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Abstract: The intention-to-treat (ITT) rate ratio estimator is conservatively biased for the treatment effect among 
compliers (who stick with their assigned arm) when individuals switch treatment in two-arm randomised trials. In this 

article we propose simple ways to estimate the complier average causal effect (CACE) with mid-trial switching. The 
estimators use aggregate data of events and times rather than individualised data. The motivating model considers 
survival times as exponentially distributed conditional on whether the individual would comply with randomisation. To 

estimate the CACE the ante-switch treatment effect and the post-switch treatment effect amongst the compliers are 
combined. Furthermore, we discuss ways of estimating the counterfactual intent-to-treat (ITT) effect, which is defined as 
the rate ratio if switching was not permitted. This approach might be a useful alternative to CACE estimation, and so a 

time and event adjustment of the non-compliers data is developed. Finally, simulated switching scenarios are used to 
illustrate the importance of correcting for informative switching.  
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1. INTRODUCTION 

This report considers methods for estimating a rate-

ratio treatment effect from a two-arm trial when 

randomisation is lost due to switching. Specifically, we 

consider when individuals who were randomised to 

control were unblinded mid-trial and offered the 

opportunity to switch to the treatment arm; the time of 

switch 
s

t is the same for everyone in the trial. Both 

arms are stratified to be composed of compliers, who 

stick with their assigned arm, and always-takers, who 

insist on treatment. The two groups are only observed 

in the control arm at switching. Furthermore, we take 

that the outcome is then either improved or worsened 

more than would have been expected for the treated 

group as a whole. We aim to estimate the rate-ratio 

treatment effect by comparing the survival of potential 

compliers in both arms. This is an example of the 

principal compliance framework [1, 2], where the 

underlying compliance class is only observed in the 

control arm and not the treatment arm. A motivating 

example of control-to-treatment switching is the BIG-1 

98 trial, described in [3]. Five years from the start of the 

trial, women who were taking tamoxifen were unblinded 

and offered the opportunity to switch to letrozole. 

Approximately one quarter chose to cross over, and 

their outcome was improved more than would have 

been expected for the group as a whole. In other 

words, randomised treatment allocation was lost due to 

switching. 
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One approach to survival analysis with switching 

focuses on the accelerated failure time models [4-8]. 

These estimators might do poorly in the presence of 

heavy censoring due to difficulty in dealing with 

recensoring using accelerate failure models [5]. Other 

papers for all-or-none compliance estimate the CACE 

by subtracting out the effect of potential non-compliers 

from the treatment arm using the so called exclusion 

restriction (ER) assumption [1, 9]. This assumes 

equality in risk for non-compliers in both arms, which is 

often easy to justify for all-or-none compliance as the 

individuals in the two arms bear similar characteristics 

at the start due to randomisation. This route was taken 

by Cuzick and others [10], extending Sommer and 

Zeger [11], for binary outcomes. Their estimator has 

found use in real trials, including Duffy and others [12]. 

An extension to time-to-event data with mid-trial 

switching was used in Kerkhof and others [13] for a 

Poisson model from a prostate cancer screening trial. 

Cuzick and others [14] presented extensions for an all-

or-none compliance Cox model. Additionally, Loeys 

and Goetghebeur [15] studied estimation of complier 

average causal effect (CACE) for proportional hazards 

model and White and others [9] for piecewise 

exponentials.  

In this article, we consider estimators when for the 

ante and post-switch periods, aggregate survival times 

and number of events are recorded, being split for 

compliers and always-takers in the control arm post-

switch. We model the survival times within a given 

compliance group (complier or always-taker) and arm 

as exponentially distributed. Simple estimators of the 

CACE are examined, which can be viewed as 
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extensions of Cuzick and others [10]. The estimators 

account for mid-trial switching by combining the ante-

switch and post-switch estimates of treatment effects 

amongst compliers. We also consider estimating the 

counterfactual ITT effect, which is defined as the 

overall risk ratio of the two arms if no switching had 

occurred. This approach estimates what would have 

happened to the observed always-takers (switchers) in 

control if no switching had occurred, rather than model 

the unobserved always-takers in the treatment arm. 

