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Abstract: In this paper, we present a Bayesian framework for analyzing longitudinal ordinal response data. In analyzing 
longitudinal data, the possibility of correlations between responses given by the same individual needs to be taken into 

account. Various models can be used to handle such correlations such as marginal modeling, random effect modeling 
and transition (Markov) modeling. Here a transition modeling is used and a Bayesian approach is presented for 
analyzing longitudinal data. A cumulative logistic regression model and the Bayesian method, using MCMC, are 

implemented for obtaining the parameters estimates. Our approach is applied on a two-period longitudinal Insomnia data 
where the Bayesian estimate for measure of association, , between the initial and follow-up ordinal responses is 

obtained in each level of a treatment variable. Then, the sensitivity of posterior summaries to changes of prior 
hyperparameters is investigated. We also use Bayes factor criterion for testing some important hypotheses.  
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1. INTRODUCTION 

 In health-related and social science applications, 

we have to learn about longitudinal or panel studies 

where repeated ordinal response data commonly 

occur. For example, a physician might evaluate 

patients at baseline and at weekly follow-ups regarding 

whether a new drug treatment is successful. After 

collecting the data, the first and most important step in 

learning from the data about the process generating 

them is exploratory data analysis. This step may lead 

us to decide which statistical model is the most 

appropriate to use in order to answer the scientific 

questions of interest. 

Many diseases are recorded with two types of 

scales: nominal and ordinal. When responses are 

observed in a longitudinal direction, there is a 

sequence of responses recorded on each individual. 

Values of these responses are called states. In 

practice, these states and the move between them are 

important. For example, transitions among the disease 

states may correspond to improvement, stabilization or 

deterioration of the disease. 

In the current context, we have to take into account 

not only the fact that responses are ordinal in nature 

but also the possibility of dependency or correlation 

between responses given by the same individual. 

Agresti [1] and Lall et al. [2] conducted a 

comprehensive survey of models for ordered 

 

 

*Address corresponding to this author at the Department of Statistics, Faculty 
of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran;  
Tel: +98-21-29902915; Fax: 00982122431649; E-mail: m-ganjali@sbu.ac.ir 

categorical data, in which the need for model 

interpretation is emphasized. Different models can be 

used to handle such dependency. One approach is the 

use of marginal modelling, which allow for inferences 

about parameters averaged over the whole population 

or trend over time (Ten Have et al. [3]; Kim [4]; Liang et 

al. [5]; Molenberghs and Lesaffre [6]). Another 

approach is making use of random effects modelling, 

which deliberately provide inferences about variability 

between respondents. In this approach, individual 

behavior is often of scientific interest (Harville and Mee 

[7]; Verbeke and Lesaffre [8]; Tutz and Hennevogl [9]; 

Verbeke and Molenberghs [10]; Diggle et al. [11] and 

Tutz [12]). However, both of these approaches are 

generally appropriate for longer sequences of 

measurements than those examined here. Another 

appropriate approach to investigate the reasons for the 

change of the responses is the use of Markov 

(transition) models (Garber [13]; Francom et al. [14]; 

Chung et al. [15]; Rezaee and Ganjali [16] and Rezaee 

et al. [17]) where we can consider the effect of previous 

response on current response. For reviews of transition 

and other models for longitudinal ordinal data, see 

McCullagh [18], Agresti [19], Diggle et al. [11] and 

Sung et al. [20]. 

Zeghnoun et al. [21] assumed proportional odds, 

and adopted a first-order Markov model in modeling the 

effect of ozone on the appearance of respiratory 

symptoms in school children. Chan and Wan [22] 

proposed a bivariate binary model with a separate 

model for informative dropout (ID). Their model 

incorporates mixture and random effects. Mansourian 

et al. [23] considered several flexible random effects 
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models and investigated their properties in the model 

fitting. They also adopted a proportional odds logistic 

regression model and incorporated the skewed version 

of the normal, Student’s t and slash distributions for the 

random effects. Mandel et al. [24] utilized maximum 

partial likelihood estimation under a second-order 

Markov structure in modeling transitions on the 

expanded disability status scale. 

Anderson and Goodman [25] show that the 
maximum likelihood estimator of the transition 

probabilities mabt , (the probability that m th
 individual 

moves from state a  at time t 1  to state b  at time t ), 

when the Markov chain is homogeneous (see next 
section), is the fraction of the number of observed 
transitions from state a  to state b  over the total 
number of observations beginning in state a . A 
Bayesian analysis of the homogeneous Markov chains 
is presented by Lee et al. [26] using a Dirichlet prior 

distribution on transition probabilities mabt . Meshkani 

[27] presents an empirical Bayes approach for 
homogeneous chains and considers extensions to non-
homogeneous Markov chains by viewing the problem 
as a parametric empirical Bayes problem. These earlier 
approaches have not considered the effects of 
covariates on transition probabilities. A Bayesian 
approach for analysis of longitudinal categorical data 
under the multinomial logistic model is proposed by 
Sung et al. [20]. Healy and Engler [28] propose the use 
of Bayesian variable selection in Markov models for 
obtaining estimation of subject-specific transition 
probabilities. Their approach simultaneously estimates 
the order of the Markov process and the transition-
specific covariate effects.  

