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Abstract: The research on biomarkers has been limited in its effectiveness because biomarker levels can only be 
measured within the thresholds of assays and laboratory instruments, a challenge referred to as a detection limit (DL) 
problem. In this paper, we propose a Bayesian approach to the Cox proportional hazards model with explanatory 

variables subject to lower, upper, or interval DLs. We demonstrate that by formulating the time-to-event outcome using 
the Poisson density with counting process notation, implementing the proposed approach in the OpenBUGS and JAGS is 
straightforward. We have conducted extensive simulations to compare the proposed Bayesian approach to the other four 

commonly used methods and to evaluate its robustness with respect to the distribution assumption of the biomarkers. 
The proposed Bayesian approach and other methods were applied to an acute lung injury study, in which a panel of 
cytokine biomarkers was studied for the biomarkers’ association with ventilation-free survival. 
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INTRODUCTION 

Biomarkers have been increasingly and widely used 

in clinical practice in recent years for disease diagnosis 

and prognosis based on their underlying pathological 

and physiologic mechanisms [1]. In these applications, 

biomarkers are used either to identify a subgroup of a 

study population or predict a disease outcome [2]. 

While some biomarkers are involved in the early 

development of a condition and thus might provide 

diagnoses [3, 4], others are associated more with 

disease outcome and are considered prognostic of 

patient survival [5]. For example, a nationwide cohort 

study revealed that a traditional serum biomarker 

leukotriene pathway agent was associated with the 

breast cancer; p53 expression in primary tumors was 

an independent prognostic factor that influenced 

relapse-free survival in stage II patients, and lack of 

Bcl-2 expression was independently associated with a 

poor prognosis among stage III patients [6]. Another 

large cohort study identified protein biomarker 

CTNNB1 to be associated with improved survival in 

colorectal cancer [3]. Discrepancies between studies 

on the same biomarkers have been observed [7], 

however, and a variety of problems have been cited as 

the cause of these discrepancies including 

inappropriate statistical analyses [8]. As a result, in 

2005, REporting recommendations for tumor MARKer 
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prognostic studies (RE-MARK) was published [7]. One 

of the goals of these guidelines was to improve the 

usefulness of the results from clinical prognostic studies 

and enhance the comparability between studies. 

Detection limit (DL) is a measurement error problem 

with bounded error [9, 10]. In particular, DL is a 

measurement problem in which the actual biomarker 

values are immeasurable either below the lower 

detection limit (LDL) or above the upper detection limit 

(UDL) of laboratory instruments. These values are 

often called non-detects. The applicability of 

biomarkers in clinical practice has been compromised 

in the presence of DL as inappropriate use of 

statistical methods when dealing with DL may lead to 

biased conclusions and inconsistent results [11]. 

Simple methods, such as deletion and single 

replacement with one-half of the LDL, were often used 

to fill in the immeasurable values. Some sophisticated 

methods have been proposed to replace the missing 

values based on the distribution of the observed 

values. Regression on Order Statistic (ROS) is one 

such approach; however, its usage is severely limited 

because its goal is to estimate summary statistics [12]. 

More recently, vast researches have been conducted in 

DL and its related areas. For example, an MLE-based 

approach has been proposed to handle both binary 

[13] and continuous outcomes [14] with an 

independent variable subject to DL; a semiparametric 

Bayesian method was proposed under proportional 

hazards model for interval censored data with frailty 

effects [15]; a semiparametric imputation approach has 



A Bayesian Approach for the Cox Proportional Hazards Model International Journal of Statistics in Medical Research, 2014 Vol. 3, No. 1      33 

been developed for covariates subject to DL, in which 

the conditional quantiles of the censored covariates are 

assumed to be linear in the observed variables; [16, 17] 

have proposed a Bayesian approach to logistic 

regression parameter estimation with exposure 

variables subject to DL; [18] discussed the full 

Bayesian estimation of joint models when time 

dependent covariates or outcomes are submitted to 

lower detection levels. These works have improved the 

usefulness of biomarkers in the development of 

diagnostic and prognostic models. However, in general 

there remain a few problems to be solved. To our 

knowledge, many of the medical researches involving 

Cox proportional hazards models with DL biomarkers 

still relied on simple naïve methods like deletion or 

single replacement to obtain the estimates of hazard 

ratio (HR), mainly due to the computational burden of 

advanced methods and lacking of user-accessible 

programs. Given promising prognostic value and 

increased clinical application of biomarkers in disease 

outcome prediction, a survival model that is capable of 

handling DL is desired. In this paper, we formulated 

the time-to-event outcome using the Poisson density 

with counting process notation, and provided 

straightforward JAGS/OpenBUGS programs to 

implement the method. In the current clinical practice, 

a panel of biomarkers, rather than a single biomarker, 

is often considered for disease diagnosis/prognosis 

[19], and therefore, we aim to develop a method to 

handle simultaneous DL issues on multiple biomarkers.  

