumed all i’s have same means and 

variances a priori although one can remove this 

restriction and can consider different means and 

variances as well. 

Combining (1.16) with (1.17) via Bayes theorem 

yields the joint posterior of the parameters but 

unfortunately that cannot be specified in a closed form 

except that it can be written up to proportionality as a 

product of (1.16) and (1.17). The solution can, 

however, be obtained via Markov chain Monte Carlo 

simulation and a simple code in WINBUGS or R can do 

the job. We do not specify the posterior up to 

proportionality although the same can be routinely 

written. 

3. BAYES INFORMATION CRITERION 

The BIC also known as Schwarz criterion is a well-

known tool for comparing the models. According to this 

criterion, a model is recommended if it minimizes the 

corresponding term given by 

BIC = -2 (log (L( ˆ )) + p log (n)     (1.18) 

where L (ˆ )  denotes the maximized likelihood function 

corresponding to a model indexed with parameter , n 

denotes the total number of observations and p is the 
dimension of the concerned model. It is to be noted 
that the first term in the right hand side of (1.18) 
supports a more complex model and second term 
supports a simpler model having low dimensions. Thus 
BIC, being free from any prior information, penalizes 
the complexity of the model according to its dimension. 
It is a consistent measure in the sense that the 
probability of selecting the correct model tends to unity 
as the number of observations approaches infinity 
although it suffers from a disadvantage that it is a valid 
measure only for a well-behaved model (see, for 

example, Ghosh et al. (2006)) [36]. The quantity ˆ  in 

(1.18) can be replaced by posterior mode if the prior is 
vague.  

4. A REAL DATA EXAMPLE 

The real data example, initially reported and 

analyzed by Shukla et al. (1993) [5], is related to bile 

acid distributions in 10 controls, 10 gallstone patients 

and 10 carcinoma patients in a study carried out at SS 

Hospital, Banaras Hindu University. In the two study 

groups, the patients underwent cholecystectomy for 

gallstones. Age and sex matched patients in the control 
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group underwent laparotomy for appendicectomy, 

peritoneal tuberculosis or intestinal obstruction and did 

not have any biliary tract procedure. The patients with 

advanced carcinoma of the gall bladder had stones in 

their gall bladder as observed from their previous 

records. The data sets in the form of four important 

constituents, namely, Cholic Acid (CA), 

Chenodeoxycholic Acid (CDCA), Deoxycholic Acid 

(DCA), and Lithocholic Acid (LCA) are shown in Tables 

1-3 for the three categories of patients. These 

constituents were recorded with utmost care to avoid 

any kind of contamination of bile samples with blood. 

The details of the procedure used to obtain these 

observations and other related details on bile acid 

constituents are given in Shukla et al. (1993) [5] so we 

skip these discussions due to space restriction.  

Among several important studies conducted by 

Shukla et al. (1993) [5], they also considered gas-liquid 

Chromatographic study using Chemito 3800 CC model, 

a 5-foot column with an inside diameter of 0.025'' 

containing 3% OV-17. They observed that there was a 

change in the peaks of individual bile acids, in general, 

from one group to another though the change in LCA 

and CDCA was comparatively meager as compared to 

other two constituents. While there was almost no 

change in LCA and CDCA from control group to 

cholelithiasis, there was only a minor change from 

cholelithiasis to carcinoma. DCA and CA were showing 

rapid change in their peaks from one group to another. 

The change in the peaks of DCA (CA) was from low 

(high) to high (low) as we moved from control group to 

cholelithiasis and then to carcinoma. In general, their 

finding based on Chromatographic study can be 

narrated as follows. Both the primary acids exhibit a 

decreasing trend whereas both the secondary acids 

exhibit an increasing trend as we move from control 

Table 1: Distribution of Bile Acid Constituents (mg/ml) in the Control Group 

Patient Number CA CDCA DCA LCA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

15.2 

28.3 

22.5 

16.7 

12.9 

18.6 

24.6 

12.3 

17.3 

25.4 

19.00 

21.56 

27.14 

12.92 

13.52 

22.06 

22.86 

16.82 

15.30 

24.80 

7.42 

1.07 

1.62 

0.45 

2.62 

0.75 

2.07 

6.42 

4.23 

3.43 

0.00 

0.08 

0.03 

0.06 

0.41 

0.04 

0.51 

0.02 

0.07 

0.05 

Total 193.8 195.98 30.08 1.27 

Mean 19.38 19.59 3.00 0.12 

 

Table 2: Distribution of Bile Acid Constituents (mg/ml) in the Cholelithiasis Group 