In this paper, the use of a first order transition model 

and its Bayesian analysis for repeated ordinal 

responses will be presented. In a two-period 

longitudinal data the association between initial 

response and follow-up response will be measured by 

gamma ( ) ([29]). The Bayesian estimation of  will 

be presented and also the estimates of this measure in 

each level of a treatment variable will be obtained. 

Sung et al. [20] do not consider the use of gamma and 

its Bayesian analysis and also do not investigate the 

sensitivity of parameters estimates to change of the 

prior. We will discuss the use of gamma and we will 

present sensitivity to the choice of prior. We will also 

conduct the sensitivity of the results to eliminate some 

individuals. As test of hypothesis is very important to be 

done for answering to some scientific questions, we 

present the use of Bayes factor for testing some 

important hypotheses. We test some hypotheses about 

the regression coefficient parameters to know about 

the possible changing effects of some covariates over 

the level of the previous response.  

For motivation, the Insomnia data are introduced in 
Section 2 and some Bayesian exploratory data analysis 
are performed for this data set. The cumulative logistic 
regression model is presented in Section 3. By setting 
up some prior distributions, the posterior estimates of 
parameters is obtained in Section 4 and then by using 
Bayes factor we do some Bayesian hypothesis testings 
about regression coefficients. The analyses based on 
frequentist and Bayesian views are presented in 
Section 5 and conclusions are presented in Section 6.  

2. THE INSOMNIA DATA SET AND ITS 
EXPLORATORY ANALYSIS 

Insomnia is a sleep disorder in which the patient 
does not get enough, or satisfactory sleep. Insomnia 
can vary as to how long it lasts and as to how often it 
occurs. Insomnia can be short-term (called acute 
insomnia) or last a long time (called chronic insomnia). 
Acute insomnia can last from one night to a few weeks. 
Chronic insomnia is present when a person has 
insomnia at least 3 nights a week for 1 month or longer. 
It can be caused by many things and often occurs 
along with other health problems. Common causes of 
chronic insomnia are depression, chronic stress, and 
pain or discomfort at night. Acute insomnia may not 
require treatment. Treatments for chronic insomnia 
include first treating any underlying conditions or health 
problems that may be causing the insomnia. If 
insomnia still continues, the health care provider may 
suggest either behavioral therapy or medication. 

The data in Table 1 are extracted from results of a 
randomized, double-blind clinical trial comparing an 
active hypnotic drug with a placebo in 239 patients who 
have sleeplessness problems (Francom et al. [14]). 
The measure of interest is the patientís response to the 
question "How quickly did you fall asleep after going to 
bed?" The response was categorized as an ordinal 
scale: ‘less than 20 minutes’; ‘20 to 30 minutes’; ‘more 
than 30 and less than or equal to 60 minutes’; and 
‘greater than 60 minutes’. Patients were asked this 
question after a one week placebo washout period 
(baseline measurement) and following a two-week 
treatment period.  

If there is no correlation between responses, one 
may fit separate marginal models to each response to 
examine the treatment effect. For the Insomnia data, 
we shall use the gamma association measure to 
calculate the association between two ordinal 
responses, (Goodman and Kruskal [29]). This measure 
is the difference between the concordant and the 
discordant pairs divided by the sum of the concordant 
and the discordant pairs and it takes values in the 

range 1,1][ .  

 Using the same notation as in Agresti [19], we 
define  as a measure of ordinal association and 
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illustrate it for I J  tables. Let { ij}  be the joint 

probability distribution in the table, in order to define  

we should describe the probabilities of concordance 
and discordance in the table. For two independent 
observations from the table, the probabilities of 

concordance and discordance are denoted by C  and 

D , respectively, and are defined as:  

C = 2
i j

ij
h>i t> j

ht ,  

and  

D = 2
i j

ij
h>i t< j

ht .  

The probabilities of concordance and discordance 

are given by C

C + D

 and D

C + D

, respectively. So, 

, as a measure of association, is the difference 

between these probabilities, i.e.,  

= C D

C + D

.  

If in addition to ordinal variables, there exists a 
control variable we can define  in each category of 

the controlling variable, Z . For this, we use { ijk}  for 

denoting the joint probability distribution in an I J K  
table, where K  denotes the number of categories of 
the control variable. Within a fixed category k  of Z , 

we use { ijk}  instead of { ij}  in the above C  and 

D  formulas and we call them as C (k )  and D(k ) , 

respectively, and then compute  (say (k) ).  

The frequentist estimate of gamma for the two 
responses is 0.546  (S.E. = 0.063 , p-value=0.000) 
which shows a strong association between the two 
responses and consequently any statistical analysis of 
these data should take this association into account. 
Partial gamma (gamma for a specific treatment) is used 
to recognize any correlation between the two 
responses in each level of the control variable. The 
frequentist estimate is 0.461 (S.E. =0.105, p-value= 
0.000) for the active drug and 0.635 (S.E. =0.075, p-
value=0.000) for the placebo. As the association 
between the two responses is not the same for the two 
treatments, we need to choose a longitudinal approach 
which is able to take into account the fact that the 
covariance structure of the responses is dependent on 
the treatment.  

