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Approximate X-rays reconstruction of special lattice sets∗

Sara Brunetti† Alain Daurat‡ Alberto Del Lungo§

Abstract

Sometimes the inaccuracy of the measurements of the X-rays can give rise to an inconsistent reconstruc-
tion problem. In this paper we address the problem of reconstructing special lattice sets inZ2 from their
approximate X-rays in a finite number of prescribed lattice directions. The class of “strongly Q-convex sets”
is taken into consideration and a polynomial time algorithmfor reconstructing members of that class with
line sums having possibly some bounded differences with thegiven X-ray values is provided. In particular,
when these differences are zero, the algorithm exactly reconstructs any set. As a result, this algorithm can
also be used to reconstruct convex subsets ofZ2 from their exact X-rays in a finite set of suitable prescribed
lattice directions.

keywords: algorithms, combinatorial problems, discrete tomography, lattice sets, convexity, X-rays.

1 Introduction

The problem of reconstructing two-dimensional lattice sets from their X-rays has been studied in discrete
mathematics and applied in several areas. This problem is the basic reconstruction problem in discrete tomog-
raphy [10] and it has various interesting applications in image processing [16], statistical data security [12],
biplane angiography [14], graph theory [1], and reconstructing crystals from images taken by a transmission
electron microscope [13, 15]. In practice, the inaccuracy of the measurements of the X-rays acts in such a way
that only approximate X-rays are available. For example, inmedical applications an organ is reconstructed by
measuring the attenuation of the intensity of the rays crossing the organ in several directions. In this paper we
study the problem of reconstructing special lattice sets inZ2 from their approximate X-rays in a finite number
of prescribed lattice directions.

In most practical applications we have some a priori properties about the sets to be reconstructed : in the
angiography of the coronary arteries the form of a section ofartery is similar to an ellipse. The algorithms can
take advantage of this information to reconstruct the set. Mathematically, these properties can be described in
terms of a subclass of subsets ofZ2 to which the solution must belong. For instance, there are polynomial time
algorithms to reconstructhv-convex polyominoes (i.e., two-dimensional lattice subsets which are 4-connected
and convex in the horizontal and vertical directions) from their X-rays in horizontal and vertical directions [3, 6].
The class of convex lattice subsets (i.e., finite subsetsF with F = Z2 ∩ convF ) is another well known and
studied class in discrete tomography. Gardner and Gritzmann [9] proved that the X-rays in four suitable or
any seven prescribed mutually non parallel lattice directions uniquely determine all the convex lattice subsets.
The complexity of the reconstruction problem on this class is an open problem raised by Gritzmann during the
workshop:Discrete Tomography: Algorithms and Complexity(1997).

∗This work is supported by “Piano di Ateneo per la ricerca” of the University of Siena
†DSI, Università di Firenze, Via Lombroso 6/17, 50134, Firenze, Italy,brunetti@dsi.unifi.it
‡Laboratoire de Logique et d’Informatique de Clermont-1 (LLAIC1), I.U.T. Informatique, Ensemble Universitaire des C´ezeaux,

B.P. no 86, 63172 Aubière Cedex, France,gerard@llaic.u-clermont1.fr
§Dipartimento di Matematica, Università di Siena, Via del Capitano 15, 53100, Siena, Italy,dellungo@unisi.it
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In this paper, we study the problem of reconstructing “Q-convex sets” from their X-rays in a finite number
of prescribed directions. The Q-convexity is a weak convexity property linked to a finite number of directions
and the class of Q-convex sets contains all the convex lattice subsets. In detail, we address the problem of
reconstructing Q-convex sets from their “approximate” X-rays and we provide a polynomial time algorithm to
solve the problem. This means that, the algorithm decides whether or not there is a Q-convex set whose X-rays
all lie within prescribed bounds. If there is at least one Q-convex set having X-rays lying within these bounds,
the algorithm reconstructs one of them in polynomial time.
Boufkhad et al. [4] studied the problem of reconstructinghv-convex polyominoes from their “approximate”
horizontal and vertical X-rays. We show that our algorithm solves this problem in polynomial time. The
algorithm can be used for reconstructing Q-convex sets fromtheir “exact” X-rays. A greedy algorithm for
solving this problem has been defined in [5], and our new approach is faster than this algorithm for a number
of directions equal to two and three.

We point out that recently, it is proved in [7] that the uniqueness results of Gardner and Gritzmann can
be extended to the class of Q-convex sets. From this uniqueness result for Q-convex sets it follows that our
algorithm can be used for reconstructing convex lattice subsets from their exact X-rays in some sets of four pre-
scribed lattice directions, or in any set of seven prescribed mutually nonparallel lattice directions. This means
that, our algorithm and the one defined in [5] solve Gritzmann’s problem for these special sets of directions.

2 A reconstruction algorithm for two X-rays

In this section, we are going to define an algorithm for reconstructing Q-convex sets from their approximate
X-rays in two directions. The basic idea of the algorithm is to determine a polynomial transformation of
our reconstruction problem to the 2-Satisfiability problemwhich can be solved in linear time [2]. A similar
approach has been described in [3, 6].

