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Abstract: Lot Quality Assurance Sampling (LQAS) is strongly advocated for use in monitoring the health status of 

populations, largely in the developing world. It is advocated both for the monitoring of small areas as well as for making 
global assessments of the health status of a larger region. This paper contrasts the interpretation offered by LQAS 
methods to that offered by Bayesian hierarchical models. It considers applications to previously reported local area data 

and presents a reanalysis of published data on vaccine coverage in Peru as well as HTLV-1 prevalence in Benin. The 
desirability of using Bayesian methods in the field may be challenged; nevertheless this work amplifies previously 
expressed concerns about the way the LQAS method can be used. It raises questions about the ability of the LQAS 

approach to make, sufficiently often, the correct decisions in order to be useful in monitoring health programmes at the 
local level. 
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BACKGROUND 

In the last few decades, Lot Quality Assurance 

Sampling (LQAS) has been applied in a wide range of 

healthcare settings [1]. LQAS is a well-established 

industrial technique intended for processes that are 

under statistical control [2]. Early work on LQAS 

predates Neyman and Pearson’s work on hypothesis 

testing [3]. LQAS aims to make a correct classification 

as to whether a batch of manufactured products can be 

determined as “acceptable” or “not acceptable” in an 

industrial setting where effort and expense have been 

dedicated to ensuring that the process being monitored 

is under statistical control. This means that features of 

the process being monitored, such as the variance, are 

well characterized before the sampling scheme is 

established. Indeed, in the manufacturing context 

considerable effort may already have been expended 

to minimize variation in the process. Another feature of 

manufacturing is that the accuracy of classifying 

sampled objects as “acceptable” or “not acceptable” 

may be much higher than is possible in a healthcare 

setting. 

There are currently many references which describe 

LQAS designs being used within healthcare, some of 

which refer to making local assessments of healthcare 

status (vaccine coverage, disease prevalence) in a 

manner analogous to the way in which LQAS is used in 

industry [1]. This paper will consider a previously 

published application to disease prevalence in some 
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detail [4]. There are further references which describe 

the use of LQAS collected data as a particular cluster 

sampling approach and the analysis is conducted to 

give a global estimate of prevalence [5]. Thus it is 

possible to see applications of the basic LQAS sample 

being used either in a classification way or in a survey 

sampling way. There have been extensive 

contributions to the literature in the last few years 

regarding LQAS including editorial comment in leading 

journals [6]. This paper seeks a further exploration of 

the closeness of the healthcare and industrial 

conceptualisations of the LQAS strategy. It is 

interesting to note that there has been some debate in 

the literature as to whether LQAS can be regarded as a 

classification or an hypothesis testing method.  

This paper will approach the use of LQAS from a 

Bayesian perspective. This is motivated by the desire 

to obtain a posterior distribution for the quantity of 

interest which can be interrogated to give a direct 

estimate of the supplier and client risks when 

classifying a small area. In LQAS, these risks have to 

be pre-specified in the design and selection of sample 

size and decision criteria. There have already been 

intriguing suggestions in the literature for a Bayesian 

interpretation of an LQAS design [7]. The advantage of 

using a modeling approach (whether Bayesian or not) 

is that additional contextual information can be 

included. This is clearly important when estimating the 

prevalence of a condition that can vary considerably by 

strata where it is not possible to obtain LQAS samples 

that have been balanced with respect to these strata. 

The second case study (HTLV-1 prevalence in Benin) 

clearly shows an example where population strata are 

important. Another potential advantage of modeling is 
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that we can account for uncertainty in missing 

covariates, for example by including hierarchical, 

temporal or spatial random effects. The second case 

study clearly shows that the HTLV-1 data are 

overdispersed relative to basic probability models such 

as the Hypergeometric and Binomial. Hence part of the 

discussion will review the implications of overdispersion 

for the correct performance of LQAS decision rules. 

Derivation of LQAS Sampling Plans 

LQAS sampling plans are based upon classifying a 

whole batch as “acceptable” by determining whether 

the number of “marks” from that batch exceeds a pre-

determined amount. The original proposals for LQAS 

assumed that these marks could be considered a 

random variable following a Hypergeometric 

distribution. Here, the idea is that a sample of size n 

has been taken without replacement from a population 

of size N where that population consists of K 

individuals of state 1 (having the mark) and N-K 

individuals of state 0 (not having the mark). Letting X 

denote a random variable that counts the number of 

individuals in state 1 in a sample of size n, then X is 

said to have a Hypergeometric distribution if the 

probability mass function is: 

P(X = x) =

K

x

N K

n x

N

n

.  