The paper is organized as follows. In the Motivating 

Study Section, we provide a detailed description of the 

motivating study which illustrates the association 

between biomarkers and the survival function for 

patients with acute lung injury (ALI). In the 

Methodological Development Section, we describe the 

proposed Bayesian method for the cases in which 

single or multiple explanatory variables are subject to 

lower, upper, and interval DLs. In the Simulation 

Studies Section, we present an extensive simulation 

study to examine the performance of the proposed 

method, comparing it with four existing methods. We 

revisit the motivating study in the section of Analysis of 

the Acute Lung Injury Study, followed by the Discussion 

Section. 

MOTIVATING STUDY 

With the goal of developing a prognostic model for 

Acute Lung Injury/Acute Respiratory Distress 

Syndrome (ALI/ARDS), the researcher measured 8 

cytokine biomarkers that reflect the complex 

pathogenesis of ALI/ARDS in baseline plasma from 

549 patients [20]. The patients were enrolled in the 

National Heart, Lung, and Blood Institute (NHLBI) 

ARDS Clinical Trials Network clinical trial of two 

different levels of positive end-expiratory pressure [20]. 

The collected biomarkers included markers of 

inflammation (IL6, IL8, and TNFR1), lung and systemic 

endothelial activation and injury (VWF), lung epithelial 

injury (SP-D), adhesion molecules (ICAM.1), and 

activation of coagulation and inhibition of fibrinolysis 

(protein C, and PAI-1). Among these biomarkers, IL8 

had 35% of values that were below the DL threshold of 

2.5 pg/ml of the enzyme-linked immunosorbent assay. 

Collected clinical data include age, cause of 

ALI/ARDS, severity of illness scoring (APACHE III), 

ventilator parameters, hemodynamic data, and 

alveolar-arterial O2 difference (A-a O2). Cox 

proportional hazards models were used to investigate 

the association between the biomarker levels and time 

to ventilation removal (VR). 

METHODOLOGICAL DEVELOPMENT 

Let T
i
 and C

i  represent the failure and censoring 

times, respectively, for the ith patient, where i = 1,…,n . 

Let 
 
X

i
 be the transformed biomarker covariates 

subject to detection limit with a known transformation 

function 
  
g( )  and 

 
Z

i  be the additional covariates. 

Observed times to event are denoted by Y
i
= T

i
C

i
,  

and the observed event indicators are denoted by 

i
= I(T

i
C

i
)  where 

  
a b = min(a,b) and I( A)  is an 

indicator function taking the value 1 when condition A 
holds and 0 otherwise.  

In this paper, we consider the Cox proportional 
hazards model [21] given by 

  
i
(t Z

i
, X

i
) =

0
(t)exp( T

X
i
+

T
Z

i
)dt         (1) 

where 
  

(t Z , X )  is the conditional hazard function of 

time-to-event given the covariates, 
  0

(t)  is an un- 

known baseline function,  is a q 1 vector of regres- 
sion coefficients corresponding to transformed bio- 

marker covariates 
 
X

i
, and  is a p 1 vector of regres- 

sion coefficients for other additional covariates 
 
Z

i
. 

Single Covariate Subject to DL 

We first consider the case of one covariate subject 
to DL (q=1) and then generalize this method to the 
scenario with multiple covariates subject to DL (q>1) in 
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the next section. With q=1, we assume the lower DL for 
the transformed biomarker measurement x is ld. The 
observed data are 

   
D

obs
= (

i
,

i
, x

i

*
= (x

i
vld),r

i
= I(x

i
ld), z

i
, i = 1,2, ,n),  

where 
  
a b = max(a,b) . The likelihood function of the 

observed data is 

  
L = [Ly

i
( y

i
x

i
, z

i
, , ) f (x

i

*

i=1

n
z

i
, )]

(1 r
i
)
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, , ) f (x z

i
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g (0)
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        (2) 

where 
  
Ly

i
( )  is the likelihood of 

  
( y

i
,

i
)  and  is a 

vector of regression coefficients in the biomarker model 

  
f (x

i

* z
i
, ) , both will be discussed later. Note that the 

lower limit of the integration in (2) is g(0) because 

biomarker measurements have support (0, ) , and x is 

the transformed biomarker measurement with 
transformation function g( ). 

