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Abstract: High-throughput genomic assays are used in molecular biology to explore patterns of joint expression of 
thousands of genes.  

These methodologies had relevant developments in the last decade, and concurrently there was a need for appropriate 
methods for analyzing the massive data generated. 

Identifying sets of genes and samples characterized by similar values of expression and validating these results are two 

critical issues related to these investigations because of their clinical implication. From a statistical perspective, 
unsupervised class discovery methods like Cluster Analysis are generally adopted. 

However, the use of Cluster Analysis mainly relies on the use of hierarchical techniques without considering possible use 

of other methods. This is partially due to software availability and to easiness of representation of results through a 
heatmap, which allows to simultaneously visualize clusterization of genes and samples on the same graphical device. 
One drawback of this strategy is that clusters’ stability is often neglected, thus leading to over-interpretation of results. 

Moreover, validation of results using external datasets is still subject of discussion, since it is well known that batch 
effects may condition gene expression results even after normalization.  

In this paper we compared several clustering algorithms (hierarchical, k-means, model-based, Affinity Propagation) and 

stability indices to discover common patterns of expression and to assess clustering reliability, and propose a rank-
based passive projection of Principal Components for validation purposes.  

Results from a study involving 23 tumor cell lines and 76 genes related to a specific biological pathway and derived from 

a publicly available dataset, are presented. 
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INTRODUCTION 

DNA microarrays, also known as gene chip, are a 

multiplex technology which dates back to almost twenty 

years ago. Since then, it has known a relevant 

development becoming a standard technique for 

genomic analysis. In parallel, there has been a 

considerable effort to develop adequate statistical 

methods for dealing with this kind of data [1]. 

Many standard techniques for multivariate data, 

such as cluster analysis [2] and principal components 

[3-5], have been used at length to analyze gene 

expression datasets. 

Cluster analysis, for instance, is the method of 

choice to discover groups of genes or samples with 

similar levels of expression and includes a countless 

series of algorithms to be used. Yet, often only one of 

these is used and the results are not further 

investigated by using some other methods [6, 7].  
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Additionally, stability of clustering results should be 

properly evaluated to assess robustness of the 

discovered groups [8].  

Once the clusters have been defined, it is of 

common interest to investigate association between 

samples and genes, evaluating whether some panel of 

genes, possibly belonging to a common biological 

pathway, characterize a specific cluster. To do this, 

Principal Components Analysis (PCA) is a very 

powerful technique, allowing for a graphical 

representation of such an association using the biplot, 

a bivariate visualization of multivariate data introduced 

by Gabriel [9]. By looking at this graph, where the first 

two principal components are plotted, it is possible not 

only to explore the association between variables 

(genes) and observations (samples), but one can also 

evaluate the relationship among the variables 

themselves, gaining a considerable amount of 

information about gene expression levels.  

Results deriving from these analysis need however 

to be validated, a task which is not trivial, as it has 

been reported since over ten years that “batch effects'' 

need to be seriously taken into account when 

comparing results from different studies [10].  
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Aim of the present study is thus to describe how 

cluster analysis and PCA-related biplots can be 

complementarily used to extract reliable information on 

samples classification and on the association between 

samples and genes and to validate experimental 

results. 

Specifically, four clustering algorithms have been 

compared (hierarhical, k-means, model-based and 

Affinity Propagation) and stability of the results has 

been assessed using different indices. We addressed 

the issue of validation through a rank-based passive 

projection of the validation samples on the biplot of the 

experimental samples, in order to circumvent the “study 

effect'' and to compare gene expression profiles across 

different experiments. 

As a motivating example, we describe results of a 

study performed on a set of epithelial tumor cell lines 

(derived from the NCI60 dataset [11,12]) to evaluate 

patterns of expression of a panel of genes involved in 

the process of cell polarity. The biological relevance of 

the study lies in the fact that a strong correlation 

between malignancy and loss of epithelial organization 

has been histologically documented for almost types of 

tumor deriving from epithelial cells [13-16]. In addition, 

disruption of cell-cell junctions per se has been found 

to promote the development of some cancers [17,18]. 