LQAS then informs the construction of decision 

rules based on maintaining the probability of 

misclassifying a batch below pre-specified levels for a 

population with different proportions of 

(N K )

N
.  

It could be possible to consider this decision as a 
kind of composite hypothesis test where the 
classification is based on selecting values of n and k 
such that the risk is maintained below a threshold for a 

range of values 
N K

N
 to 

N

N
. 

A key point to note about the use of the 

Hypergeometric distribution is that it makes a very 

strong statement about the variance, namely that 

Var(X) =
nk(N k)(N n)

N 2 (N 1)
 

In a sample survey setting it is possible to model the 

number of marks in a sample using a Binomial 

distribution. Both the Binomial and Hypergeometric 

distributions are generalizations of a Bernoulli 

distribution for finite populations; the former appropriate 

for sampling with replacement and the latter 

appropriate for sampling without replacement. Indeed, 

under certain conditions a Binomial random variable Y 

has a similar distribution to a Hypergeometric random 

variable X in that P(X k) = P(Y k).  This point will be 

expanded in the discussion but for now it should be 

noted that many observed datasets feature 

overdispersion – a situation where the variance of the 

data is much larger than that predicted by a chosen 

probability model [8]. Common solutions to his include 

using a slightly different probability model; for example 

substituting the Binomial distribution by a Quasi-

Binomial or a Beta-Binomial. Alternatively, it is common 

to use random effect models as a means of accounting 

for this failure of model assumptions. This paper will 

demonstrate that overdispersion exists in previously 

published LQAS data and illustrate how to account for 

this by using a carefully constructed model. 

The problem of overdispersion may be more likely 

in observational datasets such as those used in LQAS 

healthcare settings. There are some notable 

differences between industrial process control and 

monitoring health outcomes. In an industrial setting, the 

parameters of the process being monitored are often 

well understood and usually some effort has been 

expended towards the goal of reducing variation. LQAS 

is therefore used to confirm that a process is still 

operating within acceptable limits. In many published 

healthcare applications, even those working under a 

Monitoring and Evaluation framework the goal is 

different – monitoring service delivery or prevalence in 

order to reduce variation in a process is not an aspect 

of the context. Indeed, it seems likely that a human 

system (where different localities may operate in a 

different manner or where the prevalence may alter 

among different subsets of the population) the process 

is far more variable than the industrial systems where 

LQAS is used. This will be specifically illustrated in the 

second case study where there are strong age-gender 

effects in prevalence. The point of this caveat is that 

the LQAS decision rules have not been constructed to 

account for this stratification. 

The structure of this paper is therefore to set out the 

modeling methods and then apply to these to case 

studies; two previously published applications of LQAS 

to healthcare monitoring. The first case study concerns 
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vaccine coverage in Peru. Whilst this is a very early 

exposition of the LQAS method in healthcare it is one 

where the authors report that the technique was 

“successful’ [9]. LQAS practice and training materials 

have undoubtedly developed considerably since this 

study. The second case study concerns the prevalence 

of HTLV-1 in Benin, where LQAS was used to 

determine areas of low infection rate [4]. The 

implication of finding areas of low prevalence is either 

that healthcare resources can be diverted to areas of 

higher prevalence or it can be used to identify areas of 

low prevalence from which high prevalence areas 

might learn best practice. In the first case study, “high” 

vaccine coverage is the goal whereas in the second 

“low” prevalence is the goal. Clearly though, the case 

studies are otherwise symmetric. Part of the reason for 

selecting these two case studies is that they are two of 

the few studies that publish sufficient data to enable re-

analysis. The paper will then apply what are now very 

well established Bayesian models to these data, and 

then discus the implications of the modeling.  

