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Abstract: Background: Progression of a cancer disease and dying without progression can be understood as competing 

risks. The Cause-Specific Hazards Model and the Fine and Gray model on cumulative incidences are common statistical 
models to handle this problem. The pseudo value approach by Andersen and Klein is also able to cope with competing 
risks. It is still unclear which model suits best in which situation.  

Methods: For a simulated dataset and a real data example of ovarian cancer patients who are exposed to progression 
and death the three models are examined. We compare the three models with regards to interpretation and modeling 
requirements. 

Results: In this study, the parameter estimates for the competing risks are similar from the Cause-Specific Hazards 
Model and the Fine and Gray model. The pseudo value approach yields divergent results which are heavily dependent 
on modeling details.  

Conclusions: The investigated approaches do not exclude each other but moreover complement one another. The 
pseudo value approach is an alternative that circumvents proportionality assumptions. As in all survival analyses, 
situations with low event rates should be interpreted carefully. 
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1. BACKGROUND 

A situation with multiple time-to-event endpoints, 

where one endpoint could be prevented by the 

occurrence of another endpoint but not vice versa, is 

called a semi-competing risks situation [1-4]. 

Classically, the three-state illness-death model without 

recovery [5, 6] represents such a disease process. 

Observations starting in the healthy state are exposed 

to two risks: experiencing a disease progression and 

dying. While censoring prevents observation of both 

events independently, death may censor disease 

progresses, depending on individual characteristics 

which also influence the progression likelihood.  

This problem could easily be dealt with by analyzing 

a combined endpoint. However, this technique induces 

a loss of information and is unsatisfactory, especially 

when differentiation of those two events is reasonable. 

Particular techniques have been previously developed 

to cope with competing risks in a three-state illness-

death model [3, 7-11]. There are basically two different 

approaches: The Cause-Specific Hazards Model 

accounts for competing events by analyzing 

unconditional hazards of the particular events. In 

contrast, the cumulative incidence models relate to 

cumulative event probabilities.  
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This article is organized as follows: In section two, a 

simulated example and a real data example will be 

introduced. In section three, the Cause-Specific 

Hazards Model (which we will call CSHM) as well as 

the two cumulative incidence models, namely the Fine 

and Gray Model and the pseudo value approach by 

Andersen and Klein [12-14], will be reviewed. Results 

will be presented in section four. In section five, the 

results will be opposed and specific characteristics of 

the investigated models will be discussed. Section six 

closes with concluding remarks. 

2. EXAMPLES 

The first data example is a simulated collective of 
1000 subjects which are exposed to two competing 
risks A and B. A binary covariable cov1 has a cause-

specific risk parameter 
 A

= 0.5  for risk A 

( exp A = 0.61 ) and the parameter for risk B is 
 B

= 0.5  

(
 
exp B = 1.65 ). If an event occurs, the probability that 

the subject failed from A is 0.5. For simplicity, we 
assume no censoring. Details of the simulation 
technique can be reviewed at [15]. 

The second example is about real clinical data of 

215 ovarian cancer patients, undergoing primary 

surgery between 1996 and 2004 at the University 

Medical Center in Hamburg-Eppendorf [16, 17]. 

Ovarian cancer is the ninth most common cancer 

among woman and accounts for the highest disease-

related mortality among all gynecologic malignancies 

[18]. Most of the patients experience a disease 
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progress within few years during the eventually fatal 

course of the disease. Yet, there are also cases where 

patients die without experiencing a progress or, in other 

words, a progress is circumvented by an early death. It 

is unclear whether these patients die from other 

causes, or on the opposite, if their deaths are highly 

related to the disease. In this work, we define and 

analyze progression and dying before progression as 

competing events, see Figure 1. We considered the 

three most important covariables, which are the 

patients’ age in years, presence of a residual tumor 

after surgery, and a binary tumor staging indicator, 

derived from the Fédération Internationale de 

Gynécologie et d' Obstétrique (FIGO) tumor staging 

classification [19].  