Therefore, understanding the molecular mechanisms 

that regulate tissue organization and how such 

mechanisms are disrupted during neoplastic 

transformation, could provide important and useful 

insights to be exploited for diagnostic and therapeutic 

purposes. 

MATERIALS AND METHODS 

Clustering Algorithms 

Hierarchical 

Hierarchical clustering has been widely used in 

microarray data, starting from the seminal paper of 

Eisen et al. [19], mainly because of the possibility to 

graphically visualize clustering results by means of a 

heatmap, a plot where gene expression values are 

represented as a matrix of small coloured squares. In 

microarray studies, heatmaps are often on a green-red 

scale, where green stands for low expression values 

and red stands for high expression values. Additionally, 

genes and samples are re-ordered according to 

hierarchical clustering results, and related 

dendrograms are shown on the heatmap itself. 

In this paper we used agglomerative hierarchical 

clustering with average linkage, using 1 – Pearson’s 
2
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K-Means 

The k-means algorithm was considered to have a 

standard non-hierarchical method for data clustering. 

The algorithm was initialized using the means of the 

clusters identified by the hierarchical clustering method 

described before. Choice of the number of clusters for 

both hierarchical and k-means algorithms was based 

on graphical visualization of mean silhouette value [2]. 

Affinity-Propagation 

Affinity-Propagation (AP) [20] is a method based on 

graphical models which aims at searching for some 

centroids, named exemplars, into the set of data points 

possibly by starting from a pre-defined preference 

value for each object to be clustered or using the same 

for all objects. 

As first step of the algorithm a similarity measure for 

each pair of subjects (i,j), indicated as s(i,j), is defined: 

this value suggests how much subject j is likely to be 

the centroid for subject i; then each subject is assigned 

a preference value s(i,i) which measures how much a 

point is suitable for being an exemplar. The core of the 

method is the exchange of messages between all pairs 

(i,j); the first type of message, named responsibility, is 

defined as 

r i, j( ) = s i, j( ) max
j ' :j j '

a i, j '( ) + s i, j '( ){ }  

and represents how much j is suitable to be a centroid 

for i, considering all other potential exemplars for i. The 

second type of message, named availability, is defined 

as 

a i, j( ) = min 0, r j, j( ) + max 0, r i ' , j( ){ }
i ' :i ' i, j{ }

 

and indicates how much appropriate it would be for 

subject i to choose j as its centroid. In this equation r(j,j) 

is called “self-responsibility”, and reflects evidence for j 

being an exemplar and against its grouping with a 

cluster identified by another centroid. At the first 



164     International Journal of Statistics in Medical Research, 2012 Vol. 1, No. 2 Bassani et al. 

iteration the value for a(i,j) is set to zero, and all the 

pair-wise responsibilities are computed; then, starting 

from current values of r(i,j), a(i,j) can be computed. At 

each iteration these messages can be combined to 

identify the exemplars for each of the subjects: 

algorithm stops at a determined number of iterations, or 

when a stable clustering result is found.  

A preference value is associated uniquely with a 

clustering solution, but the same solution can be 

associated to different values of s(i,i). By plotting on the 

x-axis the various preference values and on the y-axis 

the number of clusters associated it is possible to 

evaluate the plateaus in corrispondence of specific 

values of k to choose the number of clusters. By using 

this method, Soria et al. [21] evaluated gene profiles of 

several cases of breast cancer using AP, and obtaining 

results consistent with previous findings, but with an 

indication about the number of clusters. 

In this paper we used Pearson’s 
 
as similarity 

measure, and the median of all pair-wise correlations 

between samples as the starting preference value s(i,i) 

for all samples. 