For obtaining the Bayesian estimates of gamma and 
partial gamma, we can use the Dirichlet distribution. 
For this, consider a table having two ordinal responses, 

Table 1: Time to Falling Asleep Obtained from the Question, “ How Quickly Did you Fall Asleep? ” in Grouped 

Minutes (Follow-Up Response, Y2, by Treatment and Initial Response, Y1, Observed Counts and Row 
Percentages) 

Follow-up (Y2)  

Treatment  Initial (Y1)  < 20  20  30  30  60  > 60  Total  

Active  < 20  7  4  1  0  12  

  58.3%  33.3%  8.3%  0.0%  100.0%  

 20  30  11  5  2  2  20  

  55.0%  25.0%  10.0%  10.0%  100.0%  

 30  60  13  23  3  1  40  

  32.5%  57.5%  7.5%  2.5%  100.0%  

 > 60  9  17  13  8  47  

  19.1%  36.2%  27.7%  17.0%  100.0%  

Placebo  < 20  7  4  2  1  14  

  50.0%  28.6%  14.3%  7.1%  100.0%  

 20  30  14  5  1  0  20  

  70.0%  25.0%  5.0%  0.0%  100.0%  

 30  60  6  9  18  2  35  

  17.1%  25.7%  51.4%  5.7%  100.0%  

 > 60  4  11  14  22  51  

  7.8%  21.6%  27.5%  43.1%  100.0%  
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X  and Y  with I  and J  categories, respectively, and a 

controlling variable Z  with K  categories. For each k , 

the number of subjects in all I J  cells are known. If 

nijk ,  i =1,…, I ; 
 
j =1,…, J , be the number of events in 

i th  row, j th  column and k th  level of the control 

variable, then we can assume that 
 
nk = n11k ,…,nIJk( )  

denotes multinomial random variables with parameters 

Nk = i j
nijk , that is known, and probability vector 

(k ) = ( 11k ,…, IJk )  where the elements of (k )  must 

satisfy 
i j ijk =1 .  

Since the computation of posterior distribution of 
(k)  is intractable due to its complex form, we first 

obtain the posterior distribution of (k )  and then by 

using the relationship between (k )  and (k)  the 

posterior distribution and the posterior summaries of 

(k)  will be obtained. For prior distributions of (k )  we 

consider Dirichlet distribution with parameters 

 k= 11k ,…, IJk( ) , (Lindley [30], Good [31]).  

The conjugate density for multinomial distribution is 
the Dirichlet distribution and hence the posterior 

distribution of (k )  is also Dirichlet distribution with 

parameters 
 k

*= 11k
* ,…, IJk

*( )  where ijk
* = ijk + nijk .  

In order to determine the posterior distribution of 

(k) , first we simulate (k )  from Dirichlet distribution 

with known parameters 
 k= 11k ,…, IJk( ) . Then, we 

simulate (k )
*  from Dirichlet distribution with vector of 

parameters 
 k

*= 11k
* ,…, IJk

*( ) . Finally, the posterior 

values of (k)  are computed by use of posterior values 

of (k )
* .  

For computing Bayesian estimates of (k)  in 

Insomnia data in Table 1, we have chosen Dirichlet 
distribution as a prior distribution with several different 

vectors of parameters 
 0= ( 1,0 ,…, 16,0 )  for placebo 

group, and 1= ( 1,1,…, 16,1 )  for active drug group, in 

order to study sensitivity analysis. Also we consider 

 1,i =…= 16,i = , for i = 0,1 . For the values of  that 

are smaller than 1 ( such as =10 3,10 2 and10 1) , the 

prior distributions are low informative, but the priors 
corresponding to values of  greater than 1  are highly 

informative. So, the posterior means of corresponding 
priors that are low informative, are similar to the 
frequentist estimate of (k) . But, for more informative 

priors ( =10 ), the Bayesian estimates have significant 

difference from those of frequentist ones. The results 
are given in Table 2.  

Table 3 displays marginal distributions for the initial 
and follow-up responses for the two treatments.  

From Table 3, we can conclude that, initially, the 
two groups have similar distributions, but at the follow-
up, those patients on the active treatment tend to fall 
asleep more quickly.  

For example, by Table 1, the sample probability of a 
patient who initially took more than 60 minutes to fall 
asleep, having taken the active drug, took less than or 
equal to 30 minutes to fall asleep by the follow-up is 

Table 2: Posterior Mean and Standard Error of Partial Gamma; (0) for Placebo Group and (1) for Active Drug Group 

 10
-3

 10
-2

 10
-1

 1 10 

(0)  0.632  0.629  0.623  0.542  0.251  

SE( (0))  0.077  0.073  0.075  0.071  0.670 

(1)  0.456  0.451  0.445  0.348  0.081  

SE( (1))  0.076   0.075   0.075   0.071   0.068  

Table 3: Marginal Distributions of Initial and Follow-Up Responses for Two Treatments 

Response category 

Response  Treatment  < 20 20-30 30-60 > 60  

Initial Active  0.101  0.168  0.336  0.395  

 Placebo 0.117  0.167  0.292  0.425 

Follow-up Active  0.336  0.412  0.160  0.092  

 Placebo 0.258  0.242  0.292  0.208 
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0.553. The same probability is just 0.294 for a patient 
on the placebo. This shows the level of improvement 
on using the active drug for an Insomnia patients who 
initially required more than 60 minutes falling asleep. 
An important question is whether or not this significant 
difference between the two treatments on follow-up 
response remains the same for all initial response 
levels.  