2.1 Definitions and preliminaries

Let p andq be two independent linear forms onQ2. We can assume that:p(x, y) = ax + by andq(x, y) =
cx + dy with a, b, c, d ∈ Z, ad − bc 6= 0, gcd(a, b) = 1, gcd(c, d) = 1. Assuming thatM = (xM , yM ),
we denotep(xM , yM ) by p(M). TheX-ray of a lattice setF along directionp(M) = const is the function
XpF : Z → N0 defined by:

XpF (i) = card({N ∈ F | p(N) = i}).

This, in turn, means that an X-ray of a lattice setF in a directionp is a function giving the number of points
of F on each line parallel to this direction (see Fig. 2(a)). We define four zones around a pointM of Z2 (see
Fig. 1) as follows:

Z0(M) = {N ∈ Z2 | p(N) ≤ p(M) andq(N) ≤ q(M)},

Z1(M) = {N ∈ Z2 | p(N) ≥ p(M) andq(N) ≤ q(M)},

Z2(M) = {N ∈ Z2 | p(N) ≥ p(M) andq(N) ≥ q(M)},

Z3(M) = {N ∈ Z2 | p(N) ≤ p(M) andq(N) ≥ q(M)}.

We can now introduce the definition of Q-convex set around twodirections.

Definition 2.1 A lattice setF is Q-convexaroundp and q if and only if for eachM 6∈ F there existsk such
thatZk(M) ∩ F = ∅ for k ∈ {0, 1, 2, 3}.
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Figure 1: The four zones around a pointM of Z2.

By the definition, if there is at least one point ofF in every zoneZ0(M), Z1(M), Z2(M) andZ3(M), the
point M has to belong toF . Fig. 2(a) shows some examples of Q-convex sets. We point outthat, from the
definition it follows that a Q-convex set aroundp andq is a discrete set which is convex alongp andq. A
discrete setF is convex alongp if for each pair of points(M,N) of F such thatp(M) = p(N), the discrete
segment[MN ] ∩ Z2 is contained inF . Let us now take the following problem into consideration.
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Figure 2: a) A Q-convex set aroundp(x, y) = x andq(x, y) = y. b) A set which is not Q-convex set around
p(x, y) = x andq(x, y) = y. c) A Q-convex set aroundp(x, y) = x + y andq(x, y) = x − 2y.

Problem 2.1 Approximate Consistency with two directions
Instance: four vectorsP = (p1, . . . , pn), P ′ = (p′1, . . . , p

′
n), Q = (q1, . . . , qm), Q′ = (q′1, . . . , q

′
m) whose

elements are no-negative integer numbers andp1, pn, p′1, p′n, q1, qm, q′1, q′m are positive integer numbers.
Question: is there a Q-convex setF around p and q such thatpi ≤ XpF (i) ≤ p′i for i = 1, . . . , n and
qj ≤ XqF (j) ≤ q′j for j = 1, . . . ,m ?

The problem is to decide whether or not there is a Q-convex setaroundp andq whose X-rays in these two
directions lie within prescribed bounds. IfP = P ′ andQ = Q′, we have theExact Consistencyproblem with
two directions.
In the following subsections, we determine a polynomial transformation of Problem 2.1 to the 2-Satisfiability
problem (2SAT).

2.2 Q-convexity

The intersection of thep-line p(M) = i with theq-line q(M) = j is not always inZ2. It is easy to prove that
the pointM intersection ofp(M) = i with q(M) = j belongs toZ2 if and only if j ≡ κi (mod δ), where:
δ = |ad − bc|, κ = (cu + dv)sign(ad − bc) (mod δ) andau + bv = 1 (see Fig. 3(a) and [8]).
Without any loss of generality, we can assume that a Q-convexsetF aroundp andq whose X-rays are such
that: pi ≤ XpF (i) ≤ p′i andqj ≤ XqF (j) ≤ q′j for all i, j, is contained in the lattice parallelogram:

∆ = {N ∈ Z2 | 1 ≤ p(N) ≤ n and1 ≤ q(N) ≤ m}.

3



We denote the pointM ∈ ∆ intersection ofp(M) = i with q(M) = j by M = (i, j) (see Fig. 2(c)). Let
K = {0, 1, 2, 3}. We associate four boolean variablesVk(M), with k ∈ K, at every pointM ∈ ∆ (i.e.,
one variable for each zoneZk(M)). The idea of the algorithm is to build a 2SAT formulaAPPROX on the
variables(Vk(M))k∈K,M∈∆ so that there is a solutionF of Problem 2.1 if and only ifAPPROX is satisfiable.
If there is an evaluationV of the variables(Vk(M))k∈K,M∈∆ satisfyingAPPROX, the corresponding lattice
setF solving Problem 2.1 is defined by functionΦ as follows:

F = Φ(V ) iff F = {M ∈ ∆ | Vk(M) is true, ∀k ∈ K},

whereVk(M) is true if and only ifVk(M) is false. Conversely, ifF is a subset of∆ solving Problem 2.1, the
corresponding evaluationV of the variables(Vk(M))k∈K,M∈∆ satisfyingAPPROX is defined by functionΨ
as follows:

V = Ψ(F ) iff Vk(M) = “Zk(M) ∩ F = ∅” , with k ∈ K, M ∈ ∆.