Model-Based Clustering 

Model-based clustering [22] assumes data are 

distributed according to a mixture of normal 

distributions and attempts to find a partition in samples 

by making use of a combination of the EM algorithm 

and the Bayesian Information Criterion (BIC). In a 

nutshell, for each value of k (= number of clusters) the 

partition which maximizes the classification likelihood is 

searched, and then the BIC is estimated for each of 

these models according to different cluster shapes 

(contour of the density of objects in a clusters) and 

volumes (amount of space occupied by the cluster in a 

p-dimensional space, where p is the number of 

variables). The larger the BIC, the stronger the 

evidence for the associated model.  

Cluster Stability 

To assess reliability of clustering results we 

considered two indices proposed in literature: the R 

index from McShane et al. [23] and the index from 

Smolkin et al. [24]. 

The R index substantially involves clustering of 

“perturbated” data sets according to some noise and 

comparison of results with the partition obtained on the 

original dataset. Thus, we added noise to the original 

data and re-clustered samples according to noisy 

expression data, and compared clustering results on 

the noisy datasets with the original ones. That is, 

considering k as the number of clusters, for every i-th 

cluster (with i = 1,2,…,k) in the original solution, we 

consider all possible pairs of objects (i.e. samples) 

assigned to that specific cluster and evaluate if they 

cluster together also in the noisy dataset. Supposing 

that for the i-th cluster there are ni samples, the number 

of pairs to be compared is mi = ni(ni - 1)/2, so for each 

cluster we can compute a measure ri which is a ratio 

between pairs of subjects of cluster i in the original 

dataset that cluster together also in the noisy dataset 

(ci) and all possible pairs of subjects of cluster i (mi), 

that is ri = ci/mi. Such a cluster-wise measure can be 

extended to include all clusters, so we define the R 

index as 

R =
c1 + c2 +…+ ck
m1 + m2 +…+ mk

 

The higher the value of the index, the stronger is the 

"robustness" of clusters found in the original dataset. A 

relevant gain in reliability of this measure can be 

obtained by simulating several noisy datasets (say M) 

and computing the R index M times, averaging over the 

M values. To simulate the M noisy datasets in this 

work, we chose to add Gaussian noise (as suggested 

in [23]), by adding random values sampled from a 

Normal r.v. with zero mean and a specific standard 

deviation to the original expression values. McShane et 

al. [23] suggest to use the median of the gene-wise 

standard deviations, but they refer to a classical 

microarray experiment where only a few genes out of 

thousands are expected to show patterns of differential 

expression between experimental groups or clinical 

conditions. Since we expect a lot of genes to be 

differentially expressed between different types of 

tumors, we decided to use the 25
th

 percentile of the 

distribution of gene-wise standard deviations, equal to 

1.0696. Note that singleton clusters in the original 

solutions had to be treated differently: across all 

perturbed dataset we evaluated how many times each 

sample constituting a singleton clustered on its own 

also in the noisy datasets, and merged this information 

with those regarding pairs of sample from the other 

clusters. Chosen value of M was 1000 (number of 

perturbated datasets created). 

The index from Smolkin et al. considers subspaces 

of the space of p variables and compares clustering 

solutions between the one obtained with p genes and 

the one obtained with a random subspace of m < p 

genes. In particular, choose m genes randomly, 
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perform clustering on this subset, evaluate whether 

clusters "re-appear" on these subsets (two additions or 

omissions are allowed), and perform these steps B 

times. The index, computed separately for each cluster, 

is the number of times that the cluster is found on all 

the B runs of the algorithm. 

PRINCIPAL COMPONENTS ANALYSIS AND 
BIPLOTS 

To evaluate more accurately the association 

between genes and samples Principal Components 

Analysis (PCA) was used as an exploratory multivariate 

technique which allows to reduce multivariate data to a 

lower dimensional space accounting for most of the 

variance of original data. This technique allows the 

visualization in a bi-dimensional space of the 

information on higher dimensional data, via the use of a 

PCA-based biplot.  