Extending the proposed method to interval DL 
(both lower and upper DLs) is straightforward. We 
assume the upper DL for x is ud and denote the 
observations as 

D
obs

= ( y
i
,

i
,x

i

*
= (x

i
ld ud), r

il
= I(x

i
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iu

= I(x
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The likelihood function of the observed data for the 
ith subject now becomes 
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Multiple Covariates Subject to DL 

When there are two or more covariates subject to 

DL, f(x|z) in (2) becomes a multivariate density 

function. A simple extension may be to model f(x|z) 

through a multivariate Gaussian distribution; however, 

the normality assumption may not hold for all 

biomarkers subject to DL. Therefore, following [22, 23], 

we model the joint distribution of the biomarkers using a 

series of one dimensional conditional densities as 

   
f (x z, ) = f (x

i1
z

i
, x

i2
, , x

iq
,

1
) f (x

i2
z

i
, x

i3
, , x

i3
, , x

iq
,

2
)

f (x
iq

z
i
,

q
),            (4) 

where 
k
 is the vector of unknown parameters in the 

distribution of 
   
f (x

ik
z

i
, x

i,k+1
, , x

iq
,

k
) ,  and 

   
= (

1
, ,

q
) . The advantage of (4) is that it allows for 

a more flexible model specification for the joint 

distribution of 
  
f (x z) , and it is especially useful when 

the biomarkers follow different distribution functions. 
Although the joint model depends on the order of 
conditioning, [22, 23], among others, have shown in the 
missing data literature that estimates are robust with 
respect to the order of conditioning; however, by no 
means should one discount the importance of carrying 
out sensitivity analysis for the order of conditioning.  

When there are q biomarkers subject to lower DL, 
the observed data are 

   
D
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where  is the lower DL of x
k
. Let 

   
x
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= (x

i1
, , x

i, j 1
, x
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, , x

iq
)  denote all the biomarkers 

from the ith subject except the jth biomarker. The 
likelihood function of the ith observed value is 
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where 
   
f (x

i
z

i
, )  is defined in (4).  

Counting Process Likelihood for Posterior 
Computation and Inference 

For purposes of computation and ease of extending 
the proposed method, we will formulate the likelihood of 

  
( y

i
,

i
)  using the counting process in this section. In 

particular, for subject i, we observe counting process 

  
N

i
(t) , which counts the number of failures occurred up 

to time t. Following [24], the Cox proportional hazards 
model in (1) can be formulated using the counting 
process notation introduced by [25] and is given by 

E{dN
i
(t) F

t -
, Z , X}=

0
(t)exp( T

X
i
+

T
Z

i
)dt        (6) 
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where F
t -

 represents all the past history just before 

time t, and 
  
dN

i
(t)  is the increment of 

  
N

i
(t)  over the 

small time interval [t, t+dt]; dN
i
(t) = 1  if subject i is 

observed to fail during the time interval [t, t+dt], and 

  
dN

i
(t) = 0  otherwise. The observed data from n 

subjects can be rewritten using the counting process 

given by 
    
{N

i
(t)I(t Y

i
),Y

i
, R

i
, Z

i
,C

i
}, i = 1,2, ,n  where 

    
X

i

*
= (x

i1

* , , x
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* )  and 
    
R

i
= (r

i1
, r

iq
) . Under the 

standard non-informative censoring assumption, the 

counting process likelihood of 
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i
(t)I(t Y

i
),Y

i
}  given 

(X , Z
i
,C

i
)  is 

  
Ly

i
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i
(t)

dN
i
(t )

t Y
i

{ }exp
i
(t)dt

0

Y
i{ },         (7) 

where 
i
(t) =

0
(t)exp( T

X
i
+

T
Z

i
)dt.  