We assume that all literals outside∆ are true. The boolean formulaAPPROX is made up of three sets of
clauses expressing: theQ-convexity(QCONV), alower bound(LB) and anupper bound(UB) on the X-rays.
The Q-convexity can be expressed with the boolean variablesby the formulas:

Z0 =
∧

M=(i,j)∈∆







(V0(i, j) ⇒ V0(i − δ, j)) ∧ (V0(i, j) ⇒ V0(i, j − δ))

∧
∧

0<u<δ
0<v<δ
v≡κu(modδ)

(

V0(i, j) ⇒ V0(i − u, j − v)
)







Z1 =
∧

M=(i,j)∈∆







(V1(i, j) ⇒ V1(i + δ, j)) ∧ (V1(i, j) ⇒ V1(i, j − δ))

∧
∧

0<u<δ
0<v<δ
v≡κ(modδ)

(

V1(i, j) ⇒ V1(i + u, j − v)
)







Z2 =
∧

M=(i,j)∈∆







(

V2(i, j) ⇒ V2(i + δ, j)
)

∧ (V2(i, j) ⇒ V2(i, j + δ))

∧
∧

0<u<δ
0<v<δ
v≡κu(modδ)

(

V2(i, j) ⇒ V2(i + u, j + v)
)







Z3 =
∧

M=(i,j)∈∆







(V3(i, j) ⇒ V3(i − δ, j)) ∧ (V3(i, j) ⇒ V3(i, j + δ))

∧
∧

0<u<δ
0<v<δ
v≡κu(modδ)

(

V3(i, j) ⇒ V3(i − u, j + v)
)







The points in the grey zone aroundM = (i, j) in Fig. 3(a) are the points of∆ used inZ0,Z1,Z2 andZ3 (i.e.,
the points(i ± δ, j ± δ), (i ± u, j ± v) with 0 < u < δ, 0 < v < δ). Let us denoteZ0 ∧ Z1 ∧ Z2 ∧ Z3 by

δi-

δi+ δi-

j- δ

M

j+δ

j

j- δ

i

a)

M
i

b)

N’

N

i- 2δ

j

j- 2δ

Figure 3: The points aroundM used inZ0,Z1,Z2 andZ3 with p(x, y) = 2x + y andq(x, y) = x − 2y
QCONV.
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Lemma 2.1 Let V be an evaluation of the variables(Vk(M))k∈K,M∈∆ satisfying QCONV. IfM ∈ ∆ and
Vk(M) is true, thenVk(N) is true for allN ∈ Zk(M).

Proof. Assume thatk = 0 and letM = (iM , jM ). We have:V0(i, j) ⇒ V0(i−δ, j) andV0(i, j) ⇒ V0(i, j−δ)
are satisfied, for alli, j. Therefore, by induction we can prove thatV0(iM −kδ, jM − lδ) is true, for allk, l ∈ N.
Let N be a point ofZ0(M). Let N ′ be the point of∆ such that:

p(M) − p(N ′)

δ
=

⌊

p(M) − p(N)

δ

⌋

,
q(M) − q(N ′)

δ
=

⌊

q(M) − q(N)

δ

⌋

where⌊x⌋ designs the largest integer not greater thanx.
By the previous statement we haveV0(N

′) is true (see Fig. 3(b)) and, since the formulaV0(N
′) ⇒ V0(N)

is in Z0, we finally obtainV0(N) is true. We proceed in the same way fork equal to 1,2 and 3. �

Thus, we can characterize the Q-convexity by means of the formula QCONV.

Lemma 2.2 • For any setF ⊂ ∆ the evaluationV = Ψ(F ) of the boolean variables(Vk(M))k∈K,M∈∆

satisfies the formula QCONV.

• If an evaluationV of the boolean variables(Vk(M))k∈K,M∈∆ satisfies the formula QCONV, thenF =
Φ(V ) is Q-convex aroundp andq.

Proof.

• Assume thatV = Ψ(F ) does not satisfy QCONV. By this assumption, there existsk such that at least a
clause ofZk is not satisfied. ThenVk(M) andVk(N) are true, whereN ∈ Zk(M). As a consequence,
Zk(M) ∩ F = ∅, Zk(N) ∩ F 6= ∅ andZk(N) ⊂ Zk(M). We got a contradiction and soV = Ψ(F )
satisfies QCONV.

• The second statement is just a consequence of Lemma 2.1. IfM /∈ F , by the definition ofΦ there existsk
such thatVk(M) is true. Therefore, by Lemma 2.1, we haveVk(N) for eachN ∈ Zk(M). Consequently,
Zk(M) ∩ F = ∅.

�

2.3 A lower bound

Now we want to express that X-ray values of a lattice set in thedirectionp are greater than some prescribed
integers. Let us take the linep(M) = i into consideration. Let

mini
q = min{j|(i, j) ∈ ∆} andmaxi

q = max{j|(i, j) ∈ ∆}.

Notice that, ifδ 6= 1 these numbers are not always equal to1 andm. We define the formulaLB(p, i, l) in the
following way:

LB(p, i, l) = TRUE if l = 0

LB(p, i, l) =

( ∧

1≤j≤m−δl
j≡κi (mod δ)

(L1(j) ∧ L2(j) ∧ L3(j) ∧ L4(j))

∧L′
1 ∧ L′

2 ∧ L′′
1 ∧ L′′

2

)

otherwise
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where

L1(j) = V0(i, j) ⇒ V2(i, j + δl)

L2(j) = V0(i, j) ⇒ V3(i, j + δl)

L3(j) = V1(i, j) ⇒ V2(i, j + δl)

L4(j) = V1(i, j) ⇒ V3(i, j + δl)

L′
1 = V2(i,mini

q + δ(l − 1))

L′
2 = V3(i,mini

q + δ(l − 1))

L′′
1 = V0(i,maxi

q − δ(l − 1))

L′′
2 = V1(i,maxi

q − δ(l − 1))

Lemma 2.3 • If a lattice setF is Q-convex aroundp andq and its X-ray alongp is such thatXpF (i) ≥ l,
then the evaluationV = Ψ(F ) of the variables(Vk(M))k∈K,M∈∆ satisfiesQCONV ∧ LB(p, i, l).

• If an evaluationV of the variables(Vk(M))k∈K,M∈∆ satisfiesQCONV ∧LB(p, i, l), then the X-ray of
F = Φ(V ) alongp is such thatXpF (i) ≥ l.

Proof.

• The casel = 0 is trivial, so we assumel ≥ 1. If F is Q-convex aroundp andq, by Lemma 2.2V = Ψ(F )
satisfies QCONV. Thus, we only have to show thatV = Ψ(F ) satisfiesLB(p, i, l) when the X-ray ofF
is such thatXpF (i) ≥ l. Assume thatLB(p, i, l) is not satisfiable; in this case at least one clause of the
formula is not satisfied:

– If L1(j) is true, thenV0(i, j) ∧ V2(i, j + δl) is true. SinceV satisfies QCONV, by Lemma 2.1 the
set{j | (i, j) ∈ F} has to be contained in]j, j + δl[. ThereforeXpF (i) < l, and by contradiction,
the thesis follows.

– If L′
1 is true, thenV2(i,mini

q + δ(l − 1)) is true. SinceV satisfies QCONV, by Lemma 2.1 the set
{j | (i, j) ∈ F} has to be contained in[mini

q,mini
q + δ(l − 1)[. ThereforeXpF (i) < l, and by

contradiction, the thesis follows.

The proof is similar for the other cases.

• By Lemma 2.1 andL′
1, L

′
2, we deduceV2(i, j) ∧ V3(i, j) is true, for eachmini

q ≤ j ≤ mini
q + (l − 1)δ.

Assuming thatV0(i,mini
q) andV1(i,mini

q) are true, always by Lemma 2.1,V0(i, j)∧V1(i, j) is true for
eachmini

q ≤ j ≤ maxi
q. SinceF = Φ(V ), we have(i, j) ∈ F for eachmini

q ≤ j ≤ mini
q + δ(l − 1),

namely,XpF (i) ≥ l.
Now we assume thatV0(i,mini

q) or V1(i,mini
q) is true. From the formulasL′

2 andL′
3 and Lemma 2.1,

we deduce that there existsmini
q < j′ ≤ maxi

q − δ(l − 1) such that:

j′ = min({j : V0(i, j) andV1(i, j)})

FromL1(j
′) ∧ L2(j

′) ∧ L3(j
′) ∧ L4(j

′) andV0(i, j
′) ∨ V1(i, j

′), it follows thatV2(i, j′ + δ(l − 1)) and
V3(i, j′ + δ(l − 1)) are true, and so(i, j′ + δ(l − 1)) ∈ F . Moreover, Lemma 2.1 ensures that:V2(i, j)
andV3(i, j) are true for eachj < j′ + δ(l − 1), andV0(i, j) andV1(i, j) are true for eachj ≥ j′.
Therefore,Vk(i, j) is true for allk andj′ ≤ j ≤ j′ + δ(l − 1), and this means that(i, j) ∈ F for each
j′ ≤ j ≤ j′ + δ(l − 1). Consequently,XpF (i) ≥ l.

6
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We define the formulaLB(q, j, l) for the lines in the directionq in a similar way.

2.4 An upper bound

Now we want to express that X-ray values of a lattice set in thedirectionq are smaller than some prescribed
integers. For this upper bound, we need to fix two pointsA andB such thatp(A) = 1 andp(B) = n. We
call basesthese two points (see Fig. 2(c)). Let us take the lineq(M) = j into consideration. We introduce the
formula:

UB(q, j, l, A,B) = IN(A) ∧ IN(B) ∧
∧

1≤i≤n−δl
j≡κi (mod δ)

U(i)

where : IN(M) = V0(M) ∧ V1(M) ∧ V2(M) ∧ V3(M) and

a) If j ≤ min{q(A), q(B)}, U(i) = V0(i, j) ⇒ V1(i + δl, j)

b) If q(A) ≤ j ≤ q(B) U(i) = V3(i, j) ⇒ V1(i + δl, j)

c) If q(B) ≤ j ≤ q(A) U(i) = V0(i, j) ⇒ V2(i + δl, j)

b) If j ≥ max{q(A), q(B)} U(i) = V3(i, j) ⇒ V2(i + δl, j)

Lemma 2.4 • If a lattice setF containing the basesA,B is Q-convex aroundp andq, and its X-ray along
q is such thatXqF (j) ≤ l, then the evaluationV = Ψ(F ) of the variables(Vk(M))k∈K,M∈∆ satisfies
QCONV ∧ UB(q, j, l, A,B).

• If an evaluationV of the boolean variables(Vk(M))k∈K,M∈∆ satisfiesQCONV ∧ UB(q, j, l, A,B),
thenF = Φ(V ) contains the basesA,B, and its X-ray alongq is such thatXqF (j) ≤ l.

Proof.

• Since the chosen basesA andB belong toF , at least two variables among the four ones associated to
any (i, j) ∈ ∆ are false. By Lemma 2.2,V = Ψ(F ) satisfies QCONV. Assume thatV = Ψ(F ) does
not satisfyUB(q, j, l, A,B) andj ≤ min{q(A), q(B)} (i.e., case (a)). By this assumption, there existsi′

such thatV0(i′, j) andV1(i′ + δl, j) are true, and so from Lemma 2.1 it follows thatV0(i, j) andV1(i, j)
are true for eachi′ ≤ i ≤ i′ + δl. Moreover,V2(i, j) andV3(i, j) are false for alli because of basesA
andB. ThenVk(i, j) is true for eachk andi′ ≤ i ≤ i′ + δl, that is(i, j) ∈ F for eachi′ ≤ i ≤ i′ + δl
contradicting the thesis.
We proceed in the same way for the cases (b), (c) and (d).

• SinceV satisfiesIN(A)∧ IN(B), the basesA andB belong toF . Assuming thatj ≤ min{q(A), q(B)}
(i.e., case (a)), by Lemma 2.1 andIN(A) ∧ IN(B), the variablesV2(i, j) andV3(i, j) are false for alli.
If we haveV0(i, j) is true for alli, thenF has no point in the lineq(M) = j andXqF (j) = 0 ≤ l. So,
we can suppose that there isi such thatV0(i, j) is true. By Lemma 2.1, there existsi′ such thatV0(i′, j)
andV0(i, j) are true fori < i′. Therefore,(i, j) /∈ F for all i < i′. SinceV satisfiesUB(q, j, l, A,B)
andV0(i, j) is true fori ≥ i′, we have thatV1(i, j) is true for alli ≥ i′ + δl, and so{i | (i, j) ∈ F} ⊂
[i′, i′ + δl[. Consequently,XqF (j) ≤ l.
We proceed in the same way for the cases (b), (c) and (d).

�

We define the formulaUB(p, i, l, A,B) for the lines in the directionp in a similar way .
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2.5 The reconstruction algorithm

Let (P,P ′, Q,Q′) be an instance of Problem 2.1. We fix four basesA,B,C,D such thatp(A) = 1, p(B) = n,
q(C) = 1, q(D) = m and then we build the formula:

APPROX(P,P ′, Q,Q′, A,B,C,D) = QCONV ∧
∧

1≤i≤n

(

LB(p, i, pi) ∧ UB(p, i, p′i, C,D)
)

∧
∧

1≤j≤m

(

LB(q, j, qj) ∧ UB(q, j, q′j , A,B)
)

As a consequence of Lemmas 2.2,2.3 and 2.4, we get:

Theorem 2.1 APPROX(P,P ′, Q,Q′, A,B,C,D) is satisfiable if and only if there is a Q-convex setF around
p and q containing the basesA,B,C,D and having X-rays alongp and q such thatpi ≤ XpF (i) ≤ p′i, for
i = 1, . . . , n, andqj ≤ XqF (j) ≤ q′j, for j = 1, . . . ,m.

SinceAPPROX(P,P ′, Q,Q′, A,B,C,D) is a boolean formula in conjunctive normal form with at most
two literals in each clause, from Theorem 2.1 we have a transformation of Problem 2.1 to 2SAT problem.
The algorithm chooses four basesA,B,C,D, and buildsAPPROX(P,P ′, Q,Q′, A,B,C,D). Each formula
APPROX(P,P ′, Q,Q′, A,B,C,D) has sizeO(mn) and can be constructed inO(mn) time. This is a 2SAT
formula and so it can be solved in O(mn) time (see [2]). If the formula is satisfiable andV is the evaluation of
the boolean variables, thenF = Φ(V ) is solution of Problem 2.1. On the contrary, the reconstruction attempt
fails and the algorithm chooses a different position of the four basesA,B,C,D, and repeats the procedure. The
number of reconstruction attempts is bounded by the number of different positions of the four basesA,B,C,D,
and this is at mostm2n2. Consequently:

Corollary 2.1 Problem 2.1 can be solved inO(m3n3) time.

Remark 2.1 An 8-connectedhv-convex set is a Q-convex set aroundp(x, y) = x and q(x, y) = y with
at least one point in each row and column. This class of lattice sets is a well-know generalization of the
class ofhv-convex polyominoes [3, 6] which are 4-connected and convexin horizontal and vertical directions.
Boufkhad et al. [4] studied the “approximate consistency with two directions” problem on the class ofhv-
convex polyominoes. In detail, given a pair of vectorsV = (v1, . . . , vn) andH = (h1, . . . , hm), they want
to reconstruct anhv-convex polyomino whose X-rays along vertical and horizontal directions are such that:
|XpF (i) − vi| ≤ 1 for i = 1, . . . , n and |XqF (j) − hj| ≤ 1 for j = 1, . . . ,m (i.e., P = V − 1, P ′ =
V + 1, Q = H − 1 and,Q′ = H + 1). Our algorithm solves this problem in polynomial time on the classes
of 8-connectedhv-convex sets andhv-convex polyominoes (with an extra condition on the booleanvariables).
We point out that the goal of Boufkhad et al. is to solve the corresponding optimization problem. They want
to reconstructhv-convex polyominoes from these “approximate” horizontal and vertical X-rays and such that
the sum of the absolute differences is minimum. By means of a SAT solver, the authors defined a heuristic
algorithm for solving this problem. We do not know at this time if our algorithm can be used for solving this
optimization problem in polynomial time.

Remark 2.2 Mirsky [11] proved that “approximate consistency with two directions” problem on the class of
all lattice sets can be solved in polynomial time.

2.5.1 The exact reconstruction.

If P = P ′ andQ = Q′, Problem 2.1 becomes theExact Consistencyproblem with two directions on the
Q-convex sets aroundp andq. Notice that,

∑n
i=1 pi =

∑n
j=1 qj is a necessary condition. This problem has

been studied in [5] and the authors propose a greedy algorithm whose computational cost isO(m2n2(m +
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n)min{m2, n2}). We are going to show an algorithm which is faster than the algorithm defined in [5]. Let
A,B be two bases such thatp(A) = 1 andp(B) = n. We build the following formula:

EXACT(P,Q,A,B) = QCONV
∧

1≤i≤n

LB(p, i, pi)
∧

1≤j≤m

UB(q, j, qj , A,B).

Proposition 2.1 EXACT(P,Q,A,B) is satisfiable if and only if there is a Q-convex setF aroundp and q
containingA,B and having X-rays alongp andq such thatXpF (i) = pi, for i = 1, . . . , n, andXqF (j) = qj,
for j = 1, . . . ,m.

Proof.

• Assume thatEXACT(P,Q,A,B) is satisfied by an evaluationV of (Vk(M))k∈K,M∈∆. By Lem-
mas 2.2,2.3 and 2.4, the setF = Φ(V ) satisfies the conditions:A,B ∈ F , XpF (i) ≥ pi andXqF (j) ≤
qj for all i, j. Then,

m
∑

j=1

qj ≥
m
∑

j=1

XqF (j) =

n
∑

i=1

XpF (i) ≥
m
∑

i=1

pi

and, since
∑m

j=1 qj =
∑n

i=1 pi, XpF (i) = pi andXqF (j) = qj for all i, j.

• If F is Q-convex aroundp andq and satisfiesA,B ∈ F , XpF (i) = pi, andXqF (j) = qj , by Lem-
mas 2.2,2.3 and 2.4, the evaluationV = Ψ(F ) satisfiesEXACT(P,Q,A,B).

�

The number of reconstruction attempts for the exact consistency problem is bounded by the number of different
positions of the two basesA,B, and this is at mostmin{m2, n2}. Consequently:

Corollary 2.2 Exact Consistency problem is solved inO(mn min{m2, n2}) time.

3 More than two directions

We now outline an algorithm for reconstructing Q-convex sets from their X-rays in more than two directions.
Let us introduce a definition of Q-convex set around more thantwo directions. LetU be a set ofd directions
{~uh = (ah, bh)dh=1} (i.e., pairs of coprime integers, withbh ≥ 0). The linear form corresponding to vector

~uh = (ah, bh) is uh(x, y) = bhx − ahy. Given two directionsui, uj ∈ U , we define four zonesZ(i,j)
k (M)

around everyM ∈ Z2 as in the previous section. Therefore, there are2d(d − 1) zones for eachM ∈ Z2 and
we are going to select2d of these zones. A pointM of a line in directionuh splits it into the following two
semi-lines having origin inM :

s+
h (M) = {N ∈ Z2 | uh(N) = uh(M) and~uh ·

−−→
ON ≥ ~uh ·

−−→
OM}

s−h (M) = {N ∈ Z2 | uh(N) = uh(M) and~uh ·
−−→
ON ≤ ~uh ·

−−→
OM}

where “·” denotes the scalar product of two vectors andO is any origin point.

Definition 3.1 An almost-semi-plane (or ASP) alongU is a zoneZ(i,j)
k (M) such that for each directionuh of

U only one of the two semi-liness+
h (M), s−h (M) is contained inZ(i,j)

k (M).
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u1

Π = Z0 2
(1,3)

 (M)

Π3
(1,3)
0  (M)=Z

Π = Z2  (M)1
(2,3)

M

u u23

Π = Z  (M)2 1
(1,2)

Π0  (M)=Z 4
(2,3)

Π3 (M)=Z3
(1,2)

Figure 4: The six ASP aroundM , with U = {u1, u2, u3}, u1 = y, u2 = x, u3 = x + y.