In particular, given an n x p matrix X, the goal of 

PCA is to find m  p uncorrelated linear combinations 

of the variables which explain most of the variation in 

X. These linear combinations will have the form 

 
k
'
= k1x1 + k2x2 +…+ kpxp = kj x j

j=1

p

 

where k indicates the general principal components 

and j the general variable. It can be shown that the k 

vectors of parameters, which we will refer to as 

loadings, correspond to the eigenvectors of , the 

covariance matrix of X. The number of components 

that can be estimated is equal to the minimun between 

n and p, but in practice only those explaining the most 

variance will be considered: this translates in relevant 

reduction of the space of the variables.  

To represent graphically results from this analysis, 

Gabriel suggested to use the biplot [9], a technique 

which allows to show variables and samples 

simultaneously on the same plot by means of a suitable 

rescaling. In particular, using Singular Value 

Decomposition (SVD) it is possible to write the X matrix 

as  

X =USV '  

where, U (n x r) and V (p x r), are matrices whose 
columns form orthonormal basis , S is an r x r diagonal 

matrix whose elements 
 
s1
1 2 s2

1 2 … sr
1 2  are the 

singular values of X, and r is the rank of X. If we define 

S  for 0    1 as the diagonal matrix whose 

elements are 

 
s1

2 s2
2 … sr

2  and similarly for matrix S1  and let 

G =US , H '
= S1 V '

 then 

GH '
=US S1 V '

=USV '
= X  

So, the (i,j)-th element of X can be written 

as xij = gi
'hj = uikSk

1 2

k=1

r
v jk , which can be approximated 

by  

 
m xij = uik sk

1 2vjk =
k=1

m

gikhjk = gi
*hj

*

k=1

m

 

where gi
*
, h j

*
 contain first m elements of gi and hj 

respectively. This means that by plotting gi
*
 and h j

*
 on 

the same graph one can deduce several information 
about relationships between variables and subjects and 
among variables themselves [3]. 

A researcher could possibly be interested in 
understanding how new samples are projected on the 
biplot previously described, by projecting them on the 

PCA-biplot of X. Recalling that X =USV '
 and that both 

U and V have orthonormal columns, so that U’U = I and 
V’V = I, than it is possible to write 

XV =USV 'V =US = GX  

and so the projection matrix G for a new dataset Y, 
whose columns contain informations on the same 

covariates as X, can be computed as GY = YV ' . The 

first two columns of GY are the projection coordinates 
of samples in Y on the PCA-based biplot of X. By 
plotting the new coordinates on the biplot it is possible 
to evaluate the association of the validation samples 
with the original ones. 

There is, however, a problem which in literature is 

referred to as “batch effect”, that is, data from different 

studies can not be compared directly because of 

intrinsic differences due to different study setting 

(laboratory, tissue material, reagents, etc.) and to 

systematic bias not corrected by the normalization 

algorithm [25]. Since it is expected that the within-

sample ordering of the p gene expression values will 

be similar for comparable samples also from two 

different studies, a ranking of these values within each 

subject may be adopted to compare samples across 

studies. Expression values are then replaced by their 

within-subject ranks for each subject for both the 

experimental and the validation dataset, and PCA is 

performed on ranked experimental data, visualizing 

results via a standard biplot. Validation is then 

performed graphically by passively projecting ranked 

validation data over this PCA-based biplot. 
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All analysis have been carried out using standard 

statistical software R 2.15.1 [26]. 

RESULTS 

Experimental Data 

Results from a gene expression study are 

presented. Expression values of 76 genes related to 

cell polarity and apical junctional complex components 

have been evaluated on 23 human tumor cell lines, of 

which 20 represent solid cancers arising from epithelial 

tissues (6 for breast, 8 for kidney and 6 for colon) and 3 

derived from different kinds of leukemias (a systemic 

non-epithelial cancer), used as a negative control. Both 

genes and samples are a subset of a well-established 

publicly available dataset named NCI60, which 

contains information on thousands of genes of 60 

human tumor cell lines [11,12]. As the process of loss 

of cell polarity is known to be connected to cancer 

development [17,18], goal of the study was to evaluate 

shared patterns of expression among different tumors 

all arising from epithelial tissues, and to explore 

associations between specific genes involved in such 

biological pathway and sets of similar samples. 