However, as it can be seen, some cell counts in 
Table 1 are less than 5. For such a data set the use of 
a Bayesian approach has been suggested by so many 
researchers (for more details, see Agresti and 
Hitchcock [32]).  

3. TRANSITION MODELS AND THE LIKELIHOOD 

In this section we define homogeneous and non-
homogeneous models and introduce longitudinal 
logistic cumulative regression model.  

3.1. Homogeneous and Non-Homogeneous Markov 
Processes 

Suppose that 
 
{Ym1,Ym2 ,…}  be a set of random 

variables indexed by time where each element of this 
set can take finite values in 

 
V = {1, 2,…, J} . Also, 

suppose that 
 
{Ym1,Ym2 ,…}  forms a first-order Markov 

chain, (i.e. the conditional probability of Ymt  given (Ym1,  

 
…,Ym,t 1 ) is equal to the conditional probability of Ymt  

given Ym,t 1 ). Here Ymt  represents the state of subject 

m  at time t . The transition probability matrix 
mt

 for 

m th
 individual is  

mJJttmJ

Jtmtm

mt

1

111

=

 

where the (a,b)th  element of mt  is 

mabt = P Ymt = b |Ym,t 1 = a( )  and represents the m th
 

subject’s probability of making transition from state a  

at time t 1  to state b  at time t , that called transition 
probability from state a  to state b  at time t . If these 
transition probabilities are independent of time, i.e., 

mt = m  and hence mabt = mab , for all  t =1, 2,…,T , 

then the Markov chain is called time homogeneous 
Markov chain. If the probabilities depend on time then 
we have a non-homogeneous Markov chain.  

3.2. Logit Regression Model 

Muenz and Rubinstein [33] presented a logistic 
regression setup for a binary Markov chains to 

incorporate covariate effects on the transition 
probabilities by using a logit transformation on the 
transition probabilities of chains. They also obtained 
the maximum likelihood estimates (MLE) for the 
transition probabilities. Also, the Markov logistic 
regression set-up for correlated longitudinal data and 
the maximum likelihood estimation for the model are 
discussed by [34]. In this subsection, the logit 
regression model is introduced. Here, we incorporate 
the ordinal nature of data by using a cumulative logit 
regression model. The cumulative logit model is 
specified in terms of cumulative transition probabilities  

Cm0b1 = P Ym1 b( ) =
k=1

b

m0k1,  

Cmabt = P Ymt b |Ym,t 1 = a( ) =
k=1

b

makt , for t > 1  

where  

logit Cm0b1( ) = log
Cm0b1

1 Cm0b1

= log
P Ym1 b( )
P Ym1 > b( )

,  

logit Cmabt( ) = log
Cmabt

1 Cmabt

= log
P Ymt b |Ym,t 1 = a( )
P Ymt > b |Ym,t 1 = a( )

, for t > 1  

for  m =1, 2,…,M ,  a =1, 2,…, J ,  b =1, 2,…, J 1  and 

 t =1, 2,…,T . We write the cumulative logit model as  

logit Cmabt( ) = ab + mt t
a  

where ab  is the cut point parameter, mt= (Xmt1,…, XmtK )  

is a 1 K  vector of covariates for the m th
 individual 

and 
 t

a= ( t1
a ,…, tK

a )'  is a K 1  vector of regression 

coefficient parameters. 

In ordinal data, we have a term called latent 

variable, Zmat , where given Ym,t 1 = a , we will have 

Ymt = j  if a, j 1 < Zmat < aj . The index a  in Zmat  is used 

to show the first order Markov structure of data. 

Francom et al. [14] used a log-linear model to 
analyze the data. Ganjali and Rezaee [35] used a kind 
of cumulative logistic regression model. We shall 
regard treatment as an explanatory and independent 
variable that affects the response or dependent 
variable of interest and analyze the parameters of 
cumulative regression model in a Bayesian framework.  

For Insomnia data, an important question is whether 
or not this significant difference between the two 
treatments on follow-up response remains the same for 
all initial response levels. We answer this question by 
using a first-order transition model based on the 
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cumulative logistic regression framework. If we have an 
ordinal variable with J  levels, (in the Insomnia data, 
J = 4 ), then the form of the transition model for T 
response variables (in the Insomnia data, T = 2 ) is:  

logit P Ym1 b; b , 1( ) = b + m1 1,  

logit P Ymt b |Ym,t 1 = a, ab , t
a( ) = ab + mt t

a, for t > 1,   (1) 

where b ’s and ab ’s are the cut-point parameters in 

which 1 2… J 1  and for any a , 

 a1 a2… a,J 1 , respectively. Further, the 

parameters 1= ( 1,…, K )
'  and t

a= ( t1
a ,…, tK

a )'  are 

K 1  vectors of regression parameters.  

Let Ym = (Ym1,Ym2 ,…,YmT )  represents the observed 

transition of the m th
 individual over t =1, 2,…,T  time 

periods, and  
Y = (Y1,Y2 ,…,YM )  be the observed 

transition of M  individuals over above time periods. 