Let Π0(M) be the ASP containings+
h (M) for eachh = 1, . . . , d. We denote the other almost-semi-planes

encountered clockwise aroundM fromΠ0(M) byΠ1(M), . . . ,Π2d−1(M). For example, letU = {u1, u2, u3},

with u1 = y, u2 = x, u3 = x + y. The six ASP around a pointM are: Π0(M) = Z
(1,3)
2 (M),Π1(M) =

Z
(2,3)
2 (M),Π2(M) = Z

(1,2)
1 (M),Π3(M) = Z

(1,3)
0 (M),Π4(M) = Z

(2,3)
0 (M) andΠ5(M) = Z

(1,2)
3 (M) (see

Fig. 4). Now we can generalize the Q-convexity to any set of directions:

Definition 3.2 A lattice setF is strongly Q-convexaroundU if and only if for eachM /∈ F there exists an
ASPΠk(M) aroundM such thatF ∩ Πk(M) = ∅.

Let us consider the approximate consistency problem on thisclass.

Problem 3.1 Approximate Consistency with more than two directions
Instance: 2d vectorsP1 = (p1,1, . . . , p1,n1

), P ′
1 = (p′1,1, . . . , p

′
1,n1

), . . . , Pd = (pd,1, . . . , pd,nd
) and P ′

d =
(p′d,1, . . . , p

′
d,nd

) whose elements are no-negative integer numbers andp1,1, p1,n1
, p′1,1, p

′
1,n1

, . . . , pd,1, pd,nd
,

p′d,1, p
′
d,nd

are positive integer numbers.
Question: is there a strongly Q-convex setF aroundU such that:
ph,i ≤ Xuh

F (i) ≤ p′h,i for i = 1, . . . , nh andh = 1, . . . , d ?

A Q-convex setF aroundU whose X-rays are such that:ph,i ≤ Xuh
F (i) ≤ p′h,i for all h, i, is contained in the

lattice polygon:
∆ = {N ∈ Z2 | 1 ≤ uh(N) ≤ nh ∀1 ≤ h ≤ d}.

We use the strategy of the previous section, by replacing thezoneZk(M) with Πk(M). Assuming thatK =
{0, 1, . . . , 2d − 1}, we associate2d boolean variablesVk(M), with k ∈ K, at every pointM in ∆ (i.e., one
variable for eachΠk(M) aroundM ). We build a 2SAT formulaAPPROX on the variables(Vk(M))k∈K,M∈∆,
so that there is a solutionF of Problem 3.1 if and only ifAPPROX is satisfiable. If there is an evaluationV
of (Vk(M))k∈K,M∈∆ satisfyingAPPROX, the corresponding setF solving Problem 3.1 isF = Φ(V ), with
Φ defined as in the previous section. Conversely, ifF is a subset of∆ solving Problem 2.1, the corresponding
evaluationV of (Vk(M))k∈K,M∈∆ satisfyingAPPROX is V = Ψ(F ), with Ψ defined as in the previous

section. Since every ASPΠk(M) is equal to a zoneZ(i,j)
h (M) defined by directionsui, uj , it is easy to

generalize the formulas to contexts havingn directions. The generalization SQCONV of QCONV is such that
SQCONV=Z0 ∧ . . . ∧ Z2d−1, whereZk corresponds toΠk(M) (i.e.,Z(i,j)

h (M)). Thus, we have the following
extensions of Lemma 2.2:

Lemma 3.1 • For any setF ⊂ ∆ the evaluationV = Ψ(F ) of the variables(Vk(M))k∈K,M∈∆ satisfies
SQCONV.
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• If an evaluationV of the variables(Vk(M))k∈K,M∈∆ satisfies SQCONV, thenF = Φ(V ) is strongly
Q-convex aroundU .

A lower bound ofl on the X-ray ofF along the lineuh(M) = i is expressed by a 2SAT formula. Let us take
the lineuh(M) = i into consideration. Analogously to the case of two directions, by definition,mini

h and
maxi

h allows us to determine two pointsAi
h andBi

h of ∆ lying on uh = i such thatuh(Ai
h) = mini

h and
uh(Bi

h) = maxi
h. A point M of a line in directionuh splits it into the two semi-liness+

h (M) ands−h (M).
Hence, for each directionuh we can split the set of indicesK = {0, 1, . . . , 2d − 1} into two subsets:

K+
h = {t ∈ K | s+

h (M) ⊂ Πt(M)}

K−
h = {t ∈ K | s−h (M) ⊂ Πt(M)}.

From the definition of ASP it follows that,K = K+
h ∪ K−

h andK+
h ∩ K−

h = ∅. The required boolean formula
can be constructed by proceeding as in the two-directions case. More precisely, the formulaSLB(uh, i, l) is
defined in the following way.

SLB(uh, i, l) = TRUE if l = 0

SLB(uh, i, l) =













∧

M∈I

∧

k∈K+

h

k′∈K−
h

Lk,k′(M)













∧







∧

k∈K+

h

L′
k






∧







∧

k∈K−
h

L′′
k






otherwise

where

I = {M ∈ ∆|uh(M) = i andM + l−→uh ∈ ∆}

Lk,k′(M) = (Vk(M) ⇒ Vk′(M + l−→uh))

L′
k = Vk(A

i
h + (l − 1)−→uh)

L′′
k = Vk(B

i
h − (l − 1)−→uh))

Finally, we fixd − 1 pairs of bases for each directions, in order to give an upper bound ofl on the X-ray ofF
in the directionuh. The chosen bases correspond to the otherd − 1 directions. The upper bound is expressed
by the formulaSUB(uh, i, l, A1, B1, . . . , Ah−1, Bh−1, Ah+1, Bh+1, . . . , Ad, Bd), whereAj , Bj are the bases
of the directionuj . This formula is a generalization of the upper bound formulafor the two-directions case. At
first we have to prove the following lemma:

Lemma 3.2 For any M ∈ ∆ such thatuh(M) = i there exists at most onek ∈ K+
h such that for any

k′ ∈ K+
h \{k} the ASPΠk′(M) contains one of the pointsA1, B1, . . . , Ah−1, Bh−1, Ah+1, Bh+1, . . . , Ad, Bd.

Proof. Let Mmax be the point ofQ2 such that:

- uh(Mmax) = i

- it maximizes
−−→
ON · −→uh for eachN such thatuh(N) = i in the continuous polygon∆c = {N ∈ R2 | 1 ≤

uh(N) ≤ nh ∀1 ≤ h ≤ d}.

For anyk′ ∈ K+
h we haveΠk′(M) ⊃ Πk′(Mmax) so it is sufficient to prove this property forM = Mmax.

Mmax is on an edgee of ∆c which has a directionuh1
6= uh. We have a baseC fixed on this edge. We can

suppose thatC ∈ s+
h (Mmax) without loss of generality. Consider the edgee′ consecutive tos−h (Mmax) in ∆c.

This edge is in directionuh2
∈ U .
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• Suppose thath2 6= h. Let D be the base fixed on this edge. There existsk ∈ K+
h andr ∈ {0, 1, 2, 3}

such thatZ(h1,h2)
r (Mmax) is an ASP. LetΠk(Mmax) = Z

(h1,h2)
r (Mmax). We can see that for any

k′ ∈ K+
h \ {k} the ASPΠk′(M) the ASPΠk′(M) containsC or D (see Fig. 5).

C

∆c

uh = i Mmax

uh2

uh1

D Πk(Mmax)

M

Figure 5: Why onlyΠk(Mmax) does not contain neitherC norD ?

• If h2 = h thenΠk(Mmax) is Z
(h1,h)
r (Mmax) which does not containC and the semi-lines−h (Mmax) \

Mmax.
�

Let k be as in the statement of the lemma: we denoteW+
h (M) = Vk(M).

We can defineW−
h (M) on the same way. Therefore the upper bound is expressed by thefollowing 2SAT

formula:

SUB(uh, i, l, A1, B1, . . . , Ah−1, Bh−1, Ah+1, Bh+1, . . . , Ad, Bd) =

IN(A1) ∧ . . . ∧ IN(Bd) ∧
∧

M∈I

U(M)

where:
I = {M ∈ ∆|uh(M) = i andM + l−→uh ∈ ∆}

IN(M) =
∧

k∈K

Vk(M)

U(M) =
(

W−
h (M) ⇒ W+

h (M + l−→uh)
)

.

Let (P1, P
′
1, . . . , Pd, P

′
d) be an instance of Problem 3.1. We fix2d basesA1, B1, . . . , Ad, Bd and then we

build the following boolean formula:

APPROX(P1, P
′
1, . . . , Pd, P

′
d, A1, B1, . . . , Ad, Bd) = SQCONV ∧

∧

1≤h≤d
1≤i≤nh

LB(uh, i, pi) ∧ UB(p, i, p′i, A1, B1, . . . , Ah−1, Bh−1, Ah+1, Bh+1, . . . , Ad, Bd)
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We deduce that:

Theorem 3.1 APPROX(P1, P
′
1 . . . , Ad, Bd) is satisfiable if and only if there is a strongly Q-convex setF

aroundU containing the basesA1, B1, . . . , Ad, Bd and having X-rays alonguh such thatph,i ≤ Xuh
F (i) ≤

p′h,i, for i = 1, . . . , nh andh = 1, . . . , d.

The algorithm choosesd pair of bases, and builds the 2SAT expressionAPPROX. Assuming thatn =
max{n1, . . . , nd}, we have that each formulaAPPROX has sizeO(n2) and can be constructed inO(n2)
time. The number of reconstruction attempts is bounded by the number of different positions of the2d bases,
and this is at mostn2d. Consequently:

Corollary 3.1 Problem 3.1 can be solved inO(n2d+2) time.

If Ph = P ′
h for each1 ≤ h ≤ d, Problem 3.1 become the exact consistency problem with morethan two

directions. In this case, we have to choosed − 1 pair of bases for the upper bound and we complexity of
algorithm for solving this problem isO(n2d). The convex lattice sets are special Q-convex sets, and so by
uniqueness results for Q-convex sets proved in [7], the algorithm can be used for reconstructing convex lattice
subsets from their exact X-rays in some sets of four suitablelattice directions, or in any set of seven prescribed
mutually nonparallel lattice directions. This means that the two algorithms solve Gritzmann’s problem for these
special sets of directions.
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