Patient Number CA CDCA DCA LCA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

8.50 

6.80 

8.70 

10.20 

7.30 

4.10 

6.00 

10.50 

13.30 

7.90 

9.92 

14.44 

11.40 

11051 

12.38 

4.51 

6.69 

10.65 

9.18 

12.92 

3.37 

2.08 

4.44 

1.31 

0.64 

2.67 

1.85 

3.57 

3.37 

8.25 

0.22 

0.78 

0.29 

0.29 

0.16 

0.16 

0.29 

0.27 

0.69 

0.29 

Total 83.30 103.60 31.55 3.44 

Mean 8.33 10.36 3.15 0.34 
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group to cholelithiasis and then to carcinoma although 

there was no statistical testimony to this fact. 

Shukla et al. (1993) [5] further considered classical 

significance testing and they observed that the patients 

with gall bladder carcinoma had significantly higher 

concentration of secondary bile acids in comparison to 

the patients in other two groups. There was no 

significant difference in the secondary bile acids 

concentration among the control and the cholelithiasis 

groups. Among other findings, they also observed a 

significant correlation co-efficient between CA and LCA 

and between DCA and CDCA.  

5. BAYES ANALYSIS OF THE REAL DATA 
EXAMPLE  

For the purpose of numerical illustration, we 

consider the real data sets given in Tables 1-3 and 

analyze the same in a Bayesian framework using the 

modelling formulations given in subsections 2.1-2.2. 

The main objective of the analysis is to see how the 

different constituents of bile acid change from one 

category of patients to another. We, therefore, assume 

each of the primary variables as a response variable 

and the two secondary acids as the predictor variables. 

Similarly, we assume each of the two secondary 

variables as the response variable and the two primary 

acids as the predictor variables. That is, we consider 

only three constituents of biliary acid at a time. This 

strategy has been adopted for visualizing the changing 

pattern of each biliary acid constituent from one 

category of patients to another that has been shown in 

Section 5.3 based on predictive simulation technique. It 

is to be noted here that the preliminary investigation of 

the data for the search of an appropriate model may 

not be too fruitful as the number of observations in 

each category is too small to guess any authentic 

behaviour from the data. A few of the preliminary 

results, however, exhibited both symmetric and slightly 

skewed behaviour for various bile acid constituents 

which are to be taken as response variables. 

The size of the data is so small, by the central limit 

theorem (CLT) states that, given certain conditions, the 

arithmetic mean of a sufficiently large number of 

iterates of independent random variables, each with a 

well-defined expected value and well-defined variance, 

will be approximately normally distributed, regardless of 

the underlying distribution. That is, suppose that a 

sample is obtained containing a large number of 

observations, each observation being randomly 

generated in a way that does not depend on the values 

of the other observations, and that the arithmetic 

average of the observed values is computed. If this 

procedure is performed many times, the central limit 

theorem says that the computed values of the average 

will be distributed according to the normal distribution 

(commonly known as a "bell curve").  

It is to be noted here that the preliminary 

investigation of the data for the search of an 

appropriate model may not be too fruitful as the 

number of observations in each category is too small to 

guess any authentic behavior from the data. A few of 

the preliminary results, however, exhibited both 

symmetric and slightly skewed behavior for various bile 

acid constituents which are to be taken as response 

variables.  

Also based on the predictive simulation technique 

predicted values are independently and identically 

distributed and converge to normal distribution. 

Table 3: Distribution of Bile Acid Constituents (mg/ml) in the Carcinoma Group 

Patient Number CA CDCA DCA LCA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2.40 

6.20 

4.20 

3.00 

2.20 

4.50 

6.90 

3.20 

7.30 

5.50 

8.56 

8.67 

13.68 

9.81 

11.01 

8.47 

7.27 

4.75 

9.78 

6.58 

12.13 

13.24 

15.51 

16.36 

11.31 

11.16 

7.61 

3.33 

10.01 

8.74 

4.20 

4.04 

1.47 

1.11 

1.18 

3.63 

3.02 

0.59 

2.45 

2.67 

Total 45.40 88.58 109.40 24.36 

Mean 4.54 8.85 10.94 2.43 
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Therefore the impact of the correlation in a small 

sample would be vanished when drawing large number 

of predictive samples from simulation. And, to illustrate 

this technique we have used two different families’ 

normal and gamma in generalized linear model. 

5.1. Analysis Based on Normal Regression Model 

We first proceed to obtain the Bayes estimators of 
various parameters involved in the model. For the sake 

of clarity, we use a subscript N with  to specify the 

estimates corresponding to normal regression model. 