For T = 2  and our Insomnia data, let 0:= ( 1, 2 , 3 ) , 

a:= ( a1, a2 , a3 )  for a =1,…, 4 , 1= 1 , 

t
a= 2

a= ( 2
1, 2

2 , 2
3, 2

4 ) , := ( 0, 1, 2, 3, 4)
'  and 

:= ( 1, 2
1 , 2

2 , 2
3, 2

4 )' , using the transition model, the 

likelihood function for these data is:  

L(Y; , ) =
m=1

M

P(Ym1 = ym1,Ym2 = ym2 )         (2) 

=
m=1

M

P(Ym1 = ym1 ) P(Ym2 = ym2 |Ym1 = ym1 )  

=
m=1

M

P(Ym1 = ym1; , )
m=1

M

P(Ym2 = ym2 |Ym1 = ym1; , )  

=
m=1

M

P(Ym1 = ym1; 0, 1 )
ym1=1

J

 

[m|Ym1=ym1]

P(Ym2 = ym2 |Ym1 = ym1; ym1
, 2

ym1),  

where  

P(Ym1 = b; 0, 1 ) = P(Ym1 b; b , 1 ) P(Ym1 b 1; b 1, 1 ),  

and  

P Ym2 = b |Ym1 = a, a, 2
a( ) = P Ym2 b |Ym1 = a, ab , 2

a( )

P Ym2 b 1 |Ym1 = a, a,b 1, 2
a( ).

 

The maximization of likelihood can be carried out 
using SPSS package, Ganjali and Rezaee [35], by 

modeling Y1 , then separately modeling the conditional 

probability of Y2  given Y1  in each level of previous 

response.  

4. BAYESIAN INFERENCE 

For Analysis of contingency table, where the sample 
size is small or some cells have frequencies less than 
5, the frequentist approaches are so conservative and 
do not work properly. So, a Bayesian approach may be 
a better method for obtaining the parameter estimates 
and testing some hypotheses. In this section, we use 
the Bayesian paradigm to make inferences about 
parameters of the model (1) for Insomnia data.  

Because of the ordering constraints in cut point 
parameters, the multivariate normal distribution is not 
suitable for setting as prior distribution. Thus we use 
independent truncated normal distributions for the cut 

point vectors 
 0= ( 1,…, J 1 ) , (for initial time), and 

a= ( a1,…, a,J 1 ) , (for follow-up time), such that 

0 1 … J 1 J  and a0 a1 a,J 1 aJ , 

respectively. We set 0 =  and J = +  and also 

a0 =  and aJ = +  for  a =1, 2…, J . 

We set the first order Markov structure on t
a  by  

t
a| t 1

a , ~ N( t 1
a , ), for t 2  

and for t =1   

1
a| ~ N(0, )  

where  is a K -dimensional diagonal covariance 

matrix defined as = 2 I  and 
 

2 = (
1

2 ,…,
K

2 )'  is a 

known vector. For cut point parameters we set the 
following prior distributions:  

a ~ TN(μ,
2 ),a =1, 2, 3. where 1 2 3,  

ab ~ TN(μa , a
2 ),b =1, 2, 3. where a1 a2 a3,  

where TN(μ, 2 )  is a truncated normal distribution with 

parameters μ  and 2 . The transition probability mabt  

is obtained as mabt = Cmabt Cma,b 1,t  for  b = 2,…, J  and 

ma1t = Cma1t . The joint posterior distribution given the 

transition data on M  individuals for T = 2  time periods 
is proportional to  

m=1

M

P(Ym1 = ym1; 0, 1 )
ym1=1

J

[m|Ym1=ym1]

P(Ym2 = ym2 |Ym1 = ym1; ym1
, 2

ym1)
t=1

2

t
a| t 1

a ,( ) ( )( ).  
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For implementation, we use noninformative proper 
prior distributions. We used independent truncated 
normal distributions, N(0,10000) , for cut point 

parameters a  and ab . For the drug effect 

parameters 1  and 2
a  we use N(0,10000)  and 

N( 1,10000)  priors, respectively. The results of 

frequentist and Bayesian analysis will be given in the 
next section. Here, we present the Bayesian analysis of 
the mentioned transition model by setting some prior 
distributions on the parameters of the logistic 
regression model. We use Metropolis-Hastings 
algorithm to generate samples from posterior 

distribution of a , a =1, 2, 3,  and 1 . We consider the 

following prior distributions for our analysis;  

1 ~ N(0,10000),  

a ~ TN(0,10000),a =1, 2, 3, where 1 2 3.  

We run the program in the WinBUGS for 10000  
iterations with a burn-in time 100 and the thin 100. The 
results are given in Table 4. 

When for m th
 individual, 

 
Ym1 = a, a =1,…, 4 , i.e., the 

initial response is in the a th  order category, we perform 
the Bayesian analysis by first detecting individuals who 

have initial response in a th  category and then set up 
some prior distributions in parameters of logistic 
regression model. In the first step of Bayesian analysis 
we consider the following set-up for the parameters of 

logit model. For m th
 individual, if Ym1 = a ,  a =1,…, 4 , 

we consider;  

2
a ~ N( 1,10000),  

ab ~ TN(0,10000), b =1, 2, 3, where a1 a2 a3 .  

The posterior density of coefficient parameters are 
given in Figure 1 and the posterior summary for the 
parameters is given in Table 5. Results will be 
interpreted in the next section.  

