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Abstract: Bioequivalence data often do not follow the normality assumption on the linear (original) scale, therefore in 

that situation, the use of the logarithmic transformation is recommended. In the bioequivalence analysis, confusion arises 
about the use of geometric mean ratio when the logarithmic transformation is recommended by the regulatory 
authorities. The purpose of this research paper is to clear this confusion. Different average bioequivalence criteria are 
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1. INTRODUCTION  

In recent development, the importance of 

bioequivalence cannot be discounted. Because in 

pharmaceutical industries, regulatory agencies permit 

manufacturer to market a generic drug if they can 

prove that the generic product is bioequivalent to the 

brand-name product, the assumption is that the 

bioequivalent drug will produce the same therapeutic 

effect as the brand-name product. Furthermore, no 

need to perform clinical trial to demonstrate the safety 

and efficacy of the generic product when the generic 

product manufacturer has already been proved it 

bioequivalent to the brand-name product [1]. 

Bioequivalence study refers to the comparison of 

pharmacokinetic parameters such as AUC, Cmax etc., 

as observed in the experiments related to the 

formulations to be tested. Two formulations are claimed 

as bioequivalent when their amount and speed of 

absorption do not exhibit statistically significant 

difference when administrated at the same molar dose 

of active ingredient, under similar experimental 

conditions [2]. 

According to several regulatory recommendations 

Chow and Liu [3] have defined different average 

bioequivalence criteria, discussed as follows.  

75/75 Rule 

Bioequivalence is concluded when at least 75% of 

subject ratios (relative individual bioavailability of the 

test (T) formulation to the reference (R) formulation) fall 

within range 75%----125%. 
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80/20 Rule 

Bioequivalence is claimed when test and reference 

formulation means are not statistically significant 

different and there is at least 80% power for the 

detection of 20% difference of the reference average. 

±20% Rule 

The test formulation is claimed as bioequivalent to 

the reference when the average bioavailability of the 

test formulation is within 20% of that of the reference 

formulation with a certain assurance. 

80%/125% Rule 

Regulatory agencies (e.g., FDA [4] and FDA [5]) 

recommend the use of logarithmic transformation for 

AUC and Cmax for the bioequivalence analysis. 

According to 80% / 125% rule, the test and reference 

formulations are claimed as bioequivalent to each other 

when the average bioavailability of the test formulation 

is within (80%, 125%) that of the reference formulation. 

This 80%/125% rule which is based on the ratios of two 

average formulations also enables bioequivalence to 

be explained in terms of a difference rather than ratio. 

When the linear (original) scale is considered this 

80%/125% rule is not symmetric about 1 where the 

maximum probability of concluding average 

bioequivalence occurs. However, on the logarithmic 

scale, this criterion has a range of -0.2231 to 0.2231 

and it is symmetric about 0 where the probability of 

concluding average bioequivalence is at maximum. On 

logarithmic scale two formulations are considered to be 

bioequivalent if 90% confidence interval for the ratio of 

two formulations’ average are within the range of (80% 

---125%) or 90% confidence interval for the difference 

of two formulations’ average are within the range of (-

0.2231----0.2231).  



Use of Geometric Mean in Bioequivalence Trials International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 1      115 

Pharmacokinetic (PK) measures assessed by 

bioequivalence are derived directly from the drug 

concentration–time curve, which is described by the 

quantification of a given number of biological samples 

related to previously established collection times.  

The most important PK measure assessed is the 

area under the drug concentration–time curve (AUC), 

frequently used to measure the total amount of drug 

absorbed by the body after a drug administration. 

Maximum concentration (Cmax) is the measure that 

represents the major drug concentration observed and 

is directly proportional to the total drug amount 

absorbed by the body. Another PK measure is Tmax that 

is the collection time in which the maximum 

concentration was observed and is related to the drug 

absorption speed [6, 7]. 

Commonly used design for the evaluation of 

bioequivalence of two formulations (T=test and 

R=reference) is two-period, two-sequence (2X2) 

crossover design [8, 9]. In 2x2 crossover design, each 

study subject is administrated a formulation of a drug 

and then switched over to other formulation after a 

washout period of time [3]. An adequate washout 

period following the administration of any period 

ascertains that drug given is completely eliminated 

before administration of the next drug. Therefore, in 

2X2 crossover design, each study subject is allocated 

either TR or RT sequences in two periods at random. 

More explicitly, subjects allocated to RT (TR) sequence 

receive formulation R (T) in the first period and 

formulation T (R) in the second period [10]. 

2. MULTIPLICATIVE MODEL 

The distribution of PK measures e.g., AUC and Cmax 

are often positively skewed instead of normal, that lead 

to the violation of homogeneity of variances 

assumption. In such situation, the assessment of 

average bioequivalence based upon raw data model 

may not be suitable. Therefore, the logarithmic 

transformation is usually considered in order to achieve 

the normality of data and additive model with relatively 

homogeneous variances [3]. The multiplicative model 

(or log-transformed model) is given as. 

 
Xijk = μSikPjF( j ,k )C( j 1,k )eijk           (1) 

Yijk = ln(Xijk ) = μ + Sik + Pj + F( j ,k ) + C( j 1,k ) + eijk        (2) 

Where μ is the overall mean, Pj  is the fixed effect 

of the j
th

 period with Pj = 0, F( j ,k )  is the fixed effect of 

the formulation in the k
th

 sequence at j
th

 period with 

F( j ,k ) = 0,C( j 1,k )  is the fixed carryover effect observed 

for the formulation in k
th

 sequence at (j-1)
th

 period with 

C( j 1,k ) = 0, Sik  is the random effect for the i
th

 subject 

in k
th

 sequence, and eijk  is the random error. From the 

above multiplicative model it can be seen that 

 
μ = exp(μ),  

 
Sik = exp(Sik ),  

 
Pj = exp(Pj ),  

 
F( j ,k ) = exp(F( j ,k ) ),  

C( j 1,k ) = exp(C( j 1,k ) )  and 
 
eijk = exp(eijk ) . If it is assumed 

that {Sik}  and {eijk}  are independently and normally 

distributed with covariance structure defined by Chow 

and Liu [3] then Xijk  follows a lognormal linear model 

[11, 12]. Equation (1) can be expressed as  

Xijk = exp μ + Sik + Pj + F( j ,k ) +C( j 1,k ) + eijk( )  

The lognormal linear model in (1) requires two 
assumptions, (i) the log transformed data can be 
expressed by an additive model and, (ii) the 

distributions of {Sik}  and {eijk}  are independent and 

normal. Therefore, it is reasonably substantial to verify 
these assumptions on the log-transformed and the 
linear scale [13].  

Usually the ratio of means of PK parameter 

between test and reference formulations is considered 

as the measure of average bioequivalence. As 

mentioned above, the situation where the distribution of 

PK parameter is not normal, some researchers suggest 

that the ratio of medians (i.e., M(XT)/M(XR)), instead the 

ratio of means, [14, 15] should be used as an 

alternative measure of average bioequivalence under 

the fact that in such situations the medians are better 

representative of central location [3]. 

3. USE OF GEOMETRIC MEAN 

When the logarithmic scale is used, the FDA [4] 

requests that in the assessment of average bioequi-

valence the ratio of geometric mean of two formulations 

on the linear scale should be considered [16]. 

This use of geometric means is the fact that, 

geometric mean is an approximately unbiased 

estimator of median rather than mean.  

A positive-valued random variable X follow 

lognormal distribution when logarithm of X is normally 

distributed 

Y = ln(X) ~ N(μ, 2 )

ln(XT XR ) = lnXT + lnXR = YT +YR ~ (μT + μR, T
2
+ R

2
+ 2 TR )

ln(XT / XR ) = lnXT lnXR = YT YR ~ (μT μR, T
2
+ R

2 2 TR )

 (3) 
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A random sample X1, X2,…, Xn is drawn from 
lognormal distribution with corresponding mean  and 

variance 2  on the log transformed scale, i.e., 

Yi = ln(Xi ) ~ N(μ,
2 )  the arithmetic mean y  is the point 

estimate of . 

Theorem 1: An Exponential transformation of the 
estimate y  results in the geometric mean of the 

untransformed variable, i.e.  

exp(Y ) = Xii=1

n
n = G M (Xi )          (4) 

Proof: 

exp(Y ) = exp Yi
n

i=1

n

= exp Yi n( )
i=1

n

= exp lnXi
n( )

i=1

n

= exp lnXi

1
n( )

i=1

n

= Xi

1
n

i=1

n

= Xi
i=1

n

n

 

Hence we can write as  

exp(Y ) = G M (Xi )           (5) 

Theorem 2: Geometric mean is not an unbiased 
estimator of the population mean on the linear scale.  

Proof: 

Consider, E Xii=1

n
n  

E Xi
i=1

n

n = E Xi

1
n

i=1

n

= E Xi

1
n( )

i=1

n

 

Now consider E Xi

1
n( )  

The density function of log normal random variable 

xi is  

f (X) =
1

20

1

x
exp

(ln x μ)2

2 2 dx  

It can be easily proved that 

E(Xi ) = exp μ +
2

2
and M (Xi ) = exp(μ)  

Where E(Xi )  and M (Xi )  are mean and median of 

log normal random variable Xi 

E Xi

1
n( ) = 1

20

1

x
x1/n exp

(ln x μ)2

2 2 dx  

Let lnX = t x = exp(t)  

dx = exp(t)dt  

Now  

E Xi

1
n( ) = 1

2

1

exp(t)
exp(t)1/n exp

(t μ)2

2 2 exp(t)dt

=
1

2
exp

{(t μ)2n 2 2t}

2n 2 dt

=
1

2
exp

n t μ
2

n

2 4

n
2 2μ

2n 2 dt

=
1

2
exp

n t μ
2

n

2

2n 2 exp

4

n
+ 2μ 2

2n 2 dt

= exp
μ

n
+

2

2n2
1

2
exp

t μ
2

n

2

2n 2 dt

 

Since 
1

2
exp

t μ
2

n

2

2 2 dt = 1  with 

mean = μ +
2

n
and variance = 2  

Therefore E Xi
1/n( ) = exp

μ

n
+

2

2n2
 

Now we can write as  

E Xi
i=1

n

n = E Xi
1/n

i=1

n

= exp
μ

n
+

2

2n2i=1

n

E Xi
i=1

n

n = E(GM (Xi )) = exp μ +
2

2n

 

Hence it is proved that the geometric mean on the 
linear scale is not an unbiased estimator of the 
population mean. The associated bias factor can be 
described as  

Using the equation (5) 
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E(exp(Y )) = exp μ +
2

2n

E(exp(Y )) = exp μ +
2

2n
= exp μ +

2

2
exp

2

2
(1 1 / n)

E(exp(Y )) = E(Xi ) exp
2

2
(1 1 / n) = (true mean).(bias factor)

 

Since for 2
> 0  the bias factor exp

2

2
(1 1/ n)  

is always smaller than 1, therefore, 

E(exp(Y )) = E(Xi )exp
2

2
(1 1 / n) < E(Xi )  

Geometric mean is also not unbiased estimator of 
population median and associated biased factor can be 
described as 

E(exp(Y )) = exp(μ)exp
2

2n
= (true median)(bias factor)  

Gilbert [17] mentioned that this bias factor is 
positive and as n increases the bias factor decrease. 

Hence, for the large sample size 
1

n
0  the geometric 

mean is approximately, unbiased estimator of the 
population median.  

E(exp(Y )) = exp μ +
2

2n
exp(μ) = M (X)  

When true population mean is estimated by 

computing geometric mean, the bias factor is less than 

1 and does not go to zero when n increases. Whereas, 

when true population median is estimated by 

computing geometric mean, the bias factor decreases 

as n increases, therefore, geometric mean is 

approximately unbiased estimator of population 

median. This property of geometric mean became a 

rationale for using the geometric mean ratio of test and 

reference formulations for the point estimate in average 

bioequivalence in the situation where PK parameters 

are not normally distributed and the ratio of two 

formulation medians is a better choice to measure the 

average bioequivalence.  

The test formulation is said to be bioequivalent to 

the reference one if a (1-2 ) 100% confidence interval 

for the difference or the ratio of formulation means fall 

between the bioequivalence ranges recommended by 

regulatory authorities. Usually level of significance 

considered as 5%, consequently 90% confidence 

interval for the difference or ratio is used for evaluation 

of average bioequivalence.  

Linear Scale (without Transformation) 

To claim, the test formulation is average 

bioequivalent to the reference formulation, it is usually 

required that the confidence interval for the difference 

of two formulations means be within ±20% of the 

reference formulation (or the ratio of two formulations 

means be within (80%---120%)).  

i.e., the average bioequivalence interval using the 

difference of two formulations means is expressed as 

0.2μR < (μT μR ) < 0.20μR          (6) 

In common practice, the limits ±0.20μR  shall be 

estimated as they depend on the population parameter, 

the usual choice is ±0.20YR . Where μR  and μT  are 

reference and test formulation population means on the 

linear scale respectively and YR  is the reference 

formulation sample mean.  