Since the Bayes estimators of  corresponding to 

normal regression model are available in closed form, 
we easily obtained the same for each of the data 

values given in Tables 1-3. The Bayes estimate of  for 

each of the three categories of patients was obtained 
using ordinary Monte Carlo simulation by generating 
5000 inverted gamma variates with shape parameter 

(n-p)/2 (n=10, p=3) and scale parameter s
2
/2 and 

retaining the sample based estimate in the form of 
posterior median and mode. The estimates 
corresponding to control group, cholelithiasis group, 
and carcinoma group are shown in Table 4. The values 
with asterisk represent the posterior modes. In the 

table N0, N1, N2, and  ( N0, N1, N2, and ) are the 

parameters associated with the situation when the 
primary acid CA (CDCA) is regressed with the 
secondary bile acids DCA and LCA. Similarly, 

N0
s , N1

s , N2
s and s  ( N0

s , N1
s , N2

s and s ) are the 

parameters associated with the situation when the 
secondary bile acid DCA (LCA) is regressed with the 
primary acids CA and CDCA. 

Since N0, N0, N0
s , and N0

s  are the intercepts, they 

can simply be regarded as the expected value of the 

corresponding response variable when all the other 

predictors are zero. It is obvious from the results of N0 

and N0 that the expected values of primary acids (CA 

and CDCA) decrease from Control group to 
Cholelithiasis group and then to Carcinoma group 
when both DCA and LCA are zero (see the values of 
estimated intercepts in Table 4). These findings may be 
interpreted in two ways although the interpretation may 
not often be relevant. First, decrease in the levels of 
primary bile acid, on average, causes gallstones and 
then causes carcinoma among the patients who have 
very small (almost zero) values of DCA and LCA. 
Second, the gallstones and the carcinoma reduce the 
levels of CA and CDCA when DCA and LCA values are 
very small (close to zero). We definitely cannot use this 
finding to conclude that carcinoma of gallbladder is 
caused by decrease in primary bile acids (due to 
limitation of our available data) although we are 
tempted to say that the decrease in the levels of CA 
and CDCA and occurrence of gallstones and 
carcinoma may be related, either one causing the 
other, when DCA and LCA are almost zero. A similar 

conclusion can be drawn based on N0
s  and N0

s  when 

the two secondary acids are considered as response 
variables (see Table 4) although we do not find a 
specific trend when LCA is regressed with CA and 
CDCA. A word of remark: the validity of the conclusion 
based on intercepts is correct only if the predictor 
variables are all zero (or quite close to zero), a situation 
which has no relevance in true sense. 

Similarly, the regression coefficients N1, N2, N1, 

N2, N1
s , N2

s ,  N1
s , and N2

s  represent the expected 

change in the concerned response variable per unit 
change in the associated predictor variable at a 
constant value of other predictor variable. We shall not 
be able to speak much based on these estimated 

Table 4: Bayes Estimators of Normal Regression Parameters Under the Assumption of Each Biliary Acid Constituent 
as a Response Variable  

Bayes estimates corresponding to 
Parameters 

Control group Cholelithiasis group Carcinoma group 

N0 ( N0) 23.095 (21.409) 6.246 (7.802) 4.367 (4.132) 

N0
s ( N0

s ) 5.801 (0.179) 1.502 (-0.057) 0.765 (1.654) 

N1 ( N1) -1.176 (-0.416)  0.166 (0.271) -0.113 (0.535) 

N2 ( N2) -1.508 (-4.615) 4.502 (5.146) 0.581(-0.448) 

N1
s ( N1

s ) -0.328 (0.010) 0.067 (0.024) -0.161 (0.257) 

N2
s ( N2

s ) 0.185 (-0.013) 0.103 (0.019) 1.232 (-0.046) 

 ( ) 
5.729 (5.584) 

*4.905 (*4.893) 

2.817 (3.218) 

*2.357(*2.773) 

1.993 (1.616) 

*1.701(*1.417) 

s ( s ) 
2.363 (0.205) 

*2.028(*0.176) 

2.500 (0.225) 

*2.115(*0.192) 

2.721 (1.427) 

*2.316(*1.220) 
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values except that we can point out the kind of 
relationship between the corresponding response 
variable and the associated predictor variable for each 
category of patients. Say, for example, estimated 

values of both N1 ( N1) and N2 ( N2) are showing a 

negative relationship of CA (CDCA) with DCA and LCA 
in the control group. A similar conclusion can be drawn 
based on other estimated values of regression 
coefficients for different categories of patients. The 

estimated , , s ,  and s  show the variability of the 

corresponding response variable for the three 
categories of patients. It can be seen that the 
variability, in general, decreases from Control group to 
Cholelithiasis and then to Carcinoma group for CA and 
CDCA whereas it, in general, increases for DCA and 
LCA. 