 

Figure 1: Posterior density functions of 2
1 , 2

2 , 2
3  and 2

4 . 

4.1. Hypothesis Testing 

In this subsection, we would like to test some 
hypotheses about main parameters of the model for 
follow-up response. By these tests we shall find the 
best model that can be fitted to Insomnia data.  

The first hypothesis that we want to test leads to a 
model which says that treatment is not significant for 
any given initial response, i.e.,  

H1 : 2
1 = 2

2 = 2
3 = 2

4 = 0.  

The second hypothesis is that the treatment on 
follow-up response is significant but its performance is 
the same for all different levels of initial response, i.e.,  

H 2 : 2
1 = 2

2 = 2
3 = 2

4 = * for * 0.  

For Insomnia data, by plot given in Figure 1, one 

may get interest in testing 2
1 = 2

2  and 2
3 = 2

4 . In 

other words, it seems that if we partition the patients in 

Table 4: The Bayesian and Frequentist Estimates of Parameters by Marginal Modeling of Responses, without 

Considering the Relationship Between Two Responses. (Parameters Significant at the 5% Level are 
Highlighted in Bold) 

Initial Response  Follow-up Response  

Bayesian  Frequentist  Bayesian  Frequentist  

Par.  Est.  S.E.  Est.  S.E.  Est.  S.E.  Est.  S.E.  

1  -2.155  0.242  -2.121  0.239  -1.320  0.198  -1.291  0.195  

2  -0.989  0.189  -0.982  0.187  0.120  0.176  0.123  0.174  

3  0.352  0.179  0.346  0.177  1.408  0.210  1.396  0.206  

  0.033  0.237  0.035  0.237  0.725  0.241  0.761  0.238  
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two groups: acute and chronic patients; by their initial 
responses (where their times to asleep is less than 30 
minutes and greater than 30 minutes, respectively), 
then the treatment effect on follow-up response is the 
same in each group, i.e., we want to also test  

H 3 : 2
1 = 2

2 and 2
3 = 2

4 .  

Finally, the last model that we consider is a general 
model where all coefficients are considered to be 
differently effective and so this model is the full model. 

We name this hypothesis as H 4 , i.e.,  

H 4 : 2
1

2
2

2
3

2
4 .  

In Bayesian paradigm, one approach to model 
selection is to use the Bayes factor. The comparison 

between two models Hi  versus H j , i, j {1, 2, 3, 4}  

and i j , is possible by computing the Bayes factor. If 

(Hi )  and (H j )  are the prior probabilities of these 

models then the Bayes factor is obtained by  

Bij =
f (Y | Hi )

f (Y | H j )
=

(Hi |Y )

(H j |Y )
(Hi )

(H j )

.  

It is obvious that Bij  is the ratio of posterior odds of 

Hi  versus H j  and prior odds. For computing the 

Bayes factor, it is required that under each model the 
integral  

f (Y | H ) = f (Y | H , 2
a). ( 2

a| H )d 2
a         (3) 

can be computed. Because of computational 
complexity, the use of MCMC is very helpful. Due to 

lack of a closed form of full conditional of 2
a , for 

estimating of f (Y | H ) , we use a method proposed by 

Newton and Raftery [36]. For this, if { 2
a(i )}i=1

m  are 

samples from posterior distribution of ( 2
a|Y ,H )  in the 

( j +1)th  iteration, the f (Y | H )  is estimated as :  

f ( j+1) (Y | H ) =

m

1
+

i=1

m f (Y | 2
a(i ),H )

f ( j ) (Y | H ) + (1 ) f (Y | 2
a(i ),H )

m

(1 ) f ( j ) (Y | H )
+

i=1

m 1

f ( j ) (Y | H ) + (1 ) f (Y | 2
a(i ),H )

.
  (4) 

where  is small value in (0,1) .  

The process is iterated till reaching to a 
convergence. In some small-scale numerical 
experiments, it has been shown that the above 
estimator was performed well for  as small as 0.01. 
The Bayes factor for each couple of models, given in 
this subsection, is given in Table 6.  

4.2. Conditional Predictive Ordinate 

In this subsection, we use the conditional predictive 
ordinate (CPO), [37], which is a Bayesian diagnostic 
tool to detect observations discrepant from a given 

Table 5: The Bayesian and Frequentist Estimates of Parameters by Transition Modeling of Responses. (Parameters 
Significant at the 5% Level are Highlighted in Bold) 

 Y2 |Y1 < 20  Y2 | 20 < Y1 < 30  

 Bayesian Frequentist Bayesian Frequentist 

 Par. Est.  S.E.  Est.  S.E.   Est.  S.E.  Est.  S.E. 

a1  -0.113 0.554 -0.089 0.522 0.956 0.495  0.909 0.490  

a2   1.635 0.675 1.478 0.621 2.561 0.642  2.377 0.623  

a3   3.844 1.365 3.007 1.058 3.943 0.937  3.397 0.833  

2
a   0.566 0.798 0.507 0.765 -0.848 0.671  -0.792 0.651  

 Y2 | 30 < Y1 < 60  Y2 |Y1 > 60  

  Bayesian Frequentist Bayesian Frequentist 

 Par. Est.  S.E.  Est.  S.E.   Est.  S.E.  Est.  S.E. 

a1   -2.313 0.452 -2.235 0.436  -2.639 0.391   -2.561 0.385  

a2   -0.089 0.345 -0.083 0.330  -0.951 0.294   -0.926 0.288  

a3   2.783 0.658 2.592 0.610  0.330 0.277   0.317 0.272  

2
a   1.760 0.489 1.705 0.477  1.200 0.385  1.161  0.381 
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model. It can be adapted to detect unusual patients in 
our data set.  

Let 
 
Y = (y1, y2 ,…, yn )  be the vector of conditionally 

independent observations with density f (yi | )  and 

y(i )  be the y  after omitting yi , i.e., 

 
y(i ) = (y1, y2 ,…, yi 1, yi+1,…, yn ) . For the i th  observation, 

the CPO is defined as  

CPOi = f (yi | y(i ) ) = f (yi | , y(i ) )p( | y(i ) )d .        (5) 

Small CPOs indicate observations that are not 
expected under the current model. A Monte Carlo 

estimate for CPO i  is given by  

=
1

T '
t=1

T' 1

f (yi |
(t ) )

1

,  

([38], p. 511) which is the harmonic mean of the 

probability distribution function evaluated at yi  for each 

(t )  for t =1, 2,…,T ' . For Insomnia data, where Ym1 = a , 

a =1,…, 4 , we compute the CPOs for follow-up 

responses. After computing the CPOs we monitor 
them, then compare the values of CPOs to select the 
small values which detect abnormal responses. 

According to Figure 2 (i) , we see that the 12th , 

24th , 25 th  and 26th  individuals have smaller values of 
CPO than others, hence they are odd observations. By 
a quick inspection, we can see that these are in fact 

odd individuals. For example, the 12th  individual uses 
active drug and her/his initial response is 1 , but moves 

to 3
rd

 level of follow-up response. The 24th  and 25th  

individuals who use placebo move to 3rd  level of 
follow-up response when their initial response were 1 . 

The 26th  individual also was in the first level of initial 

response and uses the placebo, but moves to 4th  level 
of follow-up response.  

For people who are in the second level of initial 

response we see that the 17th  to 20th  and 40th  
individuals have small values of CPO. Similar to the 
above individuals these individuals are also unusual.  

For third level of initial response the 40th , 74th  and 

75th  individuals have the smaller values of CPO than 
others. For fourth level of initial response we see that 

the 48 th  to 51 th  individuals have the small values of 
CPO. These are individuals who use placebo, but 
move to first level of follow-up response.  

5. BAYESIAN AND FREQUENTIST APPROACHES 
FOR ANALYZING INSOMNIA DATA 

In this section the numerical results in both 
frequentist and Bayesian approaches for Insomnia data 
are presented. The estimates of parameters of 
cumulative logit model from modeling the initial and the 
follow-up responses separately, are given in Table 4. 
Results in Table 4 for initial response show that the 
effect of treatment is not significant on its cumulative 
probability. But results for follow-up response reveal 
the significant effect of treatment on its cumulative 
probability. This table says that the use of the drugs 
increases the probability of having a short time interval 
to get sleep in bed.  

In Table 5, the results of conditional components of 
the transition model are given by both frequentist and 
the Bayesian analysis. For different values of the initial 

response, a , a =1, 2, 3 , are intercepts which indicate 

the log-odds of lower, rather than higher time to falling 
asleep when we use the placebo. For example, when 
the initial time to falling asleep is greater than 60 
minutes, for follow-up response log-odds of less than 
60 rather than time more than 60 when we use the 
active drug is 2.561+1.161 = 1.400  by frequentist 
approach and is 2.639 +1.200 = 1.439  by Bayesian 
approach. When we use the placebo, above log-odds 
are 2.561  and 2.639  by frequentist and Bayesian 
computations, respectively. 

According to Table 5, it is clear that for an initial 
value of 30-60 or more than 60, the positive effect of 
drug on the cumulative probability of low values of 
follow-up response is significant. But for an initial value 
of less than 20 or 20-30, there is no significant effect of 
drug. Both of frequentist and Bayesian results confirm 
the above inferences. These mean that the drug is 
more effective for patients with presleeping intervals 
greater than 30 minutes. Hence the knowledge of the 

Table 6: Bayes Factor for Models in Subsection 4.1. In Each Cell the Number is the Bayes Factor of Column Model 
Against Row Model 

Hypothesis H1 H2 H3 H4 

H1 1 563.848  17.158 10
3
  18.200 10

3
 

H2 0.002   1  30.432  32.278  

H3 5 10
-05

 0.033  1  1.061  

H4 5 10
-05

 0.031  0.943  1  
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initial response may helps the practitioners to prescribe 
an effectual treatment, and also discourage them from 
prescribing an ineffectual treatment.  

Bayes factors for comparing the models are given in 
Table 6. According to this table, we see that between 

two models H1  and H 2  we can approve the model H 2  

because of high value of B21 . Then, between two 

models H 2  and H 3 , the model H 3  is approved, 

because the value of B32  is equal to 30.432 . Finally we 

want to decide which one of H 3  or H 4  should be 

chosen! The Bayes factor for comparing H 3  and H 4  is 

1.061 . According to Jeffreys [39], we conclude that this 

value of B43  didn’t say that H 3  should be rejected 

against H 4 . In fact model H 4  is a bit better than model 

H 3 , but we have no strong evidence that H 4  

dominates H 3 . Hence, we can accept both of models 

H 3  and H 4 , but the more parsimonious one is model 

H 3 .  