Characterization of samples is reported in Table 1. 

Data were already normalized, and we only performed 

log2 transformation. 

Cluster Analysis 

Choice of k 

In Figure 1 we show the plots for the choice of the 

number of clusters k using the different clustering 

algorithms. The silhouette plots of panel A 

(hierarchical) and B (k-means) suggest that a solution 

with 2 clusters is the best one (average silhouette of 

0.484 and 0.526, respectively). Model-based clustering, 

on the other hand, provides a quite clear evidence that, 

irrespective of the supposed shape of the clusters, the 

solution with 4 groups outperforms the others with 

respect to the BIC (panel C). This is particularly true 

when clusters with equal volume and shape (orange 

dots) or with equal shape and different volume (brown 

dots) are considered (BIC = -5875.126 and -5851.330, 

respectively). Plot in panel D shows the number of 

clusters identified by AP algorithm in correspondence 

of a range of 1000 possible preference values ranging 

from -2.566 to 0.895. We can see that the more 

relevant vertical lines are associated with 2 and 3 

clusters, with also a moderate evidence for a solution 

with 4 clusters. 

Clustering Stability and Classification 

The R index has been computed for all possible 

solutions from 2 to 7 clusters for all algorithms 

considered. Results are reported in Table 2. 

Hierarchical solutions appear to be globally the more 

stable, across different values for k. Affinity 

Propagation and model-based appear to be the less 

stable solutions for all datasets considered, whereas k-

means is comparable to hierarchical only for k = 2. 

Given the higher degree of stability, we decide to focus 

on hierarchical clustering solutions, and choose the 

solution for k = 2, reported in Table 3 and visualized in 

the heatmap of Figure 2.  

The index by Smolkin and Gosh [25] was computed 

for each of the 2 clusters defined in Table 3, using a 

varying proportion of m < p genes which ranged from 

0.65 (49 genes) to 0.85 (65 genes). For each of these 

proportions we extracted 1000 reduced datasets, 

Table 1: Details of the 23 Cell Lines Involved in the 
Present Study 

Names Description 

T47D breast carcinoma 

HS578T breast carcinosarcoma 

MDA-435 ductal breast carcinoma 

MCF7 breast adenocarcinoma 

BT-549 papillary infiltrating ductal carcinoma 

MDA-231 breast adenocarcinoma 

HCT-15 colon adenocarcinoma 

HCC-2998 colon carcinoma 

HCT-116 colon carcinoma poorly differentiated 

SW-620 colon carcinoma 

COLO205 colon adenocarcinoma 

HT29 colon adenocarcinoma 

RXF-393 kidney hypernephroma 

A498 kidney adenocarcinoma 

ACHN renal cell carcinoma 

CAKI-1 clear cell carcinoma 

786-0 kidney adenocarcinoma 

SN12C renal cell carcinoma 

UO-31 renal cell carcinoma 

TK-10 renal spindle cell carcinoma 

MOLT-4 lymphoblastic leukemia 

CCRF-CEM lymphoblastic leukemia 

HL-60 promyelocytic leukemia 
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Figure 1: Choice of the number of clusters k: a) average silhouettes for hierarchical clustering; b) average silhouettes for k-
means; c) Bayesian Information Criterion for model-based clustering; d) preference value plot for Affinity Propagation. 