5.2. Analysis Based on Gamma Regression Model 

We next considered analyzing the same data sets 
(Tables 1-3) using the gamma based regression 
modelling formulation discussed in subsection 2.2. The 
study was conducted exactly in a way as it was done 
earlier for normal regression modelling case. We use 

the subscript G with  to specify the estimates based 

on gamma regression model. It is to be noted here that 
the posterior corresponding to this situation (see 
subsection 2.2) is not available in closed form and, 
therefore, we used WINBUGS software to simulate the 
posterior and to obtain the estimates of the concerned 
parameters. The estimates corresponding to control 

group, cholelithiasis group, and carcinoma group are 
shown in Table 5. The values with asterisk represent 

the posterior modes. In the table G0, G1, G2, and  

( G0, G1, G2, and ) are the parameters associated 

with the situation when the primary acid CA (CDCA) is 
regressed with the secondary bile acids DCA and LCA. 

Similarly, G0
s , G1

s , G2
s and s  ( G0

s , G1
s , G2

s and s ) are 

the parameters associated with the situation when the 
secondary bile acid DCA (LCA) is regressed with the 
primary acids CA and CDCA.  

We can conclude similarly on the basis of the 

estimated intercepts and the regression coefficients but 

most of the conclusions have their own limitations as it 

was seen in the normal case. Say, for example, the 

intercept provides the expected value of the 

corresponding response variable only if the associated 

predictors are all zero, a situation that can be 

hypothetical only since we shall never have the 

predictors zero for the situation under consideration. 

Similarly, one can conclude on the basis of estimated 

regression coefficients possibly for the purpose of 

exploring the kind of relationships among the different 

variables. The estimated shape parameters, however, 

do provide an important conclusion. It can be seen that 

these estimates are often quite large and, therefore, 

advocate for the use of normal model as the gamma 

model with large shape parameter can be 

approximated by a normal model. In situations where 

Table 5: Bayes Estimators of Gamma Regression Parameters Under the Assumption of Each Biliary Acid Constituent 
as a Response Variable  

Bayes estimates corresponding to 
Parameters 

Control group Cholelithiasis group Carcinoma group 

G0 ( G0) 

 

2.887 (2.915) 

*2.896(*2.939) 

1.768 (2.015) 

*1.786(*2.039) 

0.963 (1.511) 

*0.976(*1.489) 

G0
s ( G0

s ) 

 

1.908 (-1.169) 

*1.917(*-1.607) 

0.360 (-2.442) 

*0.254(*-2.462) 

0.847 (0.454) 

*0.907(*0.567) 

G1 ( G1) 

 

0.023 (0.026) 

*0.020(*0.025)  

0.050 (0.049) 

*0.039(*0.300) 

0.022 (0.066) 

*0.021(0.068) 

G2 ( G2) 

 

0.206 (-0.041) 

*0.141(*-0.122) 

0.586 (0.512) 

*0.556(*0.457) 

0.133 (-0.031) 

*0.144(*-0.032) 

G1
s ( G1

s ) 

 

0.040 (0.267) 

*0.039(*0.198) 

0.087 (0.082) 

*0.058(*0.067) 

0.044 (0.135) 

*0.020(*0.097) 

G2
s ( G2

s ) 

 

-0.074 (-0.300) 

*-0.064(*-0.276) 

0.011 (0.065) 

*0.021(*0.070) 

0.148 (-0.016) 

*0.145(*-0.026) 

 ( ) 
11.560 (15.200) 

*10.860(*14.900) 

11.950 (11.270) 

*9.340(*10.930) 

6.583 (32.310) 

*5.183(*33.810) 

s ( s ) 
1.492 (0.479) 

*1.195(*0.406) 

2.547 (5.049) 

*2.041(*4.059) 

13.470 (3.334) 

*11.560(*2.659) 
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the estimated shape parameters are not too large, one 

can possibly think for skewed regressor variables and, 

therefore, for gamma model as an important candidate. 

5.3. Real Data Analysis Continued: Predictive 
Simulation and Model Comparison 

So far, we considered the problem of analyzing the 

two regression models for the assumed data sets so 

that the parameters involved in the models can be 

estimated and, as such, the models can be made 

completely specified. Our primary task is definitely 

beyond this. Actually, we need to visualize the 

changing patterns, if any, among the different biliary 

acid constituents from one category of patients to 

another. Before we comment on this important issue, 

let us examine the compatibility of the assumed models 

with the data in hand so that the entertained models 

can be justified before we proceed. 

For studying the model compatibility, we first 

generated 1000 predictive samples each of size 10 

separately for each of the four response variables 

using the values of the corresponding predictor 

variables. This was done independently for all the three 

categories of patients. To clarify, let us consider, for 

example, the control group with CA as the response 

variable and DCA and LCA as predictor variables. So 

we generated 1000 predictive samples each consisting 

of 10 observations (one observation corresponding to 

one patient) for CA using the corresponding estimates 

of N0, N1, N2, and  (respectively reported as 23.095, 

-1.176, -1.508, 5.729 in Table 4) and successive values 

of DCA and LCA in the same category. The predictive 

samples for CA was also obtained for Cholelithiasis 

and Carcinoma groups of patients using corresponding 

estimates of N0, N1, N2,  and the corresponding 

values of the predictor variables DCA and LCA. The 

procedure was similarly repeated for all the four 
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Figure 1: Density estimates showing the predictive means 
for Control, Cholelithiasis, and Carcinoma groups (left to 
right) when CA is the response variable under normal 
regression model (horizontal lines are the corresponding 
observed data means). 
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Figure 2: Density estimates showing the predictive means 
for Control, Cholelithiasis, and Carcinoma groups (left to 
right) when CDCA is the response variable under normal 
regression model (horizontal lines are the corresponding 
observed data means). 
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Figure 3: Density estimates showing the predictive means 
for Control, Cholelithiasis, and Carcinoma groups (left to 
right) when DCA is the response variable under normal 
regression model (horizontal lines are the corresponding 
observed data means). 
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response variables and all the three categories of 

patients using corresponding estimates of ’s and 

corresponding values of predictor variables (see also 

subsection 4). We lastly calculated 1000 predictive 

means based on 1000 simulated predictive samples 

under each considered category of response variable 

and obtained the density estimates of predictive means 

using boxplot representations. 
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Figure 4: Density estimates showing the predictive means for 
Control, Cholelithiasis, and Carcinoma groups (left to right) 
when LCA is the response variable under normal regression 
model (horizontal lines are the corresponding observed data 
means). 
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Figure 5: Density estimates showing the predictive means for 
Control, Cholelithiasis, and Carcinoma groups (left to right) 
when CA is the response variable under gamma regression 
model (horizontal lines are the corresponding observed data 
means). 
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Figure 6: Density estimates showing the predictive means for 
Control, Cholelithiasis, and Carcinoma groups (left to right) 
when CDCA is the response variable under gamma 
regression model (horizontal lines are the corresponding 
observed data means). 
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Figure 7: Density estimates showing the predictive means for 
Control, Cholelithiasis, and Carcinoma groups (left to right) 
when DCA is the response variable under gamma regression 
model (horizontal lines are the corresponding observed data 
means). 

The predictive density estimates in the form of 

boxplots are shown in Figures 1-4 when each bile acid 

constituent is considered as a response variable. 

These figures are based on normal modelling 

assumptions for the associated response variables. 

Similarly, the boxplots based on gamma modelling 

assumption for the response variables are shown in 

Figures 5-8. In each of these boxes the dotted 
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horizontal lines represent the corresponding observed 

data means. In addition, each figure shows three 

boxes. These three boxes correspond to Control group, 

Cholelithiasis group, and Carcinoma group of patients 

(from left to right). It can be seen from the figures that 

the mean values for all the observed data lines pass 

through the central regions in the corresponding boxes 

of predictive data means and, therefore, both the 

models are quite compatible with the data under 

consideration. A simple remark: both normal and 

gamma modelling assumptions are almost similar, the 

latter because of the logarithmic transformation for the 

link function, except that the gamma model may be 

able to cover skewness in the data, if any, as well. 

We also drew predictive density estimates of 

individual observations based on matplots with 

superimposed observed data points in the form of bold 

dots. The plots are displayed in Figures 9, 10 

corresponding to normal and gamma regression 

models when CA is the response variable and DCA 

and LCA are the predictor variables. These figures 

correspond to Carcinoma patients. It is to be noted 

here that we drew similar plots for all other categories 

of response variables and different categories of 

patients (similar to what we have presented in Figures 

1-8). These pictures appeared to be more or less 

similar in appearance to those shown in Figures 9, 10. 