3. COMPETING RISKS MODELS 

One special challenge is that there are two logical 

ways of understanding hazard ratios for competing 

events. Assume for example the following situation: A 

factor favors progression and death at the same time, 

but the impact on mortality is much stronger. Then the 

absolute number of progressions would decrease with 

increasing factor, because individuals failing to death 

can not experience a progression. More theoretically, 

an increased cause-specific hazard for one risk is not 

equivalent with the increase of the marginal event 

probability, when competing risks are present. The 

cumulative incidence approach refers to marginal event 

probabilities, whereas the cause-specific hazard rate 

models the instantaneous potential of the specific event 

to occur, given that neither the event of interest nor any 

other competing event has occurred yet. 

3.1. Inference from the Cause-Specific Hazards 
Model 

Let T be a random variable representing failure 
times with a survivor function S(t) and a density 
function F(t). Let D={1,…,K} denote K different causes 

of events which are competing. In the CSHM, we 
concentrate on hazards for specific events [11, 20],  

  
k
(t) =

f (t)

S(t)
= lim

t 0

P(t T < t + t, D = k | T t)

t
     (1) 

Events other than the one of interest are understood 

as censorings. As in the classical Cox model [21, 22], 

the cause-specific hazards follow the proportional 

hazards assumption, expressed in the general 

formulation 

k
(t, Z) =

k,0
(t) exp(

k

TZ)          (2) 

with baseline hazard function 
,0 ( )

k
t  for events of type 

k and vectors Z for covariates and 
k
 for regression 

coefficients. The cause-specific hazard ratios from the 
regression model in (2) can be understood as the 
instantaneous risk of experiencing the specific event k, 
which could of course be circumvented by a competing 
event or by independent censoring.  

In the one-risk case, there is a one-to-one relation 
between the hazard rate and survival function, 

S(t) = exp( (u)du

0

t

) , denoting the probability of not 

experiencing the event until t. In case of competing 
risks, the naive derived function 

  

S
k
(t) = exp(

k
(s)ds

0

t

)           (3) 

may not be understood as a cause-specific marginal 
survival function, giving the probability of no event k 
until t. For the probability of staying event-free, the 
competing events j k  also have to be considered. 

Formula (3) underestimates the cumulative incidence in 
case of competing events.  

A survival function describing the probability of no 
event until k is given by 

 

Figure 1: A modified illness-death model. Progression and death before progression as competing events. 
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S(t) = exp
k
(s)ds

0

t

k=1

K

         (4) 

Another important function describing an equivalent 

to the distribution function 
 
F(t) = 1 S(t)  in the one-risk-

case is the cumulative incidence function 

( ) ( , )
k

C t P T t D k= = , which gives the probability of 

failure from cause k before time t. The cumulative 
incidence function (CIF) is a function of the cause-
specific hazards from all causes of failure, 

 
C

k
(t) = S(u )

k
(u)du .           (5) 

Putter et al. [11] propose the following interpretation 
for the CIF: If the time interval [0,t] is decomposed into 
many small intervals of length , then the events 

reaching state k in [ , ]u u +  are disjunct. The 

probability of surviving just prior to u, denoted by u-, 
times the conditional probability of reaching state k in 
the interval [ , ]u u +  is the event probability in every 

time interval. Of course, 
  
C

k
(t) also depends on every 

competing risk through S(u-), because being at risk for 
k at time u requires no competing event until u-. 

3.2. Inference from Cumulative Incidence Models 

The cumulative incidence models focus on the 

marginal probability of having failed from one event 

prior to a specific time point.  

The Model by Fine and Gray  

The key concept of the model proposed by JP Fine 

and RJ Gray [3] is to regress on a subdistributional 

hazard rate that is derived directly from the cumulative 

incidence function, 

  
k
(t) :=

log(1 C
k
(t))

t
          (6) 

Then, a regression step analogue to the Cox partial 
likelihood in (2) will be performed, assuming the 

subdistribution hazard rates ( )
k

t  to be proportional. 

The difference between the hazard rates ( )
k

t  in (6) 

and ( )
k

t  in (2) is that individuals stay in the risk set 

after experiencing a competing event in the Fine and 
Gray model, whereas these individuals are treated as 
censored in the cause-specific hazard framework.  

The Pseudo Value Approach 

The pseudo value approach on cumulative 

incidences proposed by PK Andersen and JP Klein [14] 

circumvents the proportional hazards assumption. 

Pseudo values for the cumulative incidence function 

will be generated by the leave-one-out system known 

from the jackknife approach from the cumulative 

incidence function in a generalized linear model.  