 

Table 2: R index for Cluster Stability [24], Computed on 1000 Perturbated datasets 

k Hierarchical K-means AP Model-based 

2 0.9923 0.9947 0.9426 0.8202 

3 0.9509 0.8718 0.8087 0.812 

4 0.9651 0.8094 0.7443 0.8142 

5 0.9281 0.8527 0.6674 0.8197 

6 0.9188 0.8526 0.601 0.7414 

7 0.8499 0.803 0.6305 0.6768 

 

Table 3: Classification of Cell Lines (k = 2) for Hierarchical Clustering 

 Cluster 1 Cluster 2 

Colon 6 0 

Breast 2 4 

Kidney 0 8 

Leukemia 0 3 
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Figure 2: Heatmap of gene expression data from a subset of the NCI60 dataset. Row and column dendrograms were obtained 
using a hierarchical agglomerative algorithm, using average linkage and 1 - 

2
 as distance metric. Green squares indicate low 

levels of expression, red squares high level of expression. 

performed hierarchical cluster analysis on them using k 

= 2, computed the index for each cluster and then 

averaged over the datasets. Results are reported in 

Table 4, and confirm the stability of this solution. 

PCA-Based Biplots and Passive Projections 

Principal Components Analysis (PCA) was 

performed on scaled and centered variables. Since we 

were not interested in doing some feature selection or 

in interpreting the PCs per se, we did not perform any 

further analysis about how many components to 

choose nor we did perform any rotation. The first two 

components accounted for 82% of total variability 

(67.8% and 14.2% respectively), meaning that a biplot, 

i.e. a graphic where information about subjects and 

variables is simultaneously plotted after some proper 

scaling (for further reference see [27]) is able to 

represent most of the variability of the data, thus giving 

very useful insight on the relationships between 

samples (or clusters of samples) and genes. The PCA-

based biplot of our data is reported in Figure 3. 
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Table 4: Results for the Index from Smolkin and Gosh 
[25]. Clusters Labels are those Specified in 
Table 3 

m Cluster 1 Cluster 2 

49 0.899 0.899 

50 0.931 0.931 

51 0.919 0.919 

52 0.943 0.943 

53 0.947 0.947 

54 0.960 0.960 

55 0.955 0.955 

56 0.972 0.972 

57 0.973 0.973 

58 0.979 0.979 

59 0.989 0.989 

60 0.984 0.984 

61 0.987 0.987 

62 0.990 0.990 

63 0.995 0.995 

64 0.998 0.998 

65 0.997 0.997 

It has to be pointed out that the samples in the 

upper-left portion of the plot are all those of cluster 1, 

colon lines and estrogen receptor-positive (ER+) breast 

lines, which show a positive association with a relevant 

number of genes, specifically those reported in Table 5. 

Moreover, it can be noted that samples in cluster 2 are 

much more spread in the space of the first two principal 

components then those in cluster 1, which confirms 

that the genes chosen do not characterize them as 

much as for colon lines. These results seem to suggest 

a specific polarity profile for samples in Cluster 1, 

whereas no clear association can be retrieved for the 

remaining cluster. 

Although cluster analysis suggests that cluster 1 is 

a strong structure and the biplot depicts a quite clear 

association structure between clusters and genes, it is 

relevant to know whether these results are reproducible 

or if they are some kind of technical artifact related to 

the NCI60 dataset considered here. 

Three additional datasets, one containing 

information on 20 human renal cancer cell lines 

(including our 8 renal lines), and 51 genes, one 

including 3 lines derived from normal tissue (colon + 

kidney + breast) and 51 genes, and one including 3 

 

Figure 3: PCA-based biplot of NCI60 dataset. Black labelled samples belong to cluster 1, olive green labelled samples to 
cluster 2 (see Table 3). 
 

Table 5: Genes Associated to Cluster 1 

CLDN15 PARD6A JUP PARD6B 

OCLN CLDN7 DLG2 CRB3 

CLDN4 CLDN3 CDH1  

PRKCZ LLGL2 INADL  

CDH3 F11R CGN   
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colon cancer and 5 breast cancer cell lines with 

information on 62 genes were considered. Only the 51 

genes common to all three datasets were used: this 

resulted in losing 25 genes, 33%, in the experimental 

dataset and 11 genes, 17.7%, in the colon-breast 

validation dataset. The validation samples were 

passively projected on the biplot of Figure 3, obtaining 

the biplot in Figure 4.  