Following [24], we can express the counting process 
likelihood in (7) using Poisson density as  

   
L

yi
= Poisson(dN

ij
;V

ij
d

0 J
exp( T

X
i
+

T
Z

i
))

j=1

J

       (8) 

where the notation Poisson(x; μ) is the density of a 
random variable x, which follows a Poisson distribution 

with mean ; 
   
t
1
, ,t

J
 are the unique failure times 

observed in the data, 
  
V

ij
= 1  if subject i is at risk at time 

 
t

i
 and V

ij
= 0  otherwise, 

  
dN

ij
= 1 if individual i fails at 

time 
 
t

i
 and 

  
dN

ij
= 0  otherwise, and 

  
d

0 j
 is an 

increment on the cumulative baseline hazard function 

  
0
(t) =

0
(μ)dμ.

0

t

 

The joint posterior density of ( , ,d
0
( ), )  based on 

the observed data can be written as 

( , ,d
0
( ), D

obs
) L ( , ,d

0
( ), ),        (9) 

where 
  
L = L

i
, L

ii=1

n

 is defined in (3) or (5) for the 

univariate or multivariate biomarkers subject DL, 

respectively, 
 
L

yi
 is defined in (8), and ( ,  , d 0( ), 

) is the joint prior for ( ,  , d 0( ), ). In practice, we 

can specify the independent prior and let ( , , 

d 0( ), ) = ( ) ( ) (d 0( )) ( ). We can specify the 

non-informative prior for , , and  to minimize the 

influence of the prior on the posterior distribution. For 

the prior of d ( ), we consider the conjugate 

independent increments prior suggested by [26], 

namely d
0
(t) Gamma(c d

0

* (t),c),  

where 
  
d

0

* (t)  is a prior guess for 
  0

(t)  and c controls 

the prior precision with small values of c corresponding 
to weak prior beliefs. 

Selection of Biomarker Density Functions 

Since the distribution of cytokine biomarker 
measurements is often positively skewed and fits a log-
normal distribution [27, 28], a logarithmic 

transformation of 
  
g( )  is typically used with normality 

assumption for 
  
f (x z

i
, ) . A QQ-plot can be used to 

evaluate this assumption. When the normality 
assumption is violated, other parametric models, such 
as GLMs, can be specified for the biomarkers subject 
to the DL and implemented easily in WinBUGS or 
JAGS. On the other hand, the selection of biomarker 
density functions can be viewed as a special case of 
model comparison and be investigated via Bayes 
factors, model diagnostics, and goodness of fit 
measurements [29]. 

Simulation Studies 

We conducted extensive Monte Carlo simulations to 

evaluate the performance of the proposed Bayesian. 

We considered 18 scenarios, which included 3 

distributions (normal, t25, and gamma) for biomarker 

measurements, 3 percentages of measurements below 

the DL (10%, 30%, 50%), and 2 coefficients ( =0.8 for 

true association, and =0 for null). In addition to a 

biomarker, we also simulated 2 other continuous 

covariates according to the motivating study. We 

simulated both event time and censoring time with a 

Weibull distribution which used pre-specified baseline 

hazards for event and censoring and pre-specified 

coefficients for the biomarker and covariates. The 

censoring proportions of the survival time were set to 

15% throughout the simulations. For each study 

scenario, we considered 200 subjects and 1,000 

simulations. When analyzing power change for the 9 

scenarios of positive association, we used =0.225 so 

that the full data analysis had 80% power to reject the 

null hypothesis at which the biomarker values were 

simulated from the log-normal distribution. 

In this study, we compared the following 5 methods 

for their performance on the estimates of regression 

coefficients: (1) single replacement of non-detects with 

one-half of the LDL threshold; (2) case-wise deletion of 

non-detects; (3) regular multiple imputation (MI) 

method; (4) extrapolation by the ROS; and (5) the 

proposed Bayesian approach. Single replacement with 

one-half DL or 
 

1

2

 is the most popular method. 

Deletion is simply excluding (case-wise) all the 
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observations with values below the threshold in the 

analysis. MI refers to the regular multiple imputation 

method assuming missing at random [30]. We modified 

the MI procedure proposed by [31] so that the new 

procedure takes all aspects of uncertainty in the 

imputations into account [32-35]. ROS is a method 

which is often used in environmental science to 

compute summary statistics [12]. This method fits a 

regression line on a normal probability plot of the 

uncensored data, using censored values as place 

holders, and estimates the model parameters from the 

regression line, including mean and standard deviation 

(SD). We used the ROS-generated mean and SD to 

simulate values below the DL according to a truncated 

normal distribution. Cox regression was then used to 

estimate the hazard with the complete data set that 

combined the simulated values with the observed data. 