Let 
  
N

k
(t)  be a counting process representing the 

number of individuals who experienced an event of 
type k by time t and let Y(t) denote the number of 
individuals at risk at t. An estimator for the CIF in (5) is 

  

C
k
(t) = 1

dN
h
(T

i
)

h=1

K

Y (T
i
)T

i
<u0

t
dN

k
(u)

Y (u)
.        (7) 

If the censoring time is independent of (T, k), C
k
(t)  

is an approximately unbiased estimator of 
  
C

k
(t) [14]. 

Presume some time points 
   
t
1
,…, t

M
. It is 

recommended to choose M = 5 to 10, spaced equally 
across the event scale, or some specific time points 
predefined with special interest for the researcher [23]. 
At every time point, the cumulative incidence function 
will be estimated based on the complete data set 

  
C

k
(t

j
)  and on the reduced data set 

  
C

k

( i) (t
j
) , which 

denotes the complete data set leaving the ith individual 

out. The pseudo value of the ith subject at time 
 
t

j
 is 

then defined as 

  ij
(t

j
) = nC

k
(t

j
) (n 1)C ( i)

k
(t

j
)          (8) 

and can be interpreted as the contribution of individual I 

to the estimated cumulative incidence function at time 

 
t

j
. 

The next step is to perform a regression analysis of 

  ij
 on 

 
Z

i
, to link the pseudo values and the vector of 

covariates. This is done by a generalized linear model 

g(
ij
) =

0
+

j
Z

j
          (9) 

with a link function g(.). Andersen et al. (2003) propose 
several link functions, thereunder the logit link, 

  
g(x) = log(x / (1 x)) , the complementary log-log 

function on x, 
  
g(x) = log( log(x)) , or the 

complementary log-log function on (1-x), that 

is
  
g(x) = log( log(1 x)) . The complementary log-log 

function relates to the cumulative incidence of event 
times and is therefore comparable to the 
subdistribution hazards model by Fine and Gray. The 
logit link is analogue to a proportional odds model [23]. 

Let furthermore 
 
μ

i
 be the inverse link function, 
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  i
= g

1(
0
+

j
Z

j
) = μ(

0
+

j
Z

j
) ,       (10) 

The regression coefficients 
 j

 in (9) will now be 

estimated by a generalized estimation equation 

approach (GEE) [24, 25], 

U ( ) =
μ

i

i

V
i

1(
i i

) = U
i
( ) = 0

i

     (11) 

with a working covariance matrix 
 
V

i
 for 

  i
. Klein and 

Andersen (2005) suppose the identity matrix, the exact 
working covariance matrix or a common working 
covariance matrix estimated as a product-moment 

correlation matrix of the 
  ij

 as possible working 

covariance matrices. 

4. RESULTS 

From the 1000 simulated subjects, 383 failed by 

chance from risk A and 617 from risk B. The CSHM 

yields estimated hazard ratios HR=0.579 

(95%CI:[0.469; 0.715]) for A and HR=1.778 

(95%CI:[1.510; 2.093]) for B. The Fine and Gray model 

results estimated subdistributional hazard ratios of 

SHR=0.426 (95%CI:[0.344; 0.527]) for risk A and 

SHR=2.013 (95%CI:[1.708; 2.373]) for risk B. The 

pseudo value approach using nine grid time points 

estimates SHR=0.490 (95%CI:[0.386; 0.620]) for A and 

SHR=1.953 (95%CI:[1.625; 2.348]) for B. 

From the 215 ovarian cancer patients from the 

second example, 111 experienced a progression and 

19 deaths in remission were observed. The median 

follow up was 23 months. An overview of descriptive 

statistics is presented in Table 1. 

The results for the clinical example are opposed in 

Table 2. We applied the pseudo value model twice, 

using five and ten time points, equally distributed 

across the event scale. For the progression intensity, 

all four models agree. Whereas age has no impact on 

progression, staging and residual tumor are prognostic 

markers for the progression intensity. All applied 

models reveal a significantly increased progression risk 

of approximately 50% for patients with residual 

disease, compared with patients who are tumor-free 

after surgery. The progression hazard is even tripled in 

the high stage group compared to the lower staged 

group. Results for the dying intensity differ among the 

models. The proportional hazards models, namely the 

CSHM and the Fine and Gray model show similar non-

significant results, while the pseudo value method 

differs. Especially for the staging effect, the pseudo 

value models estimate strong and significant stage 

effects. 