Thus the counterfactual ITT effect is a population-level 

effect which does not adjust for principal compliance. A 

closely related idea is the inverse probability of 

censoring weighting (IPCW) approach of Robins [16], 

which treats switching as censoring and up-weights the 

number of control compliers at risk, by the reciprocal of 

a modelled probability of being a complier. IPCW has 

been used in both randomised experiments, and for 

observational data. If the probability of potential 

switching in the treatment arm can be estimated 

consistently from observed covariates, the IPCW 

estimator is a consistent estimator of the marginal 

effect under a marginal proportional hazards model 

with a constant marginal effect. However, it is not 

possible to check the model for the probability of 

potential switching because there might be 

unmeasured confounders. Furthermore, censoring 

switchers is not ideal because information is lost. We 

consider estimators of the counterfactual ITT effect by 

estimating the counterfactual events and times in the 

control arm switchers.  

Simulation examples are used to compare the 

relative performance of the CACE estimators and the 

counterfactual ITT estimator against intention-to-treat 

(ITT) and per-protocol (PP) methods.  

2. THE EXPONENTIAL SWITCHING MODEL 

The following model for switching allows compliance 

heterogeneity from the start by taking the population to 

be a mixture of compliers and always-takers (equation 

1). The hazard can be written as 

(t | R,Z ) = b
R+(1 R)Z Z ,         (1) 

where b  is the baseline hazard,  is the treatment 

effect, R denotes randomisation (0 – control, 1 
treatment), Z is the compliance group (0 complier, 1 
always-taker),  is the always-taker effect, and  is the 

indicator for having survived till switching time ts .. We 

assume Z to be randomly assigned at the start with 
probability and independent from all other factors. 

The only hazard that changes after switching is that of 
the control switchers (R=0, Z=1). The model is 
illustrated in Table 1. 

Table 1: Parameters of the Switching Model for  
Ante-Switch and Post-Switch 

R=0 R=1 

0B = b  

0A = b
 

1B = b  

1A = b
 

 

R=0 R=1 

0B+ = b  

0A+ = b
 

1B+ = b  

1A+ = b
 

 

If switching did not occur then the counterfactual 
hazard would have been  

* (t | R,Z ) = b
R Z .           (2) 

This differs from equation (2) only for the control 
switchers (R=0, Z=1): they would not have switched.  

3. AGGREGATE DATA 

The notation for the data is introduced in this 
section. The observed aggregate events and times are 
indexed by the labels in Table 2. The times and events 
are aggregated within five observable groups: those in 
control or treatment ante-switch (0- and 1- 
respectively), those post-switch in treatment (1+), or 
post-switch compliers (0A+) or always-takers (0B+) in 

control. Then we let Dk  denote the number of events, 

Tk  the total time at risk and Nk  the total number of 

individual at risk at the start of a given group k=0-, 1-, 
1+, 0A+, 0B+. For simplicity, we assume that the 
number of individuals at risk in both arms at the start of 
the trial is N , i.e. the randomisation ratio is one. 

Table 2: Observed Aggregate Number of Events, 
Survival Times and Number at Risk 

R=0 R=1 

(D 0 ,T 0 )  (D 1 ,T 1 )  

 

R=0 R=1 

(D 0A+ ,T 0A+ ,N0A+ )  

(D 0B+ ,T 0B+ ,N0B+ )  

(D 1+ ,T 1+ ,N1+ )  
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4. INTENTION TO TREAT (ITT) AND PER-
PROTOCOL (PP) ESTIMATORS  

Before considering the new estimators, some 
common approaches are reviewed. The intention-to-
treat (ITT) estimator  

ˆ
ITT =

D1 + D1A+ + D1B+
T1 + T1A+ + T1B+

D0 + D0A+ + D0B+

T0 + T0A+ + T0B+
 

estimates the effect of the initial randomisation as 
opposed to treatment efficacy, because it compares the 
risk of everyone in treatment to the risk of everyone 
control, including the always-takers who were given 
treatment after switching.  

Even though ITT estimator is consistent for testing 
 = 1, it is a conservative estimate of  under the 

switching model. In contrast, the per-protocol (PP) 
estimator only considers individuals whilst they follow 
randomisation, censoring switchers at the time of 
switching: 

ˆ
PP =

D1 + D1A+ + D1B+
T1 + T1A+ + T1B+

D0 + D0A+

T0 + T0A+
 

The PP estimator is inconsistent for under the 

switching model, even when  = 1, and the level of 

asymptotic bias is linked to the proportion of switchers. 

5. SOME ESTIMATORS OF THE COMPLIER 
AVERAGE CAUSAL EFFECT (CACE)  

Estimators of the CACE are next introduced. The 
switching model is motivated by the CACE 

CACE = (t | R = 1,Z = 0) / (t | R = 0,Z = 0)  

as being constant, i.e., under the proposed switching 

model, we have CACE = .  

Remark 

Although the proposed exponential switching model 
contains always-takers and compliers prior to 
switching, it is useful to consider an approximate 
switching model where only compliers are present prior 
to switching, i.e., 

t < ts : (t | R,Z ) = b
R

 

t > ts : (t | R,Z ) = b
R+(1 R)Z Z

. 

In the following section, we will refer to the 
approximate switching model in discussing the 
theoretical motivation and consistency of the proposed 
CACE estimators. This approximation is valid when the 
number of ante-switch events is small. 

CACE Estimation  

We first propose an amongst-complier (AC) 
estimator of the CACE by pooling the ante-switching 
events and times and post-switching events and times 
amongst the compliers: 

ˆ
AC =

D1 + D̂1A+
T1 + T̂1A+

D0 + D0A+

T0 + T0A+
   (3.10) 

where: 

D̂1A+ = D1+ D0B+
ˆN1+ / N0B+  

T̂1A+ = T1+ T0B+ ˆN1+ / N0B+ . 

The proportion who switch  in the treatment arm 

is estimated by the observed proportion of switching in 
the control arm 

ˆ = N0B+ / (N0B+ + N0A+ ) . 

The idea is to subtract out the unobserved always-
takers from the treatment arm and compare it to the 
observed compliers in the control arm. In combining the 
ante-switch effect and post-switch amongst complier 

effect, ˆ
AC  is consistent for the CACE under the 

approximate switching model. 

On the other hand, it is also useful to consider the 
maximum likelihood estimator under the approximate 
switching model (for the ante-switch stratum and post-
switch compliers stratum) which is the solution to [17]: 

=
D1 ( ) + D1A+ A+ ( )

D0 {1 ( )} + D0A+{1 A+ ( )}
 

( ) =
T0

T0 + T1
 

A+ ( ) =
T0A+

T0A+ + T1A+
. 

Note that in the present case we need estimates of 
the unobserved data in 1A+. Instead of solving for the 
MLE iteratively, asymptotic efficiency under the 
approximate switching model can be obtained by 
considering a one-step or two-step estimator using the 
above relation [17]. For example, the Rothman-Boice 

(RB) estimator amongst compliers, ˆAC ,RB is the one-

step solution with plug-in = 1 (on the right-hand-

side): 

ˆ
AC ,RB =

D1 (1) + D1A+ A+ (1)

D0 {1 (1)} + D0A+{1 A+ (1)}
, 
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ˆ
AC ,RB can also be interpreted as a weighted extension 

of ˆAC  (weighting the ante-switch and post-switch 

contributions to the overall estimator). 

ˆ
AC  and ˆAC ,RB  are consistent for the CACE under 

the approximate switching model, but are not 
consistent for CACE under the exponential switching 
model as the ante-switch survival is a mixture of two 
exponentials in each arm. However we will see in the 
examples later on that their limits are quite close to the 
CACE.  

Remark 

The proposed CACE estimators assume that the 
number of always-takers in both arms at time of switch 
is identical. This is justified when the number of ante-
switch events is small.  

6. ESTIMATING THE COUNTERFACTUAL ITT 
EFFECT 

Let us consider the ITT effect if switching had not 
occurred, i.e., the rate ratio with counterfactual events 
and times in the control switchers: 

ˆ
ITT
*

=
D1 /T1
D0
* /T0

* =
D1 /T1

(D0 + D0A+ + D0B+
* ) / (T0 + T0A+ + T0B+

* )
. 

We define the counterfactual ITT effect to be the 
limit of this counterfactual ITT rate ratio as sample size 
gets large for a fixed follow-up period under the 
switching model. Therefore by using consistent 

estimators of counterfactual events D0
* and times T0

*  

for control switchers, we can consistently estimate the 
counterfactual ITT effect.  

A Time and Event Adjusted Estimator for the 
Counterfactual ITT Effect 

We now propose a time and events adjusted 
method for estimating the counterfactual ITT effect. Let 

K = NS0 (ts )  denote the expected number of always-

takers at risk in the control arm at the time of switch ts , 

where S0 (ts )  is the probability of a control patient 

surviving till switching. Then the expectation of the 
observed and counterfactual number of events 

E(D0B+ ) and E(D0B+
* ) can be expressed as: 

E(D0B+ ) = K{1 S0B (te |T > ts )}

E(D0B+
* ) = K{1 S0B

* (te |T > ts )}
 

where S0B (te |T > ts )  is the conditional probability of a 

control switcher being alive at te  given they were alive 

at ts . The counterfactual survival probability is 

S0B
* (te |T > ts ) = S0B (te |T > ts )

1/  under the switching 

model. This gives the relation 

E(D0B+
* ) = E(D0B+ )w  

where 

w =
{1 S0B

* (te |T > ts )}

{1 S0B (te |T > ts )}
. 

Similarly, the relation between the observed and 
counterfactual total event times of control switchers is 

E(T0B+
* ) = E(T0B+ )w  

Using these relations, the proposed estimator of the 
counterfactual ITT effect can be written as: 

ˆ
ITT
*

=
D1 /T1

(D0 + D0A+ + D0B+
* ) / (T0 + T0A+ + T0B+

* )
 

where  

T0B+
*

= T0B+w

D0B+
*

= D0B+w.
 

ˆ
ITT
* is consistent for the counterfactual effect under 

the switching model given or a consistent estimator 

of . In practice,  might be substituted by the ante-

switch rate ratio and S0B (te |T > ts )  is estimated from 

the observed survival probability among the control 
always-takers.  

In the limit of light censoring and heavy censoring, 
the counterfactual ITT estimator reduces respectively 
to time-adjustment only and event-adjustment only.  

7. SIMULATION EXAMPLES 

In the following examples, the survival times are 
simulated according to the proposed switching model. 
We simulated 10000 replicates of sample size N = 
3000 (in each arm) of exponential survival times with 

parameters switching time ts = 0.1, switching 

proportion at the start of trial =0.6, baseline hazard 

of one and always-taker effect  = 0.5.  

We look at six scenarios, summarised in Table 3. 
The first three have beneficial treatment effects =0.5 

and the last three have detrimental treatment effects 
=1.5. Each set is composed of light censoring, mid-

censoring and heavy censoring. Furthermore, we test 

the estimators for early switching ts  = 0.1 and late 

switching ts = 0.5. As the switching time increases, the 
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difference in switching proportions at ts  becomes more 

pronounced. For ts  = 0.1, the switching proportions for 

control and treatment at ts  are: (57%, 59%) for  = 0.5 

and (57%, 56%) for  = 1.5. For ts  = 0.5, the two 

switching proportions are (47%, 53%) for  = 0.5 and 

(41%, 47%) for  = 1.5. The counterfactual ITT effect 

( ITT
* ) is obtained using one simulation of 

counterfactuals of sample size ten millions. 