METHODS 

As briefly mentioned, the first case study is based 

on an early report of LQAS used to confirm vaccine 

non-coverage in Peru [9]. Baseline coverage was 

assessed and then the target was to classify areas that 

had achieved greater than 80% coverage. In making 

this determination, the goal was to do this with no more 

than an 8% risk of being misclassified as having high 

coverage when the coverage was in fact less than 

80%. An LQAS scheme was selected based on n=9 

and d=3; in other words, based on a sample size of 9 

areas where identified as being at risk of below target 

coverage if three or less children appeared not to have 

been vaccinated. Using this decision rule, eight of 

twelve small areas were found to be below 80% 

coverage. Subsequently a follow up survey was 

conducted using a slightly different LQAS rule targeting 

90% coverage with a sampling plan n = 9 and d = 2, 

i.e., if two or more children in a sample size of 12 

appeared not to be vaccine protected then the area 

was regarded as inadequately protected. 

The second case study is based on a re-analysis of 

data on HTLV-1 prevalence taken from communes in 

the Atacora region in the north west of Benin in 1998 

[4]. The authors state that whilst cluster sampling can 

provide information on a region of interest, they wished 

to identify small areas with higher prevalence levels in 

order to inform health policy planning. At the time of the 

study, Atacora region was divided into 17 sub-

prefectures and 73 communes. In total, 36 communes 

were examined. The use of LQAS manuals lead to a 

sample size of n = 65 with a decision rule of d = 0, in 

order to detect prevalence greater than 4% (this being 

twice the prevalence seen in previous studies). In other 

words, an area was classified as being above 4% 

prevalence if more than 1 person in a sample of 65 was 

observed to be HTLV-1 sero-positive. In the original 

publication, 25 communes were classified as high right 

and 11 were classified as acceptable risk. 

The methods used in this paper are standard 

applications of Bayesian hierarchical models [10]. It is 

possible to use a conventional generalised linear model 

formulation for these disease/vaccination counts, 

where yi denotes either the number of children with 

vaccine coverage or the number of respondents with 

HTLV-1. These can be modelled as a Binomial random 

variable with ni=9,12,65 for the first and second vaccine 

samples and the HTLV-1 sample respectively. 

Therefore for areas i=1,…N (where n=9,12 for the first 

and second Peru vaccine coverage study and n=65 for 

the Benin HTLV-1 study the observed data model can 

be given as: 

Yi ~ Binom(ni , pi )  

Interest then surrounds fitting a suitable model to pi. 

A conventional logistic link would therefore model 

logit(pi ) = 0 + i ,  

where 0  is an intercept term and i  is a random 

effect for area i. For a Bayesian implementation priors 

have to be selected for these parameters and it is 

convenient to assume a non-informative prior for the 

intercept so that 

0 ~ N(0,1000).  

A little more attention needs to be paid to the 

structure of the random effect. For the Peru vaccine 

coverage study there is little other information and it is 

only possible to have a random effect for each area. 

For the Benin HTLV-1 data however it is possible to 

allow for hierarchical structuring (communes within 

sub-arrondissements) and even to allow for spatial 

correlation. The choice found suitable for these 

particular data will be explained in the results section; 

here it suffices to note that there are rich possibilities 

for structuring these models based on the available 

meta-data. More importantly, it is possible to model 

both local and global prevalence simultaneously. 
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Ideally, these models could be extended to model 

individuals (as a Bernoulli response) and hence make 

use of relevant individual covariates such as age and 

gender. It is unlikely that any small sample will be 

perfectly balanced with respect to potentially 

informative covariates. Unfortunately, such individual 

data has not been made available. The problem of 

stratification is however clear from these data. An 

alternative method for allowing for overdispersion is to 

use a mixture model. It is possible to fit a simple 

mixture model to the intercept so that 

1z ~ Normal(μz , z ),  

where z denotes membership of mixture group 1,2,… 

with an identifiability constraint μ1 < μ2  and 1 = 2.  

All models have been fitted using Markov Chain 

Monte Carlo as implemented by the pymc software 

[11]. Details on validation of the model fitting are given 

in the results section. 

RESULTS 

The first set of results concerns the re-analysis of 

the Peru vaccination data [9]. Firstly, results are given 

for a simple model fitted to the first time point only, in 

other words 

Yi ~ Binom(pi , 9)  

and 

logit(pi ) = 0 + 1area  

where 0  is assumed a Normal (0, 1000) prior and 

1area  are 12 area specific random effects also with 

Normal (0, 1000) priors. The McMC sampler was run 

for 5,000 iterations as a burn in and then 5,000 

samples were retained. Standard checks were made to 

ensure that the McMC algorithm had converged [13]. 

The posterior distribution for pi is summarised by 

directly computing the posterior probability that pi was 

greater than 80%. These results are shown in Table 1 

below. It can be seen for example that Lot 1, which was 

accepted by LQAS has a posterior probability of 

acceptable vaccine coverage of only 40%. Conversely, 

lot 12 (which was also accepted by LQAS) has a 

posterior probability of having acceptable vaccine 

coverage of 0.62. 

One reason for discrepant results between the 

LQAS decision and the decision based upon the 

posterior distribution from a Bayesian model is that in 

fitting the entire data are used essentially to estimate a 

global prevalence and then the individual lots are 

allowed to vary from this assuming each to be an 

exchangeable sample from the same population. This 

means that individual samples have their posterior 

distributions shrunk towards the population values. This 

may or may not seem sensible. In industrial LQAS, the 

population has been well characterised prior to 

establishment of decision rules and decision rules are 

intended to detect a change in operating conditions. In 

the case of many healthcare applications, the 

population have not been so characterised and it may 

be appropriate to conduct a modeling exercise which 

aims to estimate the overall population characteristics. 

As stated, several technical checks were made on 

the performance of the McMC model fitting algorithm 

essentially looking for convergence [12]. However, it is 

also important to check the statistical fit of the model. A 

convenient way of doing this is via the posterior 

predictive distribution; to generate simulated data 

Yi
(*) ~ Binom(pi , 9 M )  

from the model M fitted to the data. Given simulations 

of the posterior predictive distribution it is trivial to 

check for example that the observed data are 

reasonable given the 95% credible intervals for the 

posterior predictive distribution. These results are given 

in Table 2. 

Table 1: Summary of Peru Vaccination Data at Time 

Point 1: Original LQAS Decision and Posterior 
Probability that Vaccine Coverage is Greater 
than 80% 

Lot Number Accepted by 
LQAS 

Posterior probability of 
acceptable coverage 

1 Yes 0.40 

2 Yes 0.07 

3 No 0.00 

4 Yes 0.19 

5 No 0.00 

6 Yes 0.20 

7 No 0.00 

8 Yes 0.07 

9 Yes 0.21 

10 Yes 0.21 

11 No 0.02 

12 Yes 0.62 
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Table 2: Summary of Posterior Predictive Distribution 
for Time Point 1 Data Fitted to Peru 
Vaccination Data. Three Columns Show 95% 

Interval and Median. Final Column Denotes the 
Proportion of Posterior Predictions which Yield 
an LQAS “Accept” Signal 

Lot 2.5% 50% 97.5% Proportion of posterior 
predictions yielding LQAS 

accept signal 

1 0 2 6 0.793 

2 0 3 7 0.524 

3 3 6 9 0.076 

4 0 3 7 0.672 

5 2 6 9 0.137 

6 0 3 7 0.658 

7 1 5 8 0.234 

8 0 3 7 0.521 

9 0 3 7 0.667 

10 0 3 7 0.656 

11 1 4 8 0.366 

12 0 1 5 0.891 

 

What Table 2 shows is that for example lot 5 has a 

95% interval for the posterior predictive distribution of 

(2,9) which is consistent with the observed data. If the 

observed data were indeed one realisation from this 

distribution, this distribution yields 14% of samples 

which have an accept signal despite the fact that the 

LQAS decision made on the original data was reject. 

Clearly the next step is to extend the model so that 

both time points can be considered. The appropriate 

model can be denoted: 

Yit ~ Binom(pit ,nit ),  

with ni1 = 9  and ni2 = 12 . Then 

logit(pit ) = 0 + 1area + xt  

where xt is an indicator variable equal to zero for the 

first time point and 1 for the second time point. In the 

Bayesian model  is assumed to follow a 

Normal(0,1000) distribution. Models were fitted 

exactly as before and the posterior estimate for  

had a 95% credible interval (-0.74,0.16). This is 

represented in Figure 1 (along with a trace plot 

suggestive of convergence).  

It is convenient to summarise the posterior 

distribution for the various values of pit visually where 

the values of pi from the single time point model can be 

superimposed. These are given in Figure 2. This 

illustrates the natural way in which Bayesian models 

can be updated sequentially given additional data. The 

intervals for pi1 in the two time point model have been 

shifted relative to those of pi the single time point model 

because they have been shrunk towards the assumed 

overall value based on evidence from two time points. 

Some narrowing of the credible intervals is also seen 

as the vaccine coverage prevalence is being estimated 

from more data. 

 

Figure 1: Summary of posterior distribution of parameter  from combined Peru vaccination data model. Left plot is a 
histogram/density plot of the posterior distribution, right plot is a trace plot showing values by iteration for a subset of the 
interations. 
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As with the single time point model it is also 

possible to generate a posterior predictive distribution. 

Results are given in Table 3. They show for example 

that in Lot 12, if the model is correct, it is not 

unreasonable to see a value of 0 children 

unvaccinated, neither is it unreasonable to see a value 

of 8 children unvaccinated. In all, 28% of the posterior 

predictive simulations yielded values that would lead to 

an LQAS accept decision. Yet the posterior predictive 

distribution does not place much probability that the 

vaccine prevalence is in fact greater than 90%. 

Some authorities have expressed the concern that 

LQAS decision rules are not being correctly applied in 

situations such as this one [13]. In other words the 

decision to accept a lot based on evidence that the 

underlying pi is greater than 80/90% not by finding 

evidence it is higher but by failing to find evidence that 

it is lower. However, LQAS methodology and training 

materials have certainly developed since this early 

publication. What has been noted in this reanalysis is 

that statistical models consider sample values as 

realisations from some underlying population and that 

when a model assuming exchangeability is fitted the 

posterior probability of prevalence is seen in a different 

light. The OC characteristics of the LQAS rule may not 

be as anticipated given the variation in the data. This 

can be more specifically illustrated in the second case 

study. 

Having established that the point of modelling is that 

we no longer need to assume a well-controlled, 

homogenous-variance industrial process it is 

interesting to consider the role of stratification. Whilst 

monitoring HTLV-1 prevalence may not be a 

mainstream application of LQAS it does represent a 

published account of the technique. As before, full data 

are not available but there is at least data on localities 

and it is possible to obtain administrative maps of 

Benin. The original paper also gave a table indicating 

prevalence by strata which is informative. As before, 

we model the count of HTLV-1 sero-positive 

respondents yij in each commune I = 1, …, 36 in each 

sub-prefecture j=1,…,7 as 

Yij ~ Binom(pij , 65)  

with  

logit(pij ) = 0 + 1area + 2xi2  

where 0  is the intercept and assumed a 

Normal(0,1000) prior in the Bayesian model, 1area  is a 

vector of seven independent Normal(0,1000) random 

effects for the sub-prefecture from which the 

communes were drawn. 2  is also assumed 

Normal(0,1000) and xi2  is an indicator variable set to 1 

if the commune is urban and zero otherwise. It should 

be noted that this formulation treats commune as 

exchangeable given their parent arrondissement. 

Whilst different structures are possible (including 

spatial correlation between sub-arrondissements, or 

random effects for each commune) this was the 

 

Figure 2: Summary of posterior distribution (posterior median as dots, lines showing 95% credible interval). Three summaries 
are presented. (a) solid black lines show the posterior distribution for the initial survey based on nine data points in each area 
whereas grey lines show the posterior for the combined model. (b) Solid grey lines show the posterior distribution for pi1 (based 
on nine data points in each area in a combined model) and dashed grey lines show the posterior distribution for pi2 (based on 12 
data points in each area in a combined model). Dots coloured green denote an LQAS accept decision, dots coloured red denote 
an LQAS reject decision. 
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preferred model based on the Deviance Information 

Criteria (given in Table 4) [14]. 

The posterior distributions for pi are given in  

Figure 3. 

Figure 3 instantly highlights the different inter-

pretation given to the data by the Bayesian hierarchical 

model and the LQAS decision. The LQAS decision rule 

regards any observation of 0 as having “low” (below 

4%) prevalence. This carries with it the implication that 

resources could be removed from green areas, or that 

red areas should learn from green areas. Therefore, in 

Boukoumbe there are three communes classified as 

having low prevalence; Dipoli, Tabota and Koronitere. 

In contrast, the Bayesian model regards these as 

exchangeable observations from within Boukoumbe 

and places some weight on the fact that there were 20 

cases observed across the seven communes (and 

indeed places some weight on the overall prevalence in 

North West Benin). Consequently, the posterior 

distributions overlap the 4% decision rule (indeed, the 

Table 3:  

Lot 2.5
%
 50% 97.5% Proportion of samples giving LQAS accept signal 

Time point 1 (targeting 80% coverage) 

1 1 4 8 0.292 

2 2 5 8 0.241 

3 1 5 8 0.249 

4 0 3 7 0.554 

5 2 5 8 0.224 

6 1 4 7 0.354 

7 1 4 8 0.297 

8 1 4 7 0.406 

9 1 3 7 0.511 

10 0 3 7 0.526 

11 1 4 7 0.448 

12 0 3 6 0.635 

Time point 2 (targeting 90% coverage) 

1 2 6 10 0.062 

2 2 6 10 0.045 

3 2 6 10 0.046 

4 1 4 8 0.213 

5 2 6 11 0.035 

6 2 5 10 0.076 

7 2 6 10 0.064 

8 1 5 9 0.106 

9 1 4 9 0.175 

10 1 4 9 0.170 

11 1 5 9 0.134 

12 0 4 8 0.280 

 

Table 4: DIC Measure for the Hierarchical Model Fitted to the Benin HTLV-1 Data with Random Effects for Sub-
Prefecture and an Indicator Variable for “Urban” or Otherwise 

Posterior mean deviance pD Penalised deviance 

142.6 7.64 150.2 
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posterior median prevalence is estimated as greater 

than 4%). Conversely, in Materi the opposite happens. 

A number of communes have been identified as having 

high prevalence (Materi-Central, Tohanhoun-Kossi, 

Gouande and Dassari). Yet the hierarchical model, by 

placing weight on the fact that a total of ten cases were 

observed in the six communes and hence the 95% 

credible interval for the posterior distribution for 

prevalence for each commune is entirely below the 4% 

target. Clearly, a wide range of model structures are 

possible; but the point is made that this is a very 

different interpretation of the data to that obtained from 

the use of an LQAS decision rule. There is obviously 

no way to reconcile the differences through the use of 

data analysis, but it is worth paying careful attention to 

the assumptions in each approach. The Bayesian 

hierarchical model depends on the assumption of 

exchangeability within each sub-prefecture the LQAS 

method depends on the assumption of iid observations 

from a Hypergeometric distribution. 

Mixture Models 

The introduction referred to the problem of 

overdispersion and highlighted the way a statistical 

model (Bayesian or otherwise) could deal with 

overdispersion in a way that is not immediate to the 

extant LQAS decision rules. The Benin data were 

chosen precisely because at least some information is 

given to illustrate the concern about stratification. Table 

3 in the original paper gives information on HTLV-1 

prevalence by age and sex [4]. At either extreme the 

authors report prevalence of around 2% (0.8 to 4.6%) 

for adults under 30 and for adults over 60 they report 

4.8% for males and 18.2% for females. Whilst data on 

age / gender for each of the 36 samples is not available 

it is easy to see that the data are overdispersed. The 

sample standard deviation of the published data is 2.95 

which is considerably higher than the theoretical 

standard deviation for either Binomial or 

Hypergeometric distribution with n=65 and a p (directly 

or implied) of 0.04. Indeed, in the absence of raw data 

it is possible to perform Monte Carlo simulations where 

36 samples of size 65 are drawn from a total sample of 

size 2340 with 111 seropositive individuals where the 

age gender labels are set up to match the original 

paper and permuted. In none of 1000 such simulations 

was it possible to find a sample standard deviation as 

high as 2.95 and indeed, a more direct simulation 

 

Figure 3: Posterior median and 95 percentiles for pi for the first Benin HTLV-1 model. Dots denote median, lines denote 95% 
credible interval. Dots coloured red denote an LQAS reject decision and green an LQAS accept decision. The target prevalence 
(4%) is denoted by a vertical grey line. 
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shows that finding 11 samples with zero cases is 

unusual. This may lead to a challenge of the 

exchangeability assumption. One answer to this could 

be to use a non-parametric mixture model where as 

before the observed data model is 

Yij ~ Binom(pij , 65)  

but now pij is modelled as: 

logit(pij ) = k 0k + 1 j + xxi2.k=1
K

 

This is essentially the same as the previous model 

except that there is now a mixture of intercepts. k  

denotes the mixing probabilities with kk=1
K

= 1,  and 

0k  are now K independent Normal(0,1000) random 

variables with the constraint that 0k < 0(k+1).  In 

practice, it was only necessary to use two mixture 
components and the overall model fit results are given 
in Table 5. Comparing Tables 4 and 5 shows that the 
latter model fits better overall, even when penalised 
(the penalised deviance is lower) although the 
“effective number of parameters” penalty is somewhat 
larger. 