The simulation of the truncated normal distribution and 

the following Cox proportional hazards model were 

repeated C times to adjust for the uncertainty due to 

the simulation [36, 37]. The point estimate was the 

average of the C imputed data sets, and the standard 

error (SE) was calculated using Rubin’s rule [38]. In the 

simulation of the truncated data set, we used C = 10. 

Note that the ROS algorithm adopted here is a 

modified version which properly accounts for the 

simulation variability. The original ROS in [12] used C = 

1, as the goal was to estimate summary statistics. 

All computations herein were implemented using R 

2.15.2, and Bayesian computation was conducted 

using R package R2jags. As both frequentist and 

Bayesian methods were considered in this paper, we 

evaluated the methods using bias, empirical SE, 

average SE, root mean square error (RMSE), and 

coverage probability of 95% confidence interval (CI) or 

Highest Posterior Density (HPD) (95% CP), as well as 

power for true  and type I error rate for null . 

Simulation I 

This simulation evaluated the model performance 

model when the distribution of the biomarker 

measurements was correctly specified. Especially, we 

simulated the logarithmically transformed biomarker 

values from N (3.7, 1.25). All the parameter estimates 

were computed using a multivariable Cox proportional 

hazards model in which no correlation was assumed for 

the covariates. As in Table 1, the parameter estimates 

Table 1: Estimates of log(OR) in Simulation I 

1 = 0.8 1 =0 P* Method 

Bias
†
 ESE

‡
 ASE

§
 RMSE

¶
 CP(%)

**
 Err(%)

† †
 

 Full  0.010  0.083  0.081  0.083  0.95  4.6 

Half DL  -0.037  0.080  0.078  0.088  0.92  4.6 

Deletion  0.014  0.095  0.092  0.096  0.95  4.7 

MI  0.009  0.106  0.113  0.107  0.96  3.8 

ROS  -0.031  0.084  0.087  0.089  0.93  4.6 

0.1 

Bayesian  0.011  0.084  0.082  0.085  0.94  4.8 

 Full  0.012  0.082  0.081  0.083  0.94  6.7 

Half DL  -0.122  0.091  0.072  0.152  0.53  6.0 

Deletion  0.022  0.115  0.112  0.117  0.95  5.8 

MI  -0.025  0.167  0.158  0.169  0.93  2.7 

ROS  -0.031  0.084  0.087  0.089  0.93  4.6 

0.3 

Bayesian  0.013  0.086  0.085  0.087  0.95  6.8 

 Full  0.010  0.082  0.081  0.083  0.95  5.3 

Half DL  -0.229  0.062  0.063  0.237  0.07  5.4 

Deletion  0.025  0.166  0.161  0.168  0.96  5.9 

MI  -0.141  0.282  0.250  0.315  0.85  3.0 

ROS  -0.152  0.078  0.096  0.171  0.64  2.3 

0.5 

Bayesian  0.008  0.097  0.093  0.098  0.95  5.9 

*
: P is the proportion of DL; 

†
: Bias is defined as - ; 

‡
: ESE is the empirical standard error; 

§
: ASE is the average standard error; 

¶
: RMSE is the root mean square 

error; 
**

: CP is the coverage probability for 95% HPD; 
††

: Err is the type I error rate under null hypothesis. 
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did not show much difference across the 5 methods at 

10% LDL, but the difference became substantial at 

higher LDL fractions. The method of 1/2 DL had the 

largest bias and the lowest 95% CI coverage. MI and 

ROS also had substantial biases, large RMSEs, and 

poor coverage probabilities (Table 1). Although the 

deletion method had negligible bias, it had a larger 

RMSE and poorer power compared to the Bayesian 

method (Table 1 and Figure 1). Overall, the Bayesian 

method outperformed the other methods in terms of 

RMSE, CP, and power. 

Simulation II 

We investigated the robustness of the proposed 

Bayesian method with respect to violation of the log-

normal assumption of the biomarker measurements. 

We simulated the data in the same manner as in 

Simulation I except that the logarithmically transformed 

biomarker values were obtained from a heavier tailed 

t25 distribution with mean 3.7. The study showed 

similar results as Simulation I. The Bayesian method 

still outperformed other methods for this mild 

misspecification of the distribution, although its 

coverage probability started to fall below the nominal 

rate with increased DL fraction (Table 2 and Figure 1). 