Table 3: Six Scenarios 

Scenario  te 

1 0.5 ts +0.1 (light cens) 

2 0.5 ts +1 (mid cens) 

3 0.5 ts +5 (heavy cens) 

4 1.5 ts +0.1 (light cens) 

5 1.5 ts +1 (mid cens) 

6 1.5 ts +5 (heavy cens) 

 

Table 4 and 5 summarises the results for ts = 0.1 

and ts  = 0.5 respectively, where mean squared error 

(MSE) with respect to the CACE and the counterfactual 

ITT effect are given in brackets. For ts  = 0.1, the ITT 

estimator is conservative for both effects whilst the PP 
estimator is anti-conservative under beneficial 
treatment effects and conservative under detrimental 
treatment effects. The Rothman-Boice type estimate 
ˆ
AC ,RB  is closer in mean to the true CACE than ˆAC , but 

it is less efficient for  = 1.5. In general, ˆITT
*  is the 

closest to the CACE and the counterfactual ITT effect 
for both beneficial and detrimental treatment effects.  

Similar results are observed when the switching 

time is increased to ts  = 0.5. Whilst all estimators are 

more accurate for this later switching time, ˆITT
*  still 

gives the best estimates of both the CACE and the 
counterfactual ITT effect overall.  

For both switching times, both CACE estimators 

and the counterfactual ITT estimator give far closer 

estimates of the two effects than the ITT and PP 

estimators. 

8. DISCUSSION 

We presented simple estimators for the control-to-

treatment mid-trial switching problem. Modeling 

Table 4: Simulated Example with ts =0.1, MSE w.r.t  and ITT
*  are Given in Brackets 

 Scenario 1 (light cens) Scenario 2 (mid cens) Scenario 3 (heavy cens) 

 0.500 0.500 0.500 

ITT
*  0.502 0.510 0.514 

ˆ
ITT  0.566 (0.679, 0.654) 0.674 (3.101, 2.771) 0.812 (9.781, 8.949) 

ˆ
PP  0.450 (0.412, 0.431) 0.377 (1.553, 1.805) 0.347 (2.355, 2.792) 

ˆ
AC  0.506 (0.338, 0.336) 0.512 (0.182, 0.167) 0.521 (0.225, 0.185) 

ˆ
AC .RB  0.504 (0.335, 0.334) 0.504 (0.166, 0.167) 0.507 (0.176, 0.175) 

ˆ
ITT
*  0.505 (0.306, 0.304) 0.511 (0.184, 0.173) 0.516 (0.251, 0.226) 

 Scenario 4 (light cens) Scenario 5 (mid cens) Scenario 6 (heavy cens) 

 1.500 1.500 1.500 

ITT
*  1.492 1.477 1.489 

ˆ
ITT  1.352 (2.92, 2.697) 1.210 (8.584, 7.303) 1.147 (12.586, 11.809) 

ˆ
PP  1.340 (3.459, 3.216) 1.092 (16.848, 15.026) 1.006 (24.558, 23.466) 

ˆ
AC  1.494 (1.482, 1.479) 1.469 (1.028, 0.940) 1.456 (1.756, 1.669) 

ˆ
AC .RB  1.499 (1.524, 1.529) 1.493 (1.104, 1.126) 1.495 (2.115, 2.117) 

ˆ
ITT
*  1.499 (1.428, 1.433) 1.479 (0.924, 0.879) 1.492 (1.213, 1.207) 
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survival times as exponentially distributed conditional 

on principal compliance, we combined ante-switch and 

post-switch treatment compliers times and events to 

give several estimators of the CACE effect that are 

consistent under an approximate model using 

aggregate data. We also discussed estimating the 

counterfactual ITT effect which involves recovering the 

events and times had no switching occurred. Using 

simulations, we showed that the CACE estimators and 

the counterfactual ITT estimator can offer significant 

improvements over the conventional approaches in 

estimating both effects in our setup. The estimators can 

be easily extended for the piecewise exponential case.  

When individualised data is available for 

randomised trials with switching, more complicated 

models such as the Cox model can be considered. One 

might extend the CACE estimators of Cuzick and 

others (2007) and Loeys and Goetghebeur (2003), but 

assumptions need to made regarding the survival of 

the unobserved compliers and switching proportion in 

the treatment arm. Parametric models can be used for 

specifying how the unobserved complier switching 

proportion in the treatment arm varies with time but the 

necessary inference is certainly not straightforward. A 

fuller discussion of such extensions for the Cox model 

will follow in future work. 
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