5.1. Sensitivity Analysis: Investigating Sensitivity 
of Posterior Inferences on Changes of Prior 
Variances 

In section 4, we described a choice of prior structure 
on parameters of logit model. We now investigate the 
sensitivity of posterior results (with emphasis on 
coefficient and partial gamma parameters) to changes 
on the prior. In the next subsection, we also investigate 
the sensitivity to eliminate some unusual individuals.  

 

Figure 2: Conditional predictive ordinate for follow-up responses given their initial values, ( i ) for Ym1 =1 , ( ii ) for Ym1 = 2 , ( iii ) 

for Ym1 = 3  and ( iv ) for Ym1 = 4 . 
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We conduct the sensitivity analysis with changing 
the variance of the prior distribution for coefficients of 

logit models ( ) and we want to know whether the 

posterior estimates will change with the change of the 
variance or they will be stable. For doing this, we set 

the values 10 6
, 10 4

, 10 2
, 100 , 102 , 104  and 106  for 

the variance of the prior distribution for different 
coefficients. The results are given in Table 7. When we 
select a very small value for variance of the 

coefficients, such as 10 6
, the prior distributions are 

more informative than the prior distributions 
corresponding to high values for variance of the 
coefficients. The posterior means of the parameters 
corresponding to those obtained by noninformative 
priors, are similar to the frequentist ones. But, for more 
informative priors, the Bayesian estimates of 
parameters have significant difference from those of 
frequentist estimates. Figure 3 shows the posterior 
distributions of (0)  and (1)  for various values of 

prior variances of the coefficients.  

5.2. Sensitivity Analysis: Investigating Sensitivity 
to Elimination of Some Odd Patients 

In Insomnia data, some unexpected counts 
detected by using CPO. Now, we want to know how 
these individuals affect the posterior results.  

For doing this, we select some individuals with low 
value of CPO and after deleting one or a group of them 
we obtain the posterior results. These results are given 
in Table 8. According to Table 8, when we omit some 
people from some cells, the parameters estimates will 
change and the size of change is dependent on the 
number and the position of deleted people. For 
example, when the initial response is 3, (‘30 to 60 

minutes’), the effect of the treatment, 2
3 , is very 

sensitive to deletion of the odd individual who uses 
active drug, (individual 40), where her/his follow-up 
response is high (’more than 60 minutes’). Another 

example is 2
2  that has large change when we delete 

Table 7: Posterior Mean of Partial Gamma and Coefficients for Various Values of Prior Variance 

  10
-6

  10
-4

  10
-2

 10
0
 10

2
 10

4
  10

6
  

(0)
  

 0.549  0.549  0.552  0.599  0.604  0.604   0.603  

(1)
  

 0.549  0.549  0.545  0.509  0.507  0.507   0.507  

1   
2.07 10

-6
  7.13 10

-5
 0.006  0.036  0.035  0.033   0.033  

2
1

  
1.35 10

-5
 1.78 10

-4
 0.009  0.335  0.558  0.566   0.570  

2
2

  
-6.94 10

-6
 -1.46 10

-4
 -0.019  -0.582  -0.842  -0.848   -0.849  

2
3

  
1.31 10

-5
  9.46 10

-4
 0.080  1.430  1.760  1.760   1.760  

2
4

  
2.32 10

-6
  8.83 10

-4
 0.079  1.050  1.200  1.200   1.200  

 

Figure 3: Posterior distribution of (0)  (left) and (1)  (right), for different values of prior variances of the coefficients. 
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people who use active drug in second level of initial 
response , (individuals 17, 18, 19 and 20).  

6. CONCLUSION 

For analysing contingency tables with small 
observed counts in some cells, frequentist inferences 
would not work properly and one may use the Bayesian 
statistics instead. We set a Bayesian logit regression 
model to the Insomnia data and estimate the 
parameters of the model. Then we compared the 
frequentist and Bayesian results and showed that by 
using some noninformative priors the Bayesian and 
frequentist approaches are given the same results.  

For measure of association we used the gamma. In 
each level of control variable, the partial gamma was 
computed to measure the relationship between 
responses. Then the comparison between the 
Bayesian and frequentist results were presented by 
setting the Dirichlet prior distribution on cell 
probabilities. In our data set, there exist some 
observations that are abnormal under the current 
model. We illustrated how the CPO can be used to 
detect these individuals. We investigated the sensitivity 
of posterior results to changes on prior variances and 
to deletion of odd individuals. We also used the Bayes 

factor criterion to test some hypotheses about 
parameters of the model.  

In Bayesian hypotheses testing, some hypotheses 
on regression coefficient parameters were tested and 
the best model was selected by using Bayes factor. 
The best model that was chosen, via using Bayes 

factor, was the model H 3  which considers that 2
1 = 2

2  

and 2
3 = 2

4 . This model says that if the patients are 

partitioned in two groups (acute and chronic), then the 
treatment effect on follow-up response is the same in 
each group. Our application was a two-period 
longitudinal study. Extension of our analysis on 
longitudinal data with more periods may make the 
model a more applicable one.  
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