We, therefore, omit the other figures due to space 

restriction though the conclusion remains the same that 

both the models are quite compatible with all the three 

categories of data (see Tables 1-3). 

The Figures 1-8 do provide yet another important 

message when considered without horizontal observed 

data lines. It can be clearly seen that the density 

estimates in the form of boxplots show a clear-cut trend 

for the three categories of patients. Let us consider, for 

example, the primary acids CA and CDCA. It can be 

seen that these two biliary acids decrease, in general, 

from Control group to Cholelithiasis group and then to 

Carcinoma group (see Figures 1, 2, 5 and 6) whatever 

modelling assumption is used for the response 

variable. Similarly it can be seen that the secondary 

acids DCA and LCA, in general, increase from Control 

group to Cholelithiasis group and then to Carcinoma 

group irrespective of the choice of models for the 

response variables (see Figures 3, 4 and Figures 7, 8). 

This may be interpreted in several ways. For instance, 

one can say that the decreasing levels of primary acids 

and simultaneously increasing levels of secondary 

acids are the main causes for developing gallstones 

and finally carcinoma. The other interpretation can also 

be likewise given. That is, the development of 

gallstones and carcinoma results in lowering down the 

primary acids and raising the secondary acids. This 

latter conclusion, not so clearly revealed, has often 

been provided by the medical practitioners based on 

Chromatographic or other statistical studies and they 

claim that the gallstones and carcinoma cause some 

bacterial degradation in the patients and, as a result, 

such changes in biliary acid constituents may occur. 

Our data, however, do not support any such conclusion 

due to independent set of observations in the three 

categories. In either case, one finding is quite obvious. 

That is, the decreasing levels of CA and CDCA 

(Figures 1, 2, 5 and 6) and increasing levels of DCA 

and LCA (Figures 3, 4, 7 and 8) may be considered as 

clear indicative of gallstones which may perhaps finally 

result in carcinoma. Therefore, once this tendency 

starts appearing and the patient is diagnosed with 

gallstones, he or she should immediately become 

cautious so that any further change in the levels of 

biliary acid may not occur and the carcinoma of 

gallbladder may be avoided. Such suggestions are 

often given by the medical practitioners based on their 

experiences or some preliminary investigations but the 

easily established analytical support to such finding can 

be considered as the chief feature of our Bayes 

analysis.  

Before we end the section, let us provide some 

results on model comparison as well although the 
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Figure 8: Density estimates showing the predictive means 
for Control, Cholelithiasis, and Carcinoma groups (left to 
right) when LCA is the response variable under gamma 
regression model (horizontal lines are the corresponding 
observed data means). 
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conclusions based on the two models especially with 

regard to predictive inferences are more or less similar 

and, therefore, convey that any of the two models can 

be used. For the purpose of comparison, we simply 

obtained BIC based on the two models. It is to be noted 

that the choice of BIC as a model comparison criterion 

was merely for the sake of ease and one can go for 

other sophisticated measures as well (see Upadhyay 

and Mukherjee (2008)) [37]. The values of BIC are 

shown in Table 6 for different modelling assumptions 

on response variables. It is obvious that the two models 

are equally good if CA and CDCA are the response 

variables whatever kind of patients one considers since 

the values of BIC corresponding to the two models are 

quite close. Similarly, for the situations when DCA and 

LCA are the response variables, the gamma model can 

be recommended for Control and Cholelithiasis groups 

whereas for Carcinoma group either of the two models 

can be taken (see Table 6). As a word of final remark: 

since the two models are equally complex with regard 

to involving same number of unknown parameters and 

the inferences with which we are concerned are more 

or less same, we advocate the use of any of the two 

models for the assumed data sets. The comparatively 

large differences in the values of BIC corresponding to 

the two models especially for Control and Cholelithiasis 

groups may be attributed to the fact that the 

observations are quite small (see Tables 1, 2), 

sometimes even zero or close to zero, and, as a result, 

BIC is largely affected in these two groups. 

6. CONCLUSION AND RECOMMENDATION 

The paper provides an extensive study of different 

categories of gallbladder patients to examine how the 

biliary acid constituents change from Control group to 

Cholelithiasis group and then to Carcinoma group. Two 

special cases of GLM are used for the intended study. 

A real data based study reveals that the two primary 

acids, namely CA and CDCA, decrease from Control 

group to Cholelithiasis group and further decrease 

among the Carcinoma group of patients. The tendency 

is reversed on case of secondary biliary acids, namely 

DCA and LCA. Model validation and model comparison 

have also been taken up using predictive simulation 

ideas and BIC, respectively.  

The findings given in the paper are often reported 

by the medical practitioners based on the 

Chromatographic study but we do not find any 

statistically established results of such analyses 

especially using Bayes paradigm. The decreasing 

tendency of primary biliary acids and the increasing 

tendency of the secondary biliary acids as we move 

from Control to Cholelithiasis and then to Carcinoma 

group can be an important message to medical 

practitioners dealing with gallbladder diseases and who 

are primarily focused to take appropriate preventive 

measures to avoid developing of Carcinoma. There is, 

however, a need to generate appropriate data so that 

more remarkable conclusions such as the following can 

be thought out. Say, for example, if the decreasing 

(increasing) trend in CA, CDCA (DCA, LCA) can be 
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Figure 9: Density estimates showing each individual 
predictive data for Carcinoma group of patients when CA is 
the response variable under the assumption of normal 
regression model (dots exhibit the corresponding observed 
data points).  
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Figure 10: Density estimates showing each individual 
predictive data for Carcinoma group of patients when CA is 
the response variable under the assumption of gamma 
regression model (dots exhibit the corresponding observed 
data points). 
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considered to be important factors for developing 

Cholelithiasis or even Carcinoma or if the diseases 

such as Cholelithiasis and/or Carcinoma cause a 

decrease in the levels of CA, CDCA and increase in the 

levels of DCA, LCA. It is to be noted that such 

conclusions are really meaningful from the viewpoints 

of medial practitioners.  

REFERENCES 

[1] Draper NR, Smith H. Applied Regression Analysis (3rd 

edition). Wiley, New York 1998. 
http://dx.doi.org/10.1002/9781118625590 

[2] Congdon P. Applied Bayesian Modelling. Wiley: New York 
2003.  
http://dx.doi.org/10.1002/0470867159 

[3] Gelman A, Hill J. Data Analysis Using Regression and 

Multilevel/ Hierarchical Models. Cambridge University Press, 
Cambridge 2006. 
http://dx.doi.org/10.1017/cbo9780511790942 

[4] Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. 

Regression methods in Biostatistics: Linear, Logistic, 
Survival, and repeated measures models. Spinger- Verlag, 
New York 2005.  

[5] Shukla VK, Tiwari SC, Roy SK. Biliary bile acids in 
cholelithiasis and carcinoma of the gallbladder. Eur J Cancer 

Prev 1993; 2: 155-160. 
http://dx.doi.org/10.1097/00008469-199303000-00008 

[6] Fraumeni JF. Cancer of pancreas and biliary tract: 
epidemiological considerations. J Cancer Res 1975; 35: 
3437-3446. 

[7] Shukla VK, Khandelwal C, Roy SK, Vaidya MP. Primary 

carcinoma of the gallbladder: A review of a 16 year period at 
the University Hospital. J Surg Oncol 1985; 28: 32-35. 
http://dx.doi.org/10.1002/jso.2930280109 

[8] Nelder JA, Wedderburn RWM. Generalized linear models. J 

Roy Statist Soc Ser A 1972; 135: 370-384. 
http://dx.doi.org/10.2307/2344614 

[9] McCullough P, Nelder JA. Generalized Linear Models. 
Chapman and Hall, London 1989. 
http://dx.doi.org/10.1007/978-1-4899-3242-6 

[10] Breslow NE. Extra Poisson variation in log-linear models. 

Appl Statist 1984; 33: 38-44. 
http://dx.doi.org/10.2307/2347661 

[11] Lawless JF. Negative binomial and mixed Poisson 
regression. Canadian J Statistics 1987a; 15: 209-225.  
http://dx.doi.org/10.2307/3314912 

[12] Lawless JF. Regression methods for Poisson process data. J 
Am Stat Assoc 1987b; 82: 808-815. 
http://dx.doi.org/10.1080/01621459.1987.10478502 

[13] Smyth GK. Generalized linear models with varying 
dispersion. J Roy Statist Soc Ser B 1989; 51: 47-60. 

[14] Fahrmeir L, Tutz G. Multivariate Statistical Modeling Based 
on Generalized Linear Models. Spinger, New York 1991. 

[15] Gelfand AE, Hills S, Racine-Poon A, Smith AFM. Illustration 
of Bayesian Inference in Normal Data Models Using Gibbs 
Sampling. J Am Stat Assoc 1990; 85: 972-985. 

[16] Dey DK, Ravishanker N. Bayesian approaches for 

overdispersion in generalized linear models. Dey DK, Ghosh 
SK, Mallick BK, Eds. Generalized Linear Models: A Bayesian 
Perspective, Chapman & Hall/CRC Biostatistics Series 2000; 
pp. 73-88. 