Clearly, renal cancer validation lines behave quite 

differently from experimental renal cancer lines. In 

general, there seem to be no variation along the first 

component for none of the validation datasets 

considered. Considering this plot, we could say that our 

experimental results substantially are not validated. 

However, the strange pattern, which is seen for 

validation lines in Figure 4, is likely to be due to a batch 

effect, that is the association structure could be 

influenced by non-biological differences in the 

experimental settings. To properly validate results, we 

resorted to sample-wise ranked data (that is, gene 

expression values were ranked in ascending order 

within each sample for both experimental and 

validation datasets), visualizing biplot of PCA over 

ranked NCI60 data and then passively projecting the 

ranked validation data on this biplot. PCA over ranked 

 

Figure 4: Passive projections of validation samples on the PCA-based biplot of NCI60 dataset. Experimental samples: Black 
labelled samples belong to cluster 1, olive green labelled samples to cluster 2 (see Table 3). Validation samples: blue labelled 
samples come from the renal cancer validation dataset, violet labelled samples from the colon/breast cancer validation dataset 
and orange labelled samples from the normal tissues dataset. 

 

Figure 5: Passive projections of ranked validation samples on the PCA-based biplot of ranked NCI60 dataset. Sample labelling 
is the same as Figure 4. 
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NCI60 data shows different features with respect to 

those on plain expression data, since here the first two 

components explain only 37% of the whole variability. 

In Figure 5 the “ranked” validation biplot is shown.  

From this figure it can be seen that the structure of 

association depicted in Figure 3, though being quite 

different, still conserves some specific patterns. In 

particular, lines in cluster 1 still group quite close and 

are associated with a set of 12 genes (namely INADL, 

JUP, CLDN4, CLDN3, CDH1, LLGL2, OCLN, RAC1, 

DLG3, PARD6B, CDLN16 and CDH3), ten of which 

were associated with this cluster also when using 

expression data (see Table 5). It can also be noted that 

4 of the colon/breast validation lines are close to the 

experimental samples of cluster 1; of these 4 samples, 

3 are colon cancer lines and the fourth, BT20, is a 

breast cancer line which expresses ER mRNA despite 

its negative phenotype. The other breast cancer lines, 

all confirmed to be transcriptionally ER-negative, are on 

the opposite side of the plot, thus validating our 

experimental results. Validation renal cancer lines, on 

the other hand, show relevant patterns of dispersion in 

the space of first two principal components, but such a 

pattern is much more spread out than that seen in 

Figure 3; moreover, of the 8 renal samples present 

both in the experimental and in the validation dataset, 

only 786.0, SN12C, UO31 and TK.10 show similar 

behaviour. Of the other 4 lines, some have completely 

different behaviour from validation to experimental 

(ACHN and A498), some show only moderate gaps. 

DISCUSSION 

The use of clustering methods in microarray 

research has so far become a standard in the analysis 

of biomolecular data, and many new clustering 

algorithms are being developed to deal with this kind of 

high-dimensional data. Connected with the choice of 

the clustering algorithm, the issues of choosing a 

proper number of clusters and of evaluating stability of 

the resulting classification are well known in microarray 

research. However, few papers deal with them, and 

rely on results from a single clustering algorithm, often 

choosing the number of clusters in an extremely 

subjective way and without any reliability assessment 

on clustering results. In this paper we have shown that 

using different clustering methods, with their related 

strategies to assess the number of clusters, is a useful 

way to choose a meaningful classification, and that 

evaluating clusters stability can provide deeper 

understanding of the robustness of the classification.  