Simulation III 

We further evaluated the proposed Bayesian method 

for robustness with severe misspecification of the 

underlying normal distribution using a highly skewed 

gamma distribution. We simulated the data as above, 

except that the logarithmically transformed biomarker 

was specified as a Gamma(0.5,1) distribution. For this 

serious misspecification, the proposed Bayesian 

method had increased bias and lower CP. As shown in 

Figure 2, the normality assumption is clearly violated 

judged from the QQ-plot against a normal distribution 

for logarithmic transformation of the DL biomarker 

variable in a randomly selected simulated data set. 

Interestingly, single replacement with the one-half DL 

method had very small bias, and the bias did not 

increase with higher DL fractions. This is because 

Gamma(0.5, 1) is highly positively skewed and has 

10%, 30% and 50% threshold values of 0.008, 0.074, 

and 0.227 with corresponding half DL values of 0.004, 

0.037, and 0.114, respectively. ROS, another 

distribution-based method, performed the worst in this 

setting (Table 3). Although the deletion method 

showed merit in this scenario, its estimates had high 

efficiency loss. Furthermore, as shown in Figure 3 of 

Section 5, the deletion method did not provide valid 

summary statistics, such as mean or median, which is 

directly related to the distribution of the DL biomarker. 

ANALYSIS OF THE ACUTE LUNG INJURY 
STUDY 

The proposed method was applied to analyze data 

from the acute lung injury (ALI) study introduced in the 

Section of motivating study. In this analysis, we are 

interested in the association between biomarker IL8 

and time to VR, controlling for age and alveolar-arterial 

O2 difference (A.a). We used the proposed Bayesian 

method to study the association between IL8 and VR 

 

Figure 1: Power Analysis for Simulation Studies. 
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Table 2: Estimates of log(OR) in Simulation II 

1 = 0.8 1 =0 P* Method 

 Bias
†
 ESE

‡
 ASE

§
 RMSE

¶
 CP(%)

**
  Err(%)

††
 

Full 0.013 0.088 0.082 0.089 0.94 5.6 

Hlf DL -0.061 0.082 0.079 0.102 0.85 5.3 

Deletion 0.014 0.098 0.093 0.099 0.94 5.6 

MI 0.003 0.111 0.114 0.111 0.95 4.6 

ROS -0.007 0.086 0.083 0.086 0.95 5.2 

0.1 

Bayesian 0.004 0.088 0.083 0.088 0.94 5.9 

Full 0.009 0.086 0.082 0.086 0.94 6.5 

Half DL -0.193 0.067 0.068 0.205 0.20 6.0 

Deletion 0.017 0.124 0.115 0.125 0.93 5.1 

MI -0.045 0.166 0.170 0.172 0.93 3.2 

ROS -0.086 0.080 0.087 0.117 0.83 3.6 

0.3 

Bayesian -0.020 0.089 0.085 0.091 0.93 7.0 

Full 0.010 0.083 0.082 0.084 0.95 5.5 

Half DL -0.257 0.060 0.061 0.264 0.03 6.0 

Deletion 0.028 0.154 0.150 0.156 0.95 5.7 

MI -0.141 0.242 0.241 0.280 0.88 2.4 

ROS -0.214 0.072 0.091 0.225 0.32 2.2 

0.5 

Bayesian -0.039 0.090 0.090 0.098 0.91 5.8 

Notations are same as Table 1. 

 

 

Figure 2: Histogram Plot and QQ-plot for a Randomly Selected Dataset from Simulation III. 
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Table 3: Estimates of log(OR) in Simulation III 

1 = 0.8 1 =0 P* Method 

 Bias
†
  ESE

‡
  ASE

§
 RMSE

¶
 CP(%)

* *
  Err(%)