The posterior distribution for pi for the mixture model 

is given in Figure 4 where it can be seen the results are 

largely similar to those for the simpler model. However, 

these small differences are important. Tabole, Dipoli 

and Kountori have posterior distributions shifted toward 

zero (due to borrowing strength from a mixture group 

more than from their parent sub-arrondisement) 

although in this case the 95% credible interval still 

overlaps the target 4% prevalence. Materi-Center, 

Tchanhoun-Cossi now have credible intervals which 

overlap the target – again because of balancing the 

way strength is borrowed from the mixture group and 

the parent sub-arrondissement. Whilst it is argued that 

the mixture structure is a non-parametric feature, the 

right panel of Figure 4 gives the posterior probability of 

belonging to the second group (with the larger 

parameter for 0k . 

Whilst conventional convergence checks have been 

carried out on these models, as with the Peru vaccine 

models it is sensible to compare the model fit. As 

before, the posterior predictive distribution can be 

plotted and Figure 5 presents these results visually for 

the mixture model. 

The left panel suggests that the data might be 

compatible with the model, observations generally lying 

within the 95% posterior predictive distribution. 

Assuming this is a reasonable model, the right panel 

essentially shows the posterior probability of an LQAS 

Table 5:  

Posterior mean deviance pD Penalised deviance 

112.8 30.17 142.9 

 

Figure 4:  
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reject signal being generated from a sample taken from 

that commune. These posterior probabilities can be 

contrasted with the intention of limiting the error rate 

from LQAS decision rules. This finding will be 

considered in more detail in the discussion. 

DISCUSSION 

This paper has re-examined the way that LQAS can 

be used for local decision-making. It is important to be 

very clear about the way LQAS is used in healthcare. 

Firstly, there is the application to decision making in 

local areas in a healthcare system by classification. 

Secondly, there is application to prevalence estimation 

at a large area level by using the LQAS collected data 

as a cluster sample. The first clearly relates to the 

industrial application of LQAS except that industrial 

processes by their nature can be designed and refined 

so as to minimize variance. In human / environmental 

systems this control is not available and the detailed 

process information is rarely available. It could be 

posited that it may be sensible to consider prevalence / 

vaccine coverage as a process which is overdispersed 

relative to standard statistical theory. This paper 

demonstrates that data used for LQAS methods may 

indeed be overdispersed and hence provides a further 

insight into the use of LQAS decision rules. Certainly 

there have already been proposals for the use a 

Bayesian approach to constructing LQAS decision 

rules [7]. Indeed there have been proposals for careful 

use of prior information in the construction of LQAS 

decision rules [15]. However, the proposal here is more 

subtle. Given that people use LQAS in a cluster sample 

survey approach, the suggestion is to use the data in 

that way to assess overall prevalence. Having done 

this, it is possible to extract information from relevant 

parameters (directly incorporated or derived) to 

estimate prevalence in small areas. The idea is that in 

the absence of knowledge of the overall process 

characteristics (vaccine coverage or disease 

prevalence) this has to be estimated. The model has to 

be structured in a way that is reasonable and this paper 

has demonstrated that there are differences between 

allowing areas to borrow strength from a parent area or 

to borrow strength from a non-parametric mixture 

component. This paper has demonstrated that it is 

possible to borrow strength in this way and indicated 

that different conclusions obtained to those given by 

application of the LQAS rule. This paper cannot 

definitively identify the correct approach – careful 

assessment of the assumptions is needed. 

One key feature of the data which has not been 

adequately modelled is stratification. That there is an 

issue with stratification has been clearly shown, and 

that it has potential to alter conclusions has been 

indicated. This remains a point for further development. 

What has been clearly demonstrated, from a published 

application of the LQAS method is overdispersion in 

 

Figure 5: Posterior predictive distribution for Y
(*)

 for Benin HTLV-1. Left panel superimposes a 95% credible interval for the 
posterior with dots giving the posterior median. Dots coloured according to the original LQAS decision rule with red denoting 
reject and green denoting accept. The reported data (counts out of 65) are denoted by a cross. The right panel denotes the 
posterior predictive probability of the model data generating mechanism generating for Y

(*) 
>0 (i.e., yielding an LQAS reject 

signal). 
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the data. This has actually been a recognised problem 

in applications of the method since the 1960s [16]. 