[17] Breslow NE, Clayton DG. Approximate inference in 

generalized linear mixed models. J Am Stat Assoc 1993; 88: 
9-25. 

[18] Lindsey JK. The uses and limits of linear models. Statistics 
and Computing 1995; 5: 87-89. 

[19] Dellaportas P, Smith AFM. Bayesian inference for 
generalized linear and proportional hazards models via 

Gibbs sampling. Appl Statist 1993; 42: 443-460. 
http://dx.doi.org/10.2307/2986324 

[20] Ibrahim JG. Incomplete Data in Generalized Linear Models. J 
Am Stat Assoc 1990; 85: 765-769. 
http://dx.doi.org/10.1080/01621459.1990.10474938 

[21] Laud PW, Ibrahim JG. Predictive model selection. J Roy 
Statist Soc Ser B 1995; 57: 247-262. 

[22] Das S, Dey DK. On Bayesian analysis of generalized linear 
models using jacobian technique. Am Statist 2006; 60: 264-
268. 
http://dx.doi.org/10.1198/000313006X128150 

[23] Das S, Dey DK. On Bayesian analysis of generalized linear 

models: A new perspective, Technical Report, Statistical and 
Mathematical Sciences Institute, North Carolina, USA 2007. 

[24] Casella G, Robert CP. Rao-Blackwellization of sampling 
schemes. Biometrika 1996; 83: 81-94.  
http://dx.doi.org/10.1093/biomet/83.1.81 

[25] Gelfand AE, Sahu S. Gibbs Sampling, identifiability and 

improper priors in generalized linear mixed models. J Am 
Statist Assoc 1999; 94: 247-253. 
http://dx.doi.org/10.1080/01621459.1999.10473840 

[26] Marin JM, Robert CP. A Practical Approach to Computational 
Bayesian Statistics. Springer-Verlag, New York 2007. 

[27] Nelder JA. Weighted regression, quantal response data, and 

inverse polynomials. Biometrics 1968; 24: 979-985. 
http://dx.doi.org/10.2307/2528884 

[28] Finney DJ. Probit Analysis. University Press, Cambridge 
1952. 

Table 6: BIC for Normal and Gamma Regression Models on Different Response Variables in the Three Groups of 
Gallbladder Patients 

BIC when the response variable is Modelling 
assumption 

Disease group 

CA CDCA DCA LCA 

Control 70.858 68.799 53.947 2.723 

Cholelithiasis 55.857 58.595 52.422 5.853 

Normal 

Carcinoma 49.233 58.056 66.410 42.153 

Control 70.381 68.271 50.183 -17.614 

Cholelithiasis 55.380 60.010 48.227 1.644 

Gamma 

Carcinoma 48.376 59.585 68.827 41.670 



Examining Biliary Acid Constituents among Gall Bladder Patients International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 2      239 

[29] Zellner A. An introduction to Bayesian Inference in 
Econometrics. Wiley, New York 1971. 

[30] Aitkin M, Anderson D, Francis B, Hinde J. Statistical 
Modelling in GLIM. Clarendron Press, New York 1989. 

[31] Green PJ, Silverman BW. Nonparametric Regression and 
Generalized Linear Models. Chapman & Hall, London 1994. 
http://dx.doi.org/10.1007/978-1-4899-4473-3 

[32] Lindsey JK. Applying Generalized Linear Models. Springer, 
New York 1997. 

[33] Gill J. Generalized Linear Models: A Unified Approach. Sage 
University Press, California 2001. 

 

[34] Dobson AJ. An introduction to generalized linear models. 

Chapman & Hall, London 2001. 
http://dx.doi.org/10.1201/9781420057683 

[35] Congdon P. Bayesian Statistical Modelling. Wiley: New York 
2007. 

[36] Ghosh JK, Hjort N, Messan AA, Ramamoorthi RV. Bayesian 
Bivariate Survival Estimation. Journal of Statistical Planning 
and Inference 2006; 136: 2297-2308. 

[37] Upadhyay SK, Mukherjee B. Assessing the value of the 

threshold parameters in the Weibull distribution using Bayes 
paradigm. IEEE Trans Reliab 2008; 57: 489-497. 
http://dx.doi.org/10.1109/TR.2008.928196 

 
Received on 23-04-2015 Accepted on 09-05-2015 Published on 21-05-2015 

 
http://dx.doi.org/10.6000/1929-6029.2015.04.02.9 

 