† †
 

Full 0.022 0.149 0.144 0.151 0.95 5.4 

HalfDL 0.022 0.149 0.144 0.151 0.95 5.4 

Deletion 0.025 0.155 0.149 0.157 0.94 5.6 

MI 0.003 0.153 0.163 0.153 0.96 4.6 

ROS -0.034 0.144 0.144 0.148 0.95 4.0 

0.1 

Bayesian -0.024 0.147 0.144 0.149 0.95 5.6 

Full 0.020 0.147 0.143 0.148 0.95 4.5 

Half DL 0.023 0.147 0.143 0.149 0.95 4.6 

Deletion 0.026 0.164 0.163 0.166 0.96 4.5 

MI -0.042 0.162 0.194 0.168 0.97 2.4 

ROS -0.185 0.131 0.139 0.226 0.73 2.4 

0.3 

Bayesian -0.107 0.139 0.136 0.175 0.87 4.6 

Full 0.021 0.143 0.143 0.144 0.95 5.2 

Half DL 0.034 0.145 0.144 0.149 0.95 4.7 

Deletion 0.034 0.197 0.188 0.200 0.95 5.3 

MI -0.102 0.192 0.230 0.217 0.96 2.7 

ROS -0.348 0.101 0.125 0.362 0.18 1.7 

0.5 

Bayesian -0.189 0.121 0.127 0.225 0.68 5.5 

Notations are same as Table 1. 

 

 

Figure 3: Histogram Plot of log(ICAM.1) in ALI Study Completed with Imputed Values. 
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Figure 4: QQ-plots for Logarithmic Transformation of Observed log(IL8) and log(ICAM-1) in ALI Study. 

and compared the Bayesian result with the other 4 

methods. A log-normal distribution seemed reasonable 

based on the QQ-plot of the observed data, although 

38% of the IL8 data in this study are subject to the DL 

(Figure 4 left panel). Trace plots were used to evaluate 

the convergence of the parameters (not shown due to 

limited number of tables and figures). Based on the 

Cox proportional hazards model fit with the imputed 

data, a moderate negative association was found in the 

Bayesian method for IL8 with the “hazard” of removing 

ventilation (HR = 0.83; 95% HPD: 0.78-0.89), 

suggesting the removal of ventilation was less likely for 

patients with higher IL8 (Single Biomarker Analysis in 

Table 4). The other methods yielded HR estimates 

ranging from 0.72 to 0.85 with larger standard error 

estimates compared to the Bayesian approach. 

We also used the ALI study to demonstrate the 

methods in the scenario with more than one biomarker 

subject to DL. To this end, we truncated ICAM.1 to 

generate a dataset with 30% observations below DL. 

We also performed a sensitivity analysis to evaluate the 

impact of sequential conditioning of the two biomarkers 

subject to DL. In particular, we considered the Cox 

proportional hazards model 

  
[t log(IL8), log(ICAM .1), age, A.a] =

0
(t)exp[

0

+
1
log(IL8) +

2
log(ICAM .1) +

3
age +

4
A.a]      (10) 

and assume 

  
f (log(IL8),log(ICAM .1) age, A.a) = f (log(IL8)

  
age, A.a, log(ICAM .1)) f (log(ICAM .1) age , A.a),     (11) 

Table 4: Log(HR) Estimate of log(IL8) (and log(ICAM.1)) in ALI Study with Sensitivity Analysis 

Multiple Biomarkers Analysis
†
 Single Biomarker Analysis

*
 

log(IL8) ( 1) log(IL8) ( 1) log(ICAM.1) ( 2) 

Method 

Estimate SE Estimate SE Estimate SE 

Half DL -0.250 0.044 -0.241 0.044 -0.051 0.032 

Deletion -0.328 0.068 -0.322 0.073 -0.137 0.164 

MI -0.306 0.065 -0.289 0.071 -0.202 0.129 

ROS -0.158 0.033 – – – –

Bayesian -0.184 0.032 – – – –

Bayesian1 – – -0.175 0.035 -0.160 0.100 

Bayesian2 – – -0.173 0.033 -0.160 0.096 

*model is  [t log (IL8), age, A.a] = 0 (t) exp [ 0 + 1 log (IL8) + 2 age + 3 A.a] with Bayesian method modeling f (log(IL8) A.a, log(ICAM.1)) with linear regression 

model. 
†
model is stated in (10) with Bayesian1 and Bayesian2 methods used the models stated in equations (11) and (12), respectively. 
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or 

f (log(IL8),log(ICAM .1) age, A.a) = f (log(ICAM .1)

  
age, A.a, log(IL8)) f (log(IL8) age, A.a)       (12) 