There are indeed proposals to replace the 

Hypergeometric distribution with a convolution of 

Binomials to allow for errors in the sample 

characterization [16]. This work was originally 

motivated by accounting problems where allowance 

had to be made for the possibility that a sampled item 

might have an error but an auditor might fail to notice it. 

Existence of overdispersion for analogous reasons in a 

healthcare setting seem highly plausible. The problem 

of overdisperion for the LQAS rule is perhaps not so 

obvious and is illustrated here from a small Monte 

Carlo study. Data were simulated from a Beta-Binomial 

distribution having standard deviation comparable to 

that seen in the Benin HTLV-1 data. Using a sample 

size of n=19 and a d=9 yields the OC curves shown in 

Figure 6. The solid line shows an OC curve assuming a 

Hypergeometric distribution. The dots show the 

proportion of simulated samples accepted for different 

values of p. It can be seen for example that the error 

rate is much higher for data simulated from a Beta-

Binomial than would be obtained were the data from a 

Hypergeometic distribution. 

The OC curve given in Figure 6 shows that if data 

are not following a Hypergeometric distribution and are 

indeed overdispersed relative to that model then the 

error rate will be larger than that suggested by the 

standard OC curves. Conversely, fitting hierarchical 

models to the data (Bayesian or otherwise) allows a 

careful assessment of the overdispersion and should 

be less sensitive to the variance assumptions made by 

the LQAS method. This is incorporated naturally in an 

appropriate model and is seen as a widening of the 

posterior distribution for the parameters of interest. 

CONCLUSION 

This paper demonstrates that substantively different 

interpretations are obtained when constrasting 

Bayesian hierarchical modeling with the use of LQAS 

decision rules. This assertion is based on data taken 

from two published applications. Data analysis alone 

cannot determine which method (if any) is “correct” 

however it is suggested that the findings merit careful 

attention. The assumptions in the hierarchical models 

are subject to challenge and in presenting results from 

two different models it can be seen that interpretations 

are sensitive to model choice. What seems clear is that 

the data show overdispersion and a simple Monte 

Carlo simulation challenges whether the LQAS rules 

can work the way the OC curves suggest with real 

data. It is also clear that stratification may be important 

in prevalence estimates. It was not possible to 

incorporate this information in the model as the data 

were not published in a suitable format. However, the 

LQAS models assume that each observation making 

up the sample are iid and this seems like a problematic 

assumption. It is possible that prevalence being 

stratified by population subgroup contributes to 

overdispersion but again some simple Monte Carlo 

simulations suggest there is more to the overdispersion 

that missing covariates for age / gender. It is therefore 

possible to argue that a very standard industrial 

technique (LQAS) can be stretched when applied to 

healthcare systems where assumptions of well-

controlled, homogenous industrial processes are no 

longer tenable. 

 

Figure 6: LQAS decision rule based on minimising error for a sample of size n=19 and d-13. The curve denotes estimates from 
Hypergeometric and Binomial (which are identical). The dots represent error rates from simulations of Beta-Binomial random 
variables having p given on the x axis and standard deviation of 2.9. 
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The final point to make is that the Bayesian models 

produce a posterior distribution for the parameters of 

interest that can be directly interpreted by delivery 

professionals as a supplier/client risk. Making accept / 

reject decisions on healthcare systems has non-trivial 

implications. In the case of global acute malnutrition it 

has been shown that over-intervention causes 

problems for local famers and under-intervention 

clearly leaves people with malnutrition [17]. There can 

be no “always correct” decision in such circumstances 

and publication of the posterior risks affords the 

possibility of learning over time where the optimal 

intervention decision lies. Perhaps in more typical 

applications of LQAS the consequences are less 

severe. For example, perhaps areas requiring follow up 

after a vaccination are identified using LQAS [18]. 

Perhaps the risk that areas needing following up are 

identified less often than they should be has less 

severe consequences than the malnutrition example. 

It is acknowledged that these are both dated 

examples and that LQAS methodology and training 

have developed. However, these are both published 

examples of the use of LQAS. LQAS is often used to 

assess trachoma [19]. Whilst this may well be a more 

common application than HTLV-1 prevalence, the data 

from Benin are rare in being available for re-analysis. 

Greater access to such datasets would allow other 

researchers to carry out more detailed modeling on 

more typical LQAS applications. 
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