Dividing the above equation (6) by μR  give the 

average bioequivalence interval for the ratio of two 
formulation means 

0.20 <
(μT μR )

μR

< 0.20  

0.80 <
μT

μR

<1.20            (7) 

Logarithmic Scale (with Transformation) 

Let X denote the pharmacokinetic measure on the 

linear scale, now μ̂  denotes the geometric mean of X 

and μ  denotes the arithmetic mean of log normally 

distributed pharmacokinetic measure (y=ln X).  

When logarithmic scale is used, the FDA [4] 

suggests that to conclude average bioequivalence the 

interval of the ratio of geometric mean (computed on 

the linear scale) of two formulations be within range 

(80%---125%). i.e., 

0.80 <
μT

μR

<1.25            (8) 

The use of the range 80% to 125% is the fact that 

there is a correspondence to the symmetrical average 

bioequivalence interval for the difference of means on 

the logarithmic scale 
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After taking the logarithm, the equation (8) becomes  

ln(0.80) < ln
μT

μR

< ln(1.25)          (9) 

Using the equation (5) 

0.22314 < ln
eμT

eμR
< 0.22314        (10) 

Now it can be easily written as  

0.22314 < μT μR( ) < 0.22314        (11) 

Where μR  and μT  are the test and reference 

formulation population means on the logarithmic scale. 

4. EXAMPLE 

Hauschke, Steinijans [18] considered the following 

example of BE study from [19]. This was two-period, 

two-sequence crossover study with a one-week 

washout period, where two capsules each of 200 and 

300 mg theophylline used as the reference and two 

capsules of 500 mg theophylline as test formulation. 

Eighteen subjects were randomized equally into two 

sequences RT and TR. Blood samples were taken prior 

to drug administration and after 1, 2, 3, 4, 5, 6, 8, 10, 

12, 14, 16, 18, 20, 22, 24, 28, 36, 40, 44 and 48 hours 

after the administration. One of the primary 

pharmacokinetic parameter was AUC (0-inf). The data 

are given in Table 2. 

Table 1: Summary of Average Bioequivalence Intervals for the Difference and Ratio of Two Formulation Means on 
both Linear and the Logarithmic Scale 

Scale Difference Ratio 

Linear 0.2μR < μT μR( ) < 0.20μR  
0.80 <

μT

μR

<1.20  

Logarithmic 0.22314 < μT μR( ) < 0.22314  

 

0.80 <
μT

μR

<1.25  

 

Table 2: Area under the curve AUC (0-inf) for the test (T) and reference (R) formulations 

Subjects Sequence Period I Period II 

1 TR 228.04 288.79 

2 RT 339.03 329.76 

3 TR 288.21 343.37 

4 RT 242.64 258.19 

5 RT 249.94 201.56 

6 TR 217.97 225.77 

7 TR 133.13 235.89 

8 RT 184.32 249.64 

9 TR 213.78 215.14 

10 TR 248.98 245.48 

11 TR 163.93 134.89 

12 RT 209.3 231.98 

13 RT 207.4 234.19 

14 TR 245.92 223.39 

15 RT 239.84 241.25 

16 RT 211.24 255.6 

17 TR 188.05 169.7 

18 RT 230.36 256.55 



Use of Geometric Mean in Bioequivalence Trials International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 1      119 

Descriptive statistics such mean and standard 

deviations for test and reference formulations in both 

periods I and II are presented in Table 3.  

Point estimates and 90% confidence intervals for 

difference and ratio of formulation means on linear and 

logarithmic scales are presented in Tables 4 and 5 

along with bioequivalence decisions. 

It is obvious from Tables 4 and 5 that the 

confidence intervals for the difference and ratio of two 

formulations means are within the bioequivalence 

ranges described above, therefore, it is concluded that 

reference formulation is the bioequivalent to the test 

formulation. 

5. DISCUSSION 

Under the assumptions of a lognormal linear model, 

the exponentiation of the confidence interval for the 

difference of test and reference formulation means 

based on the log-transformed scale gives the 

confidence interval for the ratio of geometric means of 

two formulations on the linear scale. As recommended 

by the FDA, for the assessment of average 

bioequivalence, the ratio of geometric means must be 

used when linear data is apart from normality 

assumption. Therefore, one must have a clear concept 

about the assessment of bioequivalence on the 

logarithmic scale. In this research, we tried to describe 

the rationale, why the ratio of geometric means of test 

and reference formulations is used when data exhibit 

violation of normality assumption. We also tried to 

clarify the concept of average bioequivalence intervals 

based on the difference or ratio of test and reference 

formulation means.  
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