for the joint distribution of IL8 and ICAM.1. Figure 3 

shows the histograms of log(ICAM.1) that combine the 

observed and imputed values of each method, as well 

as the full original data. Only the ROS and Bayesian 

methods yielded distributions that are close to the 

original data. Recall that the ROS method did not 

provide valid estimates and inferences for the 

regression coefficient of the DL biomarker in the 

previous simulation studies. This observation is not 

surprising as the ROS method was originally proposed 

to estimate summary statistics, such as the mean of 

the biomarker, but not to estimate the regression 

coefficient of the DL biomarker. The log-normal 

assumption for ICAM.1 was evaluated by QQ-plot of 

the observed data (Figure 4, right panel). Table 4 

shows that the Bayesian HR estimates are robust to 

the order of the sequential conditioning (HR = 0.84 with 

95% HPD 0.78-0.90 in Bayesian1 versus HR = 0.84 

with 95% HPD 0.79-0.90 in Bayesian2, Multiple 

Biomarker Analysis in Table 4). ROS estimates were 

left in blank in Table 4 because the NADA package in R 

only handles single biomarker subject to DL. 

DISCUSSION 

This article proposes a general Bayesian approach 

for the Cox proportional hazards model with explanatory 

measurement variables subject to DL. We focused on 

the Cox proportional hazards model as it is the most 

widely-used model for survival analysis. The validity and 

application of the proposed approach do not rely on the 

proportional hazards assumption of the Cox model, 

thus, generalizing the method to other time-to-event 

models and incorporating a variety of techniques in 

Bayesian inference and diagnostics are straightforward 

[29]. With the counting process notation, we can 

extend our method to the Cox model with time-

dependent covariates and random effect (frailty) 

models for multiple event time data, among others. 

The JAGS code in the Appendix can be easily 

modified to incorporate the extension.  

The proposed Bayesian method performed well 

when biomarker measurement distribution was correctly 

specified or mildly misspecified as shown in the 

motivating example and Simulations I and II. However, 

the proposed Bayesian method was not robust to 

severe misspecification of the underlying distribution as 

shown in Simulation III. Our study demonstrates the 

importance of an appropriate specification of DL variable 

distribution in improving the model performance. The 

QQ-plot approach or model selection criteria such as 

deviance information criterion can be used to guide 

the distribution specification in this setting. When the 

normality assumption is violated, other parametric 

models can be specified for the biomarkers subject to 

the DL and implemented easily in JAGS or OpenBUGS 

by modifying the example programs given in the 

Appendix. If the parametric distribution assumption is 

reasonable, the proposed Bayesian approach can yield 

valid and efficient inference with joint posterior modeling 

for covariates with nondetects and an outcome 

variable. Furthermore, in order to cope with the 

challenges of the common practice of the multiple 

biomarker approach in disease outcome prediction 

[19], we extended the proposed Bayesian method to 

the case of multiple biomarkers subject to the DL 

through a sequence of conditional distributions. In this 

situation, a sensitivity analysis needs to be considered 

to access the effect of the order of conditioning on the 

biomarkers. 

ACKNOWLEDGEMENTS 

The authors thank the editor and referees for helpful 

comments. The work received support from National 

Institutes of Health (R21HL097334, ULI RR024975-01, 

HL081332). 

APPENDIX 

JAGS code is provided below. Centered values are 

used in continuous variables. 

data 

{ 

  for(i in 1:N) { 

    for(j in 1:T) { 

      Y[i,j] <- step(obs.t[i]-t[j]+eps) 

      dN[i,j] <- Y[i,j]*step(t[j+1]-obs.t[i]-eps)*fail[i] 

      } 

    } 

} 

model 

 { 

   for(j in 1:T) { 

    for(i in 1:N) { 

     dN[i,j] ~ dpois(Idt[i, j]) 

     Idt[i,j] <- Y[i,j]*dL0[j]*exp(beta*(Z[i]- 

     Z.c)+beta2*(age[i]-age.c) 
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   +beta3*(il8[i]-il8.c)) 

    } 

    dL0[j] ~ dgamma(mu[j],c) 

    mu[j] <- dL0.star[j]*c 

  } 

   for(i in 1:N) { 

    cens.il8[i] ~ dinterval(logLDL,il8[i]) 

    il8[i] ~ dnorm(mu.il8[i],tau) 

    mu.il8[i] <- alpha0+alpha2*(Z[i]- 

    Z.c)+alpha3*(age[i]-age.c) 

  } 

    c <- 0.001 

    r <- 0.1 

   for (j in 1:T) { 

 dL0.star[j] <- r*(t[j+1]-t[j]) 

      } 

    } 
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