5. MODEL COMPARISON AND DISCUSSION  

The Cause-Specific Hazards Model and the 

cumulative incidence approaches should not be 

compared directly, because they have a different 

meaning relating to different aspects of the process. 

However, similarity of cause-specific hazard ratios and 

subdistribution hazard ratios is informative and may be 

interpreted as absence of a strong interdependency 

between the competing events of interest.  

For the simulated example, results from the CSHM 

are very close to the predetermined values. The 

estimates from the cumulative incidence models are 

again not directly comparable to the default values, as 

the simulation based on cause-specific hazards. The 

results from the Fine and Gray and the pseudo value 

estimates are quite similar with also comparably wide 

confidence intervals.  

In contrast, the results from the clinical example 

show a very strong variation at one point. While the 

pseudo value model yields a very strong effect of tumor 

staging on mortality without progression, this effect is 

invisible using the Fine and Gray model or the CSHM. 

Furthermore, estimates from the pseudo value model 

Table 1: Descriptive Statistics and Event Counts for the Clinical Example 

 Patients Progressions  Deaths before progression 

Total 215 (100%) 111 (51.6%) 19 (8.8%) 

No residual tumor 149 (69.3%) 64 (58.7%) 11 (57.9%) 

Residual tumor 66 (30.7%) 47 (41.3%) 8 (42.1%) 

Low stage 52 (24.2%) 13 (11.7%) 2 (10.5%) 

High stage 163 (75.8%) 98 (88.3%) 17 (89.5%) 

Age in years mean (sd) 57.4 (12.6) 58.1 (11.8) 61.4 (12.2) 
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seem to depend heavily on the number and location of 

time points.  

Until Fine and Gray developed their milestone 

model in 1999, competing risks problems were 

analyzed and interpreted mainly with the CSHM. Since 

then, both models were common tools for competing 

risk problems. Both approaches require a 

proportionality assumption, as they base on the Cox 

PH-Model. By construction, this assumption can only 

be met for one of both models. If the cause-specific 

hazard ratio is constant over time, the subdistributional 

hazard ratio has to change with time and vice versa. 

However, if the proportional hazards assumption holds, 

the subdistributional hazard ratio may still be 

interpreted as a time-averaged effect on the cumulative 

event probability, see also [26, 27]. The third approach 

by Andersen and Klein on pseudo values waives the 

proportional hazards assumption. But the variability of 

the results and the fact that there is no clear 

recommendation how to choose number and location 

of grid points yields unstable results from the pseudo 

value model, especially when low event counts are 

present.  

With our work, we state that not one single 

approach is appropriate in a special situation. 

Moreover, the CSHM and the cumulative incidence 

approach complement one another. The CSHM allows 

a more clinical interpretation, as the results represent 

the effect of the instantaneous probability of each 

event. Etiological questions are better addressed to this 

model. The cumulative incidence approaches are more 

relevant for analyzing marginal probabilities. For 

example in requirements planning, cumulative 

incidence models can be preferred.  

Regarding computational opportunities, The CSHM 

can be adapted using every statistical software that can 

handle the Cox model. In contrast, the Fine and Gray 

Model is not yet a standard procedure, but it is 

available for example in Stata 12.0 (stcompet) and in R 

(cmprsk). To adapt a pseudo value model, the software 

has to be firm with GEE models. Stata provides an 

.ado-file (stpci) that can handle competing risks models 

with the pseudo value approach [15].  

6. CONCLUSIONS 

We conclude that the CSHM and approaches on 

cumulative incidences do not exclude each other but 

moreover complement one another. Therefore, we 

recommend to compute both the Cause-Specific 

Hazards Model and the Fine and Gray model in 

competing risks situations. The pseudo value approach 

may be an alternative to the Fine and Gray model, 

when the proportional hazards assumption is not met. 

However, care has to be taken as the number and 

location of grid time points is arbitrary but of high 

relevance for the results. As in all survival analyses, 

situations with low event rates should be interpreted 

carefully. 
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