The issue of comparing results from different 

experiment is a very urgent topic in microarray 

research, where high-dimensional and noisy datasets 

pose a lot of critical issues that require proper statistical 

methods. To-date, some methods exist that deal with 

this problem: Parmigiani et al., proposed a method 

named "integrative correlation", applicable to class 

comparison studies, i.e. studies when one is focusing 

on comparing expression profile between 

phenotypically different groups of subjects [28, 29]. 

Substantially, the proposal is to evaluate whether gene 

j is consistently expressed in different studies, one has 

to compute first the correlations of gene j with all other 

genes within each study, and then compute correlation 

between the within-study correlations. To determine 

whether such a measure reflects "reliability" of gene j 

across different studies, a null distribution is estimated 

and a cut-off is chosen according to the highest value 

of this null distribution. Lusa et al. [30] faced the issue 

of validating clustering results across different 

microarray experiments using various breast cancer 

dataset, claiming that “many difficulties remain in 

validating and extending class discovery results to new 

samples and that projection of clusters from one 

dataset to another must be done with care”. 

In this paper we showed a method to validate 

results from a microarray experiment by making use of 

multivariate visualization methods related to Principal 

Components Analysis, and illustrated how this 

approach can be used to circumvent unwanted 

experimental effects which could confuse the relevant 

biological effects of interest by transforming data to 

their ranks. By applying the proposed technique to a 

subset of a microarray experiment on cancer cell lines 

we found that despite their common epithelial origin, 

colon, renal and breast cancer cell lines show a very 

different cell polarity profile. Specifically, we found a 

cluster of samples composed of colon cell lines, known 

to express estrogen receptors (ER+) [31], and of two 

ER+ breast lines. Notably, this cluster was found also 

by considering a number of clusters up to 7, for all 

algorithms considered, whereas the remaining lines 

showed different behaviour for larger values of k 

depending on the clustering algorithm. This cluster has 

a specific pattern of positive association with some 

epithelial markers such as CDH1, the gene encoding 

for E-cadherin [32, 33], and of negative association 

with CDH2, which encodes for N-cadherin, the typical 

marker associated with mesenchymal phenotype [34]. 

On the contrary, the cluster composed by renal cancer 

cell lines and ER- breast cancer lines, has an opposite 
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pattern of association with epithelial and mesenchymal 

markers. This suggests that disruption of cell polarity 

and following alteration in the apical junctional complex 

may be influenced by other factors not strictly related to 

these processes, as can be seen by differential gene 

expression observed in ER+ versus ER- cell lines. 

Additionally, validation of results with passive 

projections shown in Figure 5 mostly confirmed results 

from previous analysis with regard to colon lines, 

whereas further investigations are needed for renal 

tissues, to better characterize their polarity profile and 

to evaluate influences of additional factors (e.g. 

hormone dependence). 

With respect to cluster analysis, the main 

advantage, i.e. the comparison of results from different 

algorithms, could also be one possible limitation, in that 

the choice of the clustering algorithms to be compared 

is substantially subjective. It is possible that other 

techniques may give rise to different clusters with 

possibily different biological meaning, however since 

the cluster described above shows up throughout all 

algorithms for a large variety of k values we are quite 

confident in the biological relevance of our finding.  

The main advantage of the proposed validation 

approach is that it provides useful and easy-to-interpret 

results in terms of association structure between 

samples and genes, yet there are some practical 

limitations. That is, the use of rank-based passive 

projections is likely to allow us to see only “the tip of the 

iceberg”, since in the process of sample-wise ranking a 

lot of information contained in the expression data is 

going to be discarded, and thus only the robust 

association, both between samples and between 

samples and genes, will be confirmed and, eventually, 

validated. Additionally, increasing the dimensionality of 

data, in particular the number of genes involved, will 

make the plots overloaded and possibly 

uninterpretable. For such a reason, it is warranted that 

these methods are applied only when specific 

biological hypotheses have been formulated that allow 

the researcher to relevantly reduce the space of 

variables to be explored. 
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