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Abstract: Bioactive natural products are economically important as drugs, fragrances, pigments, food additives and 
pesticides. The biotechnological tools are important to select, multiply, improve and analyze medicinal plants for 
production of such products. The utilization of medicinal plant cells for the production of natural or recombinant 
compounds of commercial interest has gained increasing attention over the past decades. Plant tissue culture systems 
are possible source of valuable medicinal compounds, fragrances and colorants, which cannot be produced by microbial 
cells or chemical synthesis. In vitro production of bioactive natural products in plant cell suspension culture has been 
reported from various medicinal plants and bioreactors are the key step towards commercial production. Genetic 
transformation is a powerful tool for enhancing the productivity of novel products; especially by Agrobacterium 
tumefacians. Combinatorial biosynthesis is another approach in the generation of novel natural products and for the 
production of rare and expensive natural products. Recent advances in the molecular biology, enzymology and 
bioreactor technology of plant cell culture suggest that these systems may become a viable source of important 
secondary metabolites. Genetic fingerprinting could be a powerful tool in the field of medicinal plants to be used for 
correct germplasm identification. In addition, when linked to emerging tools such as metabolomics and proteomics, 
providing fingerprints of the plant’s metabolites or protein composition, it gives data on phenotypic variation, caused by 
growth conditions or environmental factors, and also yield data on the genes involved in the biosynthesis. DNA profiling 
techniques like DNA microarrays serve as suitable high throughput tools for the simultaneous analysis of multiple genes 
and analysis of gene expression that becomes necessary for providing clues about regulatory mechanisms, biochemical 
pathways and broader cellular functions. New and powerful tools in functional genomics can be used in combination with 
metabolomics to elucidate biosynthetic pathways of natural products. 
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INTRODUCTION 

Medicinal plants are the most exclusive source of 
life saving drugs for the world’s population. The 
traditional medicine involves the use of different plant 
extracts or the bioactive constituents [1]. Several of 
these metabolites prevent chronic diseases and can be 
used as colorants, flavours, and as antimicrobials [2]. 
The bioactive natural products modify the functioning of 
the central nervous system (CNS) [3, 4]. The utilization 
of plant cells for the production of natural or 
recombinant compounds of commercial interest has 
gained increasing attention over the past decades [5]. 
Bioactive compounds currently extracted from plants 
are used as pharmaceuticals, agrochemicals, flavors 
and fragrance ingredients, food additives and 
pesticides. These products will never cease to play an 
important role in the search of novel therapeutic 
agents. Therefore, it is incontestable that works related 
to natural products continue to develop in many 
aspects involving researchers from various scientific 
backgrounds. In the search for alternatives for 
production of desirable medicinal compounds from 
plants, biotechnological approaches specifically plant 
tissue culture are found to have potential as a 
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supplement to traditional agriculture in industrial 
production of bioactive plant metabolites [6]. 

Biotechnology in its broadest sense includes plant 
tissue culture, the use of molecular markers for 
breeding and fingerprinting purposes; molecular tools 
to study gene expression, as well as the use of all this 
information for genetic engineering of plants. Genetic 
fingerprinting could be a powerful tool in the field of 
medicinal plants, for precise germplasm identification. 
In addition, when linked to other emerging tools such 
as metabolomics and proteomics, it not only gives data 
on phenotypic variation caused by growth conditions or 
environmental factors, but also yields data on the 
genes involved in the biosynthesis [7]. The use of 
molecular markers in breeding is a well known 
technique for commodity crops such as the cereals, but 
has only a few reports on use of them for medicinal 
plants. For example in Cannabis, markers linked to 
high THC or CBD content was identified [8]. Similar 
work for other medicinal plants can be achieved in 
future, as genomic tools are becoming popular and 
easily accessible. 

The present review elucidates different 
classes/subclasses of bioactive natural products along 
with an overview of their medicinal applications as 
antioxidants, anti-inflammatory agents, anti-allergic and 
anti-cancerous agents. The current information on 



92     International Journal of Biotechnology for Wellness Industries, 2016, Vol. 5, No. 3 Tripathi et al. 

applications of recent biotechnological tools in the 
production of bioactive natural compounds from plants 
has also been elucidated. The literature cited in the text 
on scientific developments, recent technological 
advances, and research trends evidently point out that 
bioactive natural products will be amongst the most 
significant resources of new formulations of drugs in 
the future. 

CLASSIFICATION OF BIOACTIVE NATURAL 
PRODUCTS 

Plants use secondary metabolites such as alkaloids, 
phenolics and terpenes for their defense against the 
herbivores. Bioactive natural products can be divided 
into different groups on the basis of their chemical 
properties. 

I. Terpenes  

Terpenes are the most diverse class of secondary 
compounds produced by plants. In addition to pest 
resistance, these compounds are also used as 
anticancer (taxol) and antimalarial (artemisinin) drugs. 
Different terpenes produced by plants as secondary 
metabolites are presumed to be involved in defense as 
toxins to a large number of plant feeding insects and 
mammals. Herein several examples are discussed 
from the 5 major subclasses of terpenes. 

a. Monoterpenes (C10): Many derivatives are 
important agents toxic to insects. The pyrethroid 
(monoterpenes esters) occur in the leaves and 
flowers of Chrysanthemum species which shows 
strong insecticidal response (neurotoxin) to 
insects like beetle, wasps, moths, bees, etc. and 
a popular ingredient in commercial insecticides 
because of low persistence in the environment 
and low mammalian toxicity. In Pine and Fir, 
monoterpenes accumulate in resin ducts of the 
needles, twigs and trunks mainly as α-pinene, β-
pinene, limonene and myrecene which are toxic 
to numerous insects including bark beetles, a 
serious pest of conifer species [9]. 

b. Sesquiterpenes (C15): A number of 
sesquiterpenes have been reported for their role 
in plant defense. Abscisic acid (ABA) is also a 
sesquiterpene, plays vital regulatory roles in the 
initiation and maintenance of seed and bud 
dormancy and plants response to water stress 
by modifying the membrane properties [10]. 

c. Diterpenes (C20): Abietic acid is a diterpene 
found in pines and leguminous tress. It is present 

in or along with resins in resin canals of the tree 
trunk. Another compound phorbol (diterpene 
ester), found in plants of Euphorbiaceae and 
work as skin irritants and internal toxins to 
mammals. Furthermore, gibberellins, a group of 
plant hormones are also diterpenes which play 
various detrimental roles in numerous plant 
developmental processes such as seed 
germination, leaf expansion, flower and fruit set, 
dry weight and biomass production [11], stomatal 
conductance, CO2 fixation, phloem loading and 
assimilate translocation [12].  

d. Triterpenes (C30): Several steroid alcohols 
(sterols) are important component of plant cell 
membranes, especially in the plasma membrane 
as regulatory channels and maintain permeability 
to small molecule by decreasing the motion of 
fatty acid chains. A triterpene, liminoid, a group 
of bitter substances in citrus fruits which act as 
antiherbivore compounds in members of family 
Rutaceae and some other families. Similarly, 
azadirachtin, a complex limnoid from 
Azadirachta indica, act as a feeding deterrent to 
some insects and exerts various toxic effects 
[13]. 

e. Polyterpenens (C5)n: Several high molecular 
weight polyterpenes occur in plants. Larger 
terpenes include the tetraterpenes and the 
polyterpenes as rubber provides protective 
mechanism for wound healing and defense 
against herbivores [14]. 

II. Phenolics  

Plants produce a large variety of secondary 
products that contain an aromatic ring called phenol. 
They could be an important part of the plants defense 
system against pests and disease including root 
parasitic nematodes [15]. Elevated ozone (mean 
32.4ppb) increased the total phenolic content of leaves 
and had minor effects on the concentration of individual 
compounds [16]. 

a. Coumarin: They are simple phenolic compounds 
widespread in vascular plants and appear to 
function in different capacities in various plant 
defence mechanisms against insect herbivores 
and fungi. They are derived from the shikimic 
acid pathway which is found in bacteria, fungi 
and plants but absent in animals. They are a 
highly active group of molecules with a wide 
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range of anti-microbial activity against both fungi 
and bacteria [17]. It is believed that these cyclic 
compounds behave as natural pesticidal defence 
compounds for plants. It is known that, 7-
hyroxylated simple coumarins may play a 
defensive role against parasitism of Orobanche 
cernua, by preventing germination, penetration 
and connection to the host vascular system [18]. 
Some coumarin derivatives have higher 
antifungal activity against large number of soil 
borne plant pathogenic fungi and exhibit more 
stability as compared to the original coumarin 
compounds [17]. 

b. Furanocoumarin or Furocoumarins: This phyto-
toxic substance is abundantly found in members 
of the family Umbelliferae including celery 
parsnip and parsley. These compounds are non-
toxic until they are activated by light (UV-A). 
Psoralen, basic linear furocoumarin are known 
for its use in the treatment of fungal defence [19]. 

c. Lignin: It is a highly branched polymer of 
phenylpropanoid groups, formed from three 
different alcohols viz., coniferyl, coumaryl and 
sinapyl which are oxidized to free radical (ROS) 
by a ubiquitous plant enzyme peroxidises reacts 
simultaneously and randomly to form lignin [20]. 
Its chemical durability makes it relatively 
indigestible to herbivorous and insects 
pathogens. Lignification blocks the growth of the 
pathogen [21]. 

i. Flavonoids: Flavonoids are one of the largest 
classes of plant phenolic; perform different 
functions in plant system including 
pigmentation and defence [22]. Two other 
major groups of flavonoids found in flowers 
are flavanones and flavanols. They function 
to protect cell from UV-B radiation because of 
their accumulation in epidermal layers of 
leaves and stems and absorb light strongly in 
the UV-B region while letting visible (PAR) 
wavelengths throughout uninterrupted [23]. In 
addition, exposure of plants to increased UV-
B light has been demonstrated to increase 
the synthesis of flavanones and flavanols 
suggesting that flavonoids may offer 
protection by screening out harmful UV-B 
radiation [16]. 

ii. Isoflavonoids: Isoflavonoids are derived from 
a flavanones intermediate, naringenin, 

ubiquitously present in plants and play a 
critical role in plant development and defence 
responses. They are secreted by the legumes 
and play a vital role in promoting the 
formation of nitrogen fixing nodules by 
symbiotic rhizobia [24]. Moreover, it seems 
that synthesis of these flavonoids is an 
effective strategy against reactive oxygen 
species [25] (ROS). The analysis of 
antioxidant enzymes like SOD, CAT, POX, 
APX, GPX and GR suggest that peroxidases 
are the most active enzymes in red cabbage 
seedlings exposed to Cu++ stress. 
Isoflavonoids work as substrate for different 
peroxidases which are the first lines of 
defence against various environmental 
stresses like metal stress [25, 26]. 

iii. Tannins: Tannins are general toxins that 
significantly reduce the growth and survival of 
many herbivores and also act as feeding 
repellents to a great diversity of animals. 
Mammals such as cattle, beer and apes, 
characteristically avoid plant with high tannins 
contents [27]. Tannins have a special function 
in disease resistance of certain plants. They 
are known to prevent smudge in onions, a 
disease caused by fungus Colletotrichum 
circinans, in addition prevent spore 
germination and growth of other fungi [28].  

III. Sulphur Containing Natural Products 

They include GSH, GSL, phytoalexins, thionins, 
defensins and allinin which have been linked directly or 
indirectly with the defence of plants against microbial 
pathogens and a number of them thought to play role in 
the Systemic induced Resistance. 

a. GSH: It is one of the major forms of organic 
sulphur in the soluble fraction of plants and has 
an important role as a mobile tool of reduced 
sulphur in the regulation of plant growth and 
development as well as cellular antioxidants in 
stress responses [29]. Specialized cell such as 
trichomes exhibit high activities of enzymes for 
synthesis of GSH and other phytochelatins 
necessary for detoxification of heavy metals [30, 
31]. The GSH content varies between 3 to 10 
mM and is present in the major cellular 
compartment of plant. In oxidative stress, GSH 
functions as direct antioxidants and also as a 
reducing agent for other antioxidants such as 
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ascorbic acid [32]. It also works as integral 
weapons in the defence against ROS generated 
by ozone [33]. GSH is rapidly accumulated after 
fungal attack, acting as systemic messenger 
carrying information concerning the attack to 
non-infested tissues [34]. 

b. GSL: A group of low molecular mass N 
(nitrogen) and S (sulphur) containing plant 
glucosides which are produced by higher plants 
in order to increase their resistance against the 
unfavourable effects of predators, competitors 
and parasites [35]. Mustard oil glucosides in 
crucifer and allyl cys sulfoxides in alum are 
examples of GSL [36]. The smelling volatiles 
forms from GSL catalyzed by myrosinase, 
cleaves glucose from its bond with the S atom, 
resulting in glycon rearranges with loss of the 
sulphate to give pungent and chemically reactive 
products, function in defence as herbivorous 
toxins and feeding repellents [37]. The potency 
of GSL comes in picture when it is in contact with 
the plant enzyme myrosinase removes the β-
glucose moiety leading to formation of an 
unstable intermediates i.e. isothiocyanates (R-
N=C=S) and nitriles which function in defence as 
herbivore toxins and feeding repellents [38]. 
They affect the activity of enzymes involved in 
the antioxidant defence system and cell 
protection against DNA damage [39].  

c. Phytoalexins: Phytoalexins are synthesized in 
response to bacterial or fungal infection or other 
forms of stress that helps to limit the spread of 
the invading pathogens by accumulating around 
the site of infection. Many of these changes are 
linked to a rapid apoptotic response, resulting in 
death of one or a few invaded plant cells, known 
as the hypersensitive response (HR). 
Cruciferous crops are cultivated worldwide 
because they are rich sources of phytoalexins 
[40]. 

d. Defensins, thionins and lectins: They are S-rich 
non-storage plant proteins synthesize and 
accumulate after attack of pathogens [41]. These 
proteins inhibit the growth of a broad range of 
fungi [42]. Some defensins are antifungal or 
occasionally show anti-bacterial activity. 
Defensins genes are partly pathogen-inducible 
and others that are involved in resistance can be 
expressed constitutively [43]. Some plant 
species produce lectins as defensive protein that 

bind to carbohydrates or glycoproteins. After 
being ingested by herbivores, lectins bind to 
epithelial cell lining of the digestive tracts and 
interfere with nutrient absorption [44]. 

IV. Nitrogen Containing Natural Products 

They include alkaloids, cyanogenic glucosides and 
non-proteins amino acids. They are of considerable 
interest because of their role in the antiherbivore 
defense and toxicity to humans. 

a. Alkaloids: A large family of N (nitrogen) 
containing secondary metabolites found in 
approximately 20% of the species of vascular 
plants, most frequently in the herbaceous dicot 
and relatively less in monocots and 
gymnosperms [45]. Most of the alkaloids are 
believed to function as defensive elements 
against predators, especially mammals because 
of their general toxicity [46].  

b. Cyanogenic glucosides (cyanogenic: cyanide 
{HCN} producing): These are not themselves 
toxic but are readily broken down to give off 
volatile poisonous substance like HCN and 
volatile H2S. Lima bean (Phaseolus lunatus L.) is 
a model plant for the study of inducible indirect 
ant herbivore defences including the production 
of volatile organic compounds (VOCs). The 
cyanogenesis may be considered as a vital 
direct defensive trait affecting Lima bean’s 
overall defences in nature [47]. 

PRODUCTION OF BIOACTIVE NATURAL 
PRODUCTS USING TISSUE CULTURE 
TECHNOLOGY  

Research in the area of plant tissue culture 
technology has resulted in the production of many 
pharmaceutical substances for new therapeutics. 
Advances in the area of cell cultures for the production 
of medicinal compounds has made possible the 
production of a wide variety of pharmaceuticals like 
alkaloids, terpenoids, steroids, saponins, phenolics, 
flavonoids, and amino acids. Successful attempts to 
produce some of these valuable pharmaceuticals in 
relatively large quantities by cell cultures are mentioned 
in Table 1. 

a. Taxol (plaxitaxol): The bark of the taxus tree 
(Taxus wallichiana) produces a complex 
diterpene alkaloid which is a potent anticancer 
agent because of its unique mode of action on 
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Table 1: Secondary Metabolites from Plant Cell, Tissue and Organs Cultures 

Plant Name Active Ingredient Culture Type References 

Adhatoda vasica Vasine Shoot culture [48] 

Adhatoda vasica Vasicine Callus culture [49] 

Adhatoda vasica Vasicine Callus culture [50] 

Agastache rugosa Rosmarinic acid Hairy root [51] 

Mentha sp. Rosmarinic acid Shoot bud [52] 

Coleus blumei Rosmarinic acid GM callus [53] 

Ocimum sanctum Rosmarinic acid Suspension [54] 

Nepeta cataria Rosmarinic acid Hairy root [55] 

Umbelliferone Shootlet [56] Ammi majus  

Triterpenoid Suspension [57] 

Pharbitis nil Umbelliferone Hairy root [58] 

Paeonia species Triterpenoid Callus culture [59] 

Clitoria ternatea Triterpenoid GM root  [60] 

Angelica gigas Deoursin Hairy root [61] 

Arachis hypogaea Resveratol Hairy root [62] 

Arachis hypogaea Resveratol Hairy root [63] 

Vitis vinifera Resveratol Callus  [64] 

Polygonum cuspidatum Resveratol Hairy root [65] 

Artemisia annua Artemisinin Callus [66] 

Artemisia Annua Artemisinin Callus  [67] 

Aspidosperma ramiflorum Ramiflorin Callus [68] 

Azadirachta indica Azadirachtin Suspension [69] 

Azadirachta indica Azadirachtin Anther culture [70] 

Azadirachta indica Azadirachtin Suspension [71] 

Azadirachta indica Azadirachtin Hairy root [72] 

Azadirachta indica Azadirachtin Hairy root [73] 

Brucea javanica Cathin Suspension [74] 

Bupleurum falcatum Saikosaponins Root [75] 

Bupleurum chinensis Saikosaponins Root  [76] 

Camellia chinensis Flavones Callus [77] 

Capsicum annum Capsiacin Callus [78] 

Capsicum chinense Capsiacin Suspension [79] 

Capsicum chinense Capsiacin Cotyledon  [80] 

Capsicum chinense Capsiacin Suspension  [81] 

Cassia acutifolia Anthraquinones Suspension [82] 

Aloe barbadensis Anthraquinone  Callus  [83] 

Morinda citrifola Anthraquinone  Suspension [84] 
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(Table 1). Continued. 

Plant Name Active Ingredient Culture Type References 

Polygonum multiflorum Anthraquinone  GM hairy roots [85] 

Morinda citrifolia Anthraquinone  Suspension [86] 

Indole alkaloids Suspension [86] 

Indole alkaloids Callus  [87] 

Vincristine Suspension [88] 

Vincristine Callus  [87] 

Vincristine Callus  [89] 

Vincristine Callus  [90] 

Catharathine Suspension [91] 

Catharanthus roseus 

Catharathine Callus  [87] 

Cayratia trifoliata Stilbenes Suspension [92] 

Hairy root [93] Centella asiatica Asiaticoside 

Callus [94] 

Corydalis ambigua Corydaline Embryo [95] 

Coscinium fenustratum Berberine Suspension [96] 

Drosera rotundifolia 7-Methyljuglone Shoot culture [97] 

Eleutherococcus senticosus Eleuthrosides Suspension [98] 

Eriobotrya japonica Triterpenes Callus [98] 

Fabiana imbricata Rutin Callus, suspenson [99] 

Fagopyrum esculentum  Rutin Hairy root [100] 

Fritillaria unibracteata Alkaloids Multiple shoot [101] 

Gentiana macrophylla Glucoside Hairy root [102] 

Gentianella austriaca Xanthone Multiple shoot [103] 

Glycyrrhiza glabra Glycyrrhizin Hairy root [104] 

Gymnema sylvestre Gymnemic acid Callus [105] 

Hemidesmus indicus Lupeol, Rutin Shoot culture [106] 

Hypericum perforatum Hypericin Multiple shoot [107] 

Mentha arvensis Terpenoid Shoot [108] 

Momordica charantia Flavonoid Callus [109] 

Taxus Taxol Elicitation [110] 

Taxus Taxol Nodule culture [110] 

Taxus Taxol Suspension [112] 

Papaver Morphine, codeine Callus culture [113] 

Papaver somniferum Morphine, codeine Hairy root culture [114] 

D. zingiberensis Diosgenin Elicitation [115] 

D. zingiberensis Diosgenin Elicitation [116] 
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the micro tubular cell system. The production of 
taxol by various Taxus species is one of the 
most extensively explored areas of plant cell 
cultures in recent years owing to the enormous 
commercial values of taxol, the scarcity of the 
taxus trees and its costly synthesis process 
[117]. The estimated need of taxol per year is 
250 kg of purified drug which requires 
approximately 750,000 trees. The ever 
increasing demand of Taxol in the treatment of 
cancer needs a large source of plants for 
extraction. Therefore, T. wallichiana is exposed 
to the risk of extinction [118]. To improve the 
productivity of taxol and related taxanes in cell 
cultures for commercial exploitation, efforts have 
been focused on assaying the biosynthetic 
activities of cultured cells. Approaches include 
optimizing cultural conditions, screening of high 
yielding cell lines, optimization of growth and 
production media, induction of secondary 
metabolite pathways by elicitors and precursors, 
using a two-phase culture system and 
immobilization techniques. For the first time, 
taxus cell cultures were used to produce taxol 
(paclitaxel) [119]. Paclitaxel was found to 
accumulate at high yields (1.5 mg/l) exclusively 
in the second phase of growth. A similar level of 
paclitaxel from Taxus brevifolia cell suspension 
cultures following 10 days in culture with 
optimized medium containing 6% fructose was 
established [120]. Addition of carbohydrate 
during the growth cycle increased the production 
rate of paclitaxel [121]. In addition to paclitaxel, 
several other toxoids have been identified in both 
cell and culture medium of taxus cultures [122]. 
In order to increase the toxoid production 
addition of phenylalanine to culture medium was 
found to assist in maximum taxol production by 
T. cuspidate [123]. The accumulation of 
paclitaxel and related taxanes in Taxus plants is 
thought to be a biological response to specific 
external stimuli and jasmonates have been 
reported to play an important role in signal 
transduction process which regulates defense 
genes in plants [124]. The influence of biotic and 
abiotic elicitors was also studied to improve the 
production and accumulation of taxol through 
tissue culture. The abiotic elicitors viz., vanadyl 
sulphate, silver nitrate, cobalt chloride, 
arachidonic acid, ammonium citrate and salicylic 
acid have been used to improve taxane 
production in T. baccata cell cultures. Biotic 

elicitor like Rhizopus stolonifer fungus (25 mg/L) 
used in combination with the abiotic elicitors 
methyl jasmonate (10 mg/L) and salicylic acid 
(100 mg/L) increased taxol production by 16-
folds upon addition on day 25–30 of culture 
medium [110]. Factors influencing stability and 
recovery of paclitaxel from suspension cultures 
and the media have been studied in detail and 
effects of rare earth elements and gas 
concentrations on taxol production have been 
reported [112]. 

b. Morphine and codeine: Opium poppy is the only 
plant known to produce the narcotic analgesics 
codeine and morphine, which accumulate at 
copious levels in specialized laticifers that 
accompany sieve elements of the phloem in all 
organs. The ability to synthesize a specialized 
metabolite, such as morphine, depends on the 
evolution of several biosynthetic enzymes via the 
recruitment of genes arising through duplication 
events in the genome [125]. Papaver bracteatum 
(Iranian poppy) is considered as an alternative to 
P. somniferum for the production of 
benzylisoquinoline alkaloids due to its high 
thebaine content. Thebaine is a precursor of 
codeine which is converted to codeine and 
simultaneously to morphine. Because of the low 
activity of enzymes involved in demethylation of 
codeine and morphine, the yields of codeine and 
morphine is low in Papaver bracteatum [126]. 
Latex from the opium poppy (P. somniferum) is a 
commercial source of the analgesics, morphine 
and codeine. Callus and suspension cultures of 
P. somniferum were investigated as an 
alternative means for production of these 
compounds. Production of morphine and 
codeine in morphologically undifferentiated 
culture has been reported [113]. Culture media 
without exogenous supplementation of 
hormones, showed to three times higher yield of 
codeine and morphine concentrations as 
compared to culture medium supplied with 
hormones. The conversion yield was 70.4% and 
88% of the codeine converted was excreted into 
the medium [127]. Hairy roots resemble normal 
roots in terms of differentiated morphology and 
biosynthetic machinery, producing similar 
secondary metabolites compared to wild-type 
roots. As a result, hairy roots have been a topic 
of intense research for the past three decades, 
fueling innumerable attempts to develop in vitro 
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hairy root cultures for a large number of plants 
for the commercial-scale production of 
secondary metabolites [128]. 

c. Ginsenosides: The root of Panax ginseng C.A. 
Mayer, so-called ginseng, has been widely used 
as a tonic and highly prized medicine since 
ancient times [129]. It is known for its numerous 
properties such as antioxidant, blood circulation 
promoter, anti-diabetic agent, pain relief 
treatment, anti-cancer drug and immune system 
stimulant. It is also been recognized as a 
miraculous promoter of health and longevity. The 
primary bioactive constituents of ginseng were 
identified as ginsenosides, a group of 
triterpenoid saponins. Among them, ginsenoside 
Rg1 is most important active molecule reported 
from Panax ginseng. Stirred tank fermentation 
process is considered as an important landmark 
in the commercialization of plant tissue and cell 
culture on a large scale. A. tumefaciens infected 
root cultures were found to be more effective as 
compared to normal root cultures for the 
production of ginsenosides [130]. Other types of 
tissue cultures, such as embryonic tissues and 
hairy roots transformed by Agrobacteria have 
been examined [131]. These developments 
indicate that ginseng cell culture process is still 
an attractive area for commercial development 
around the world and it possesses great 
potential for mass industrialization [132]. 
Concentration of plant growth regulators in the 
medium influences the cell growth and 
ginsenoside production in the suspension 
cultures [125]. Studies have shown that addition 
of methyl jasmonate or methyl dihydrojasmonate 
to suspension cultures increases the production 
of ginsenosides [134]. Jasmonic acid also 
improves the accumulation of ginsenosides in 
the root cultures of ginseng. 

d. L-DOPA: L-3,4-dihydroxyphenylalanine is an 
important intermediate of secondary metabolism 
in higher plants and precursor for alkaloids, 
betalain, and melanine isolated from Vicia faba, 
Mucuna pruriens, Baptisia tinctoria and Lupinus 
albus [129]. It is also precursor for 
catecholamines in animals and is being used as 
a potent drug for Parkinson’s disease, a 
progressive disabling disorder associated with a 
deficiency of dopamine in brain [135]. The 
widespread application of this therapy created a 
demand for large quantities of L-DOPA at an 

economical prices and leading to the introduction 
of cell cultures as an alternative means for 
enriched production. The highest concentration 
of DOPA was obtained from Mucuna hassjoo 
cells cultivated in MS medium fortified with 0.025 
mg/l 2,4-D and 10mg/l kinetin. The level of 
DOPA in the cells was about 80 mmol/g-fw [136]. 

e. Berberine: It is an isoquinoline alkaloid found in 
the roots of Coptis japonica and cortex of 
Phellondendron amurense. This antibacterial 
alkaloid has been identified from the cell cultures 
of Coptis japonica, Thalictrum spp. and Berberis 
spp [137]. The productivity of berberine was 
increased in cell cultures by optimizing the 
nutrients in the growth medium and 
concentration of phytohormones. Other methods 
for increasing yields include elicitation of cultures 
with a yeast polysaccharide elicitor [132].  

f. Diosgenin: It is a precursor for the chemical 
synthesis of steroidal drugs and is immensely 
important for pharmaceutical industries [138]. 
The perennial medicinal herb Dioscorea 
zingiberensis is a very important plant used for 
steroid drug manufacturing due to high levels of 
diosgenin in rhizome. Diosgenin mainly exists in 
plant cells in the form of the ligand of saponin, 
with its C3 and C26 linked to sugar chains via 
saponin bonds. Saponins exist in the cells which 
are wrapped tightly by large amounts of 
lignocellulose and starch [139]. Several attempts 
have been made for diosgenin production from 
cell cultures [132]. The search for high-producing 
cell lines coupled to recent developments in 
immobilized cultures and the use of extraction 
procedures, which convert furostanol saponins to 
spirostanes such as diosgenin, will be useful in 
increasing productivity in future [132]. Diarra et 
al. studied the effect of ethylene on diosgenin 
biosynthesis in in vitro cultures of D. 
zingiberensis [115]. The diosgenin biosynthesis 
was significantly promoted when samples were 
treated with ethylene at concentration E3 (104 
dilution of 40% ethephon), in contrast to control 
samples. Treatment with high concentrations of 
ethylene had inhibitory effect, whereas with low 
concentration of the gas elicitor brought about no 
detectable deleterious effect on growth rate and 
diosgenin content of the cultures. Effects of three 
polysaccharides namely exopolysaccharide 
(EPS), water-extracted mycelial polysaccharide 
(WPS) and sodium hydroxide-extracted mycelial 
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polysaccharide (SPS) with their corresponding 
oligosaccharides have been investigated on 
growth and diosgenin accumulation in cell and 
seedling cultures of D. zingiberensis [116].  

g. Capsaicin: An alkaloid, used mainly as a 
pungent food additive in formulated foods [140]. 
It is obtained from fruits of green pepper 
(Capsicum sp.). Capsaicin is also used in 
pharmaceutical preparations as a digestive 
stimulant and for rheumatic disorders [141]. 
Suspension cultures of C. frutescens produce 
low levels of capsaicin, but immobilizing the cells 
in reticulated polyurethane foam can increase 
production approximately 100-fold. Further 
improvements in productivity can be brought 
about by supplying precursors such as isocapric 
acid. A biotechnological process has been 
developed for the production of capsaicin from 
C. frutescens cells. Ravishankar and Rao have 
studied the effects of nutritional stress on 
capsaicin production in immobilized cell cultures 
of C. annum [142]. Biotransformation of 
externally fed protocatechuic aldehyde and 
caffeic acid to capsaicin in freely suspended 
cells and immobilized cells cultures of C. 
frutescenshas also been reported [143]. 
Manipulation of culture strategies were adopted 
to study the influence of nutrient stress, pH 
stress and precursor feeding on the biosynthesis 
of capsaicin in suspension and immobilized cell 
cultures of C. chinense [80]. Cells cultured in the 
absence of one of the four nutrients (ammonium 
and potassium nitrate for nitrate and potassium 
stress, potassium dihydrogen orthophosphate for 
phosphorus stress, and sucrose for sugar stress) 
influenced the accumulation of capsaicin. Among 
the stress factors studied, nitrate stress showed 
maximal capsaicin production on day 20 (505.9 ± 
2.8µg g−1 fw) in immobilized cell, whereas in 
suspension cultures the maximum accumulation 
(345.5 ± 2.9 µg.g−1 fw) was obtained on tenth 
day. Different pH affected capsaicin 
accumulation; enhanced capsaicin production 
(261.6 ± 3.4 µg.g−1 fw) was observed in 
suspension cultures at pH 6 on day 15, whereas 
in case of immobilized cultures the highest 
capsaicin content (433.3 ± 3.3 µg g−1 fw) was 
obtained at pH 5 on 10th day. Addition of 
capsaicin precursors and intermediates 
significantly enhanced the biosynthesis of 
capsaicin, incorporation of vanillin at 100 µM in 

both suspension and immobilized cell cultures 
resulted in maximum capsaicin content with 
499.1 ± 5.5 µg g−1 fw on day 20 and 1,315.3 ± 10 
µg g−1 fw on day 10, respectively. Among 
different culture strategies followed to enhance 
capsaicin biosynthesis in cell cultures of C. 
chinense, cells fed with vanillin resulted in the 
maximum capsaicin accumulation. The rate of 
capsaicin production was significantly higher in 
immobilized cells as compared to suspension 
cell cultures [80]. 

h. Camptothecin: It is an effective antitumor 
alkaloid isolated from Camptotheca acuminate 
[144]. 10-hydroxycamptothecin, a promising 
derivative of camptothecin is under clinical trials 
in US. Secondary metabolite accumulation and 
nitric oxide (NO) generation are two common 
responses of plant cells to fungal elicitors and 
NO has been reported to play important roles in 
elicitor-induced secondary metabolite production. 
However, the source of elicitor-triggered NO 
generation in plant cells remains largely 
unknown. PB90-induced NO generation is at 
least partially dependent on NR and NR-
mediated NO signaling is essential for fungal 
elicitor-induced camptothecin production of C. 
acuminata cells [145]. 

i. Vinblastine and Vincristine: The dimeric indole 
alkaloids vincristine and vinblastine are valuable 
drugs in cancer chemotherapy due to their 
potent antitumor activity against various 
leukemia and solid tumors. These compounds 
are extracted commercially from large quantities 
of Catharanthus roseus. Since the intact plant 
contains low concentrations (0.0005%), plant cell 
cultures have been employed as an alternative 
to produce large amounts of these alkaloids 
[146]. Vinblastine is composed of catharanthine 
and vindoline. Vindoline is more abundantly 
present in plants than catharanthine, it is less 
expensive [147]. A crude preparation of 70% 
ammonium sulphate precipitated protein form the 
cultured cells of C. roseus were used as an 
enzyme source. The reaction mixture contained 
catharanthine, vindoline, Tris buffer, pH 7.0, and 
the crude enzyme; the mixture was incubated at 
3000C and for 3 h. The products of the reaction 
were various dimeric alkaloids including 
vinamidine, 3(R)-hydroxyvinamidine, and 3,4-
anhydrovinblastine. Dimerization using ferric ion 
catalyst in the absence of enzyme resulted in 
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anhydrovinblastine and vinblastine in 52.8% and 
12.3% yield, respectively. The yield of vinblastine 
via chemical coupling was improved in the 
presence of ferric chloride, oxalate, maleate, and 
sodium borohydride [148]. Influence of various 
parameters like stress, addition of bioregulators, 
elicitors and synthetic precursors on indole 
alkaloids production were studied in detail by 
Zhao et al. [149, 150]. Various elicitors of 
hydroxylase, peroxidase, acetyltransferase and 
inhibitors of oxygenase were added to a C. 
roseus cell culture medium to investigate the 
regulatory effects on tabersonine, vindoline and 
vinblastine biosynthesis. Hydrogen peroxide was 
found to be the most effective agent for 
enhancing the biosynthesis of tabersonine [151]. 

j. Podophyllotoxin: It is an antitumor aryltetralin 
lignin found in Podophyllum peltatum and P. 
hexandrum. It also serves as a starting material 
for the preparation of its semisynthetic 
derivatives, etoposide and teniposide, widely 
used in anti-tumor therapy [152]. These plants, 
which grow very slowly, are collected from the 
wild and are thus increasingly rare. This limits 
the supply of podophyllotoxin and necessitates 
the search for alternative production methods 
[127]. In a study, 3mM conifery1-alcohol complex 
yielded 0.013% podophyllotoxin on a dry weight 
basis, but the cultures without the precursor 
produced only 0.0035% [153].  

GENETIC TRANSFORMATION TO MANIPULATE 
THE QUALITY AND PRODUCTION OF BIOACTIVE 
NATURAL COMPOUNDS 

Genetic transformation of medicinal plants has been 
exploited using two major tools: A. rhizogenes, to 
produce hairy roots, either with a gene of interest or not 
[154], and secondly, A. tumefaciens to obtain stable 
transformants. This latter could be used for two 
purposes. The first one is to solve cultivation problems 
that these plants might encounter when domesticated. 
This can include, e.g., herbicide tolerance [155] or 
approaches to engineer pathogen resistance [156]. 
Secondly, genetics transformation is needed for 
metabolic engineering, as will be discussed more in 
detail in the next paragraph. Although, numerous 
reports have been published about genetic engineering 
of medicinal plants, to our knowledge not a stable 
genetically modified medicinal plant are known for 
cultivation, although field trials have been done with a 
transgenic poppy to evaluate pollen flow [157]. 

Direct manipulation of DNA sequences to alter gene 
expression in medicinal plants is an area that is ready 
for expansion provided a trait can be related to one or a 
small number of genes. The primary target for trait 
manipulation in medicinal plants is to increase the 
content of active compounds. In Mentha spp. (mint), 
biosynthetic pathways have been engineered to modify 
essential oil production. A wild tomato species 
Solanum habrochaites contains a typical terpene 
pathway in its chloroplast which allows these plants to 
produce exceptionally high concentrations of 7-
epizingiberene, a specific sesquiterpene with toxic and 
repellent properties against herbivores. This pathway is 
absent in cultivated tomatoes. The pathway of 
cultivated tomatoes was modified to produce 7-
epizingiberene by using both conventional breeding as 
well as metabolic engineering. These modified tomato 
plants produce higher levels of 7-epizingiberene as well 
as exhibited enhanced tolerance against several insect 
pests. 

RNA INTERFERENCE (RNAi) TECHNOLOGY TO 
ENHANCE THE PRODUCTION OF BIOACTIVE 
NATURAL COMPOUNDS 

RNA interference is the powerful tool of gene 
knockdown for enhancing secondary metabolite 
production from medicinal plants [158]. By degradation 
of only the mRNA associated to dsRNA also known as 
co-suppression or posttranscriptional gene silencing in 
plants [159]. This technology has been used to block 
the activity of codeinone reductase involved in the 
biosynthesis of morphinan alkaloid [160]. The 
knockdown activity of codeinone reductase through 
DNA-directed RNAi in transgenic opium poppy 
(Papaver somniferum) resulted in accumulation of 
precursor (s)-retculine at the expense of morphine, 
codeine, oripavine and thebaine [161] and also used to 
block the activity of berberine bridge enzyme (BBE) in 
California poppy [162]. The RNAi technology has 
become an important tool for accelerating the breeding 
of medicinal plants, where as conventional mutation 
breeding approach failed [161]. The RNA mediated 
suppression of tryptamine biosynthesis in C. roseus 
during hairy root culture eliminates production of 
monoterpene indole alkaloids, tryptamine and 
secologanin [163]. RNAi mediated gene-silencing 
challenges for bioactive products in medicinal plants 
are presented in Table 2. 

DNA MICROARRAY FOR EXPRESSION AND 
PROFILING OF BIOACTIVE NATURAL PRODUCTS 

DNA microarray was developed in response to  
the need for a high-throughput, efficient and 
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Table 2: RNAi Mediated Gene-Silencing Challenges for Bioactive Products in Medicinal Plants 

Host species Enzyme (gene) Products References 

Mentha x Piperita Cytochrome P450 (+) menithofuran 
synthase 

Menthofuran [164] 

Eschscholzia californica Berberine bridge enzyme (BBE) (s)-reticuline [165] 

Papaver somniferum Codeinone reductase (COR) Codeine and morphine [161] 

Mentha x Piperita Limonene-3-hydroxylase gene Limonene [166] 

Papaver somniferum Berberine bridge enzyme (BBE) and N 
methylcoclaurine 3’-hydroxylase 

(CYP80B1) 

Morphine, codeine, sanguinarine [167] 

Solanum lycopersicum De-etiolated 1 DET1 Carotenoid and flavonoid contents 
of fruits 

[168] 

Petunia hybrida Benzoic acid/salicylic acid carboxyl 
Methyltransferase phBSMT1 

Methylbenzoate [169] 

Petunia hybrida R2R3 MYB-type transcription factor Fragrance [170] 

Petunia hybrida Benzoyl-CoA:benzyl alcohol 2-
phenylethanol benzoyltransferase 

(BPBT) 

Benzylaldehyde [171] 

Solanum lycopersicum Cinnamoyl-CoA Reductase Phenolics [172] 

Coplis japonica Norcoclaurine 6-O-methyltransferase Benzylisoquinoline alkaloid [173] 

Petunia hybrida Coniferyl alcohol acyltransferase 
(phCFAT) 

Coniferyl aldehyde and homovanilic 
acid 

[174] 

Linum usitatissimum Cinnamyl alcohol dehydogenase Liginin reduction [175] 

Rosa hybrida Endogenous dihydroflavonol 4-
resuctse (DFR) and viola falvonoid 

3’5’-hydoxy;ase 

Delhinidin [176] 

Commiphora mukul VEGF-R2 protein z-Guggualsterone [177] 

Catharanthus roseus Tryptophan Decarboxylase Tryptamine [163] 

Salvia miltiorrhiza Phenylalanine ammonia-lyase Rosmarinic acid [178] 
 

Fragaria ananassa dihydroflavonol 4-reductase leucoanthocyanidin [179] 

Papaver bracteatum 
Lindl. 

Codeinone reductase Morphine [180] 

Nicotiana benthamiana 5-Epi-aristolochene synthase (EAS) 
and 

squalene synthase 

Valencene [181] 

 

comprehensive strategy that can simultaneously 
measure all the genes or a large defined subset 
encoded by a genome [182]. DNA profiling techniques 
like DNA microarrays serve as suitable high throughput 
tools for the simultaneous analysis of multiple genes 
and analysis of gene expression that becomes 
necessary for providing clues about regulatory 
mechanism, biochemical pathways and broader cellular 

functions [183]. DNA microarray is mostly applied in 
pharmacogenomics to discover new analytical and 
predictive signs and biomarkers of therapeutic reaction, 
elucidation of molecular mechanism of action of an 
herb, its formulations or its phytochemical composition 
and herbal drug development. In pharmacogenomics, 
side-effects of herbs are studied to confer drug 
sensitivity or resistance of drugs. High-density DNA 
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microarray has been used for the multiple gene 
expression effects exhibited by Ginkgo biloba leaf 
extract EGb 761 [184] which has notable 
neuromodulatory effects in vivo. In Centella asiatica, 
different genes have been identified and isolated to 
understand the bioactivity of Centella with clinical 
effectiveness at molecular level. Coptidis rhizoma is a 
medicinal herb has antiproliferative activity of berberine 
alkaloid and causes human pancreatic cancer cell lines 
[185]. The expression effects of antiproliferative active 
genes in berberine were showed by DNA microarray. 
Several Fritillaria species contain D2 and D3 regions in 
26S rDNA gene that has been printed on the poly-
lysine coated slides using oligonucleotide polymorphic 
probes to prepare a DNA chip which is used for rapid 
and efficient genotyping and plants species 
authentication [186-187]. DNA microarray provides 
opportunity for studying herb-drug interactions and its 
mechanisms. 

FUNCTIONAL GENOMICS APPROACH FOR 
BIOACTIVE NATURAL PRODUCTS 

In principle, each natural product is formed by 
chemical transformations of small and larger molecules 
through a number of enzymatic reactions. To 
understand how a natural product is synthesized, the 
enzymes involved in these reactions need to be 
identified and the complex network of regulations and 
interactions is to be studied. This identification can be 
done on a gene and genome level, as discussed 
below. This might, however, have the advantage that it 
does not always give information on the nature of the 
encoded enzyme, that is, which reaction it is 
biochemically performing. Nevertheless, based on 
homology comparisons, often a function can be 
attributed to a newly discovered gene. Recently there is 
shift in gene studies, going from single-gene studies 
towards pathways and to whole-genome studies. New 
and powerful tools in functional genomics can thus be 
used in combination with metabolomics to elucidate 
biosynthetic pathways of natural products [146]. The 
basic question in this research field is to identify all the 
players involved in the biosynthesis of a natural 
product, both on the enzyme level and on the 
regulation level, so that the road is paved for metabolic 
engineering.  

The general concept behind metabolic engineering 
is that certain pathways within a biosynthesis network 
could be stimulated or favoured over others, by over-
expressing a crucial, for example rate-limiting, enzyme. 
In simple cases this approach has led to good results. 

Upon over-expression of a squalene synthase gene a 
higher biosynthesis of triterpenes and phytosterols in 
Panax ginseng was found [146]. In food crops 
metabolic engineering has been done; one recent 
example includes the increase in the flavonoids and 
carotene content in tomato, obtained through RNAi-
mediated suppression of the DET1 gene [168]. Over-
expression of a transferase in tomato, involved in the 
synthesis of chlorogenic acid, has shown to give rise to 
accumulation of an antioxidant that protects against 
age-related degenerative diseases when supplied to 
animal diet [189]. Alternatively, silencing a gene giving 
rise to a specific enzyme in a side branch of a certain 
pathway, can also lead to accumulation of a certain 
metabolite [161]. Silencing the pathway leading to 
morphine in P. somniferum, with the positive side effect 
that reticuline and its methylated forms accumulated. 
Another nice example is the engineering of the 
monoterpene biosynthesis in mint [164, 167]. Metabolic 
engineering can also be used to block the synthesis of 
unwanted metabolites. The manipulation of the caffeine 
content in coffee plants is such an example [190]. With 
this approach toxin production in medicinal plants could 
also be regulated.  

cDNA-amplified fragment length polymorphism 
(cDNA-AFLP), has been the functional-genomics tool 
of choice to study gene expression profiles related to 
the biosynthesis of secondary metabolites. cDNA-AFLP 
has the advantage that it is an open tool, i.e., that no 
prior genomic data are needed [191, 192]. Indeed, for 
most medicinal plants limited or even no information is 
available on genomic sequences, nor do cDNA libraries 
exist that could be used as a template for micro-arrays. 
The principle of cDNA-AFLP is as follows: mRNA is 
extracted from the tissue of choice; the mRNA is 
converted to cDNA and digested with two restriction 
enzymes. Adapters are ligated after which this pool of 
fragments is used for a selective round of amplification. 
A high-resolution genome-wide profiling of transcripts 
can be visualized on acrylamide gels, which can then 
be analyzed using different software. Thus far, 
jasmonate-induced changes on the transcript and 
alkaloid profiles of tobacco BY-2 and Catharanthus 
roseus cell cultures have been monitored [193]. An 
inventory of hundreds of genes, potentially involved not 
only in alkaloid biosynthesis but also possibly in plant 
secondary metabolism in general, has been built. 
Thereafter, large-scale functional analysis of genes 
from this inventory, involved in plant secondary 
metabolism is performed. This includes the isolation of 
full-length open reading frames (FL-ORFs) and 
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introduction and functional analysis of them in 
transgenic plant cells. Tools to improve and speed-up 
functional analysis of candidate genes in transgenic 
plant cells, such as medium-throughput strategies for 
isolation of FLORFs, super-transformation of plant cells 
with reporter gene constructs, transient protoplast 
expression assays and micro-array facilities, have been 
designed and their use validated. 

METABOLOMICS APPROACHES TO CONTROL 
THE PRODUCTION OF BIOACTIVE NATURAL 
COMPOUNDS 

The phenotype of an organism is the result of the 
combination of multiple intertwined, dynamic and 
linear/non-linear interactions among different elements 
(DNA, RNA, proteins and metabolites) with the 
environment (developmental stages and/or adverse 
conditions such as salinity, temperature and water or 
nutrient availability). For this reason, most genome-
scale studies require an accurate phenotype 
description besides the analysis of RNA transcripts, 
proteins and metabolites. Nevertheless, the sum of 
these three aspects does not provide a clear picture of 
the actual phenotype of a given organism but a 
sequential characterization of the elements one by one. 
This approach lacks the emerging properties that 
characterize biological organisms; therefore there is an 
increasing need for the integration of all these aspects. 
This is of especial relevance when the objective is to 
understand how plants respond to environmental cues. 
In this sense, whereas gene and protein expression 
represent the potential of plants to respond to adverse 
conditions, metabolites constitute the true integration of 
these two aspects plus the influence of the 
environment and/or other organisms. However, we first 
need to understand what information can be extracted 
from the application of the different profiling (omics) 
methodologies and how can metabolomics help to 
better comprehend the nature of phenotypes. The term 
metabolomics has been defined as the identification 
and quantitation of all low molecular weight metabolites 
in a given organism, at a given developmental stage 
and in a given organ, tissue or cell type. This is a 
challenging task due to the wide array of molecules 
with different structures and chemical properties. For 
instance, it is estimated that a single accession of 
Arabidopsis contains more than 5000 metabolites, 
most of them yet uncharacterized. 

Metabolic engineering can also be used to block the 
synthesis of unwanted metabolites. With this approach 
toxin production in medicinal plants could also be 

regulated. Extracts of Ginkgo biloba, contain a toxic 
component, ginkgolic acid. For the final commercial 
product there usually is a norm for these toxic 
compounds, which are (partially) removed during the 
extraction, but if varieties could be engineered with low 
contents of these toxins, this would reduce production 
costs. Current developments in tissue culture 
technology indicate that transcription factors are 
efficient new molecular tools for plant metabolic 
engineering to increase the production of valuable 
compounds [194]. In vitro cell culture offers an intrinsic 
advantage for foreign protein synthesis in specific 
conditions since they can be designed to produce 
therapeutic proteins, including monoclonal antibodies, 
antigenic proteins that act as immunogens, human 
serum albumin, interferon, immuno-contraceptive 
protein, ribosome unactivator trichosantin, 
antihypertensive drug angiotensin, leu-enkephalin 
neuropeptide, and human hemoglobin [195]. The 
appeal of using natural products for medicinal purposes 
is increasing and metabolic engineering can alter the 
production of pharmaceuticals and help to design new 
therapies. At present, researchers aim to produce 
substances with antitumor, antiviral, hypoglycemic, 
anti-inflammatory, antiparasitic, antimicrobial, 
tranquilizer and immunomodulating activities through 
tissue culture technology. 

Different genes responsible for scopolamine, 
nicotine and berberine biosynthesis have been cloned, 
making the metabolic engineering of these alkaloids 
feasible. Expression of two branching-point enzymes 
was engineered like putrescine N-methyltransferase 
(PMT) in transgenic plants of Atropa belladonna and 
Nicotiana sylvestris and (S)-scoulerine 9-O-
methyltransferase (SMT) in cultured cells of C. japonica 
and Eschscholzia californica. Overexpression of PMT 
increased the nicotine content in N. sylvestris, whereas 
suppression of endogenous PMT activity severely 
decreased the nicotine content and induced abnormal 
morphologies. Ectopic expression of SMT caused the 
accumulation of benzylisoquinoline alkaloids in E. 
californica [196]. 

CONCLUSION 

Natural products have inspired many developments 
in drug discovery. There are many historical examples 
in which the natural product has not just been the 
medicinal product but has also helped to reveal a novel 
aspect of drug isolation. Because it is extremely time-
consuming and expensive to create extensive 
collections of isolated and structurally characterized 
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natural products, it is still attractive to screen mixtures 
of compounds to isolate and identify the active lead, 
from the plant extracts and microbes. Plants are the 
best combinatorial chemists still providing hidden 
secrets of their healing properties to relieve humanity 
from fatal diseases. The existing knowledge of ethnic 
medicines has developed several leads in healthcare 
and drug discovery and also as a template for 
discovery. With the rapidity of modern industrialization, 
a lot of ethnic information used in healthcare is in 
danger of being lost. Hence, this is the need of the hour 
to develop and document traditional knowledge and 
medicine, which will further assist in developing 
suitable drugs for various ailments in the future. For 
drug discovery from natural products, innovative 
approaches include, use of genomics, techniques to 
mine previously untouched environments and 
screening technologies which to a large extent, need to 
be explored through national and international 
collaboration and cooperation. In vitro propagation of 
medicinal plants with enriched bioactive principles and 
cell culture methodologies for selective metabolite 
production has been found to be highly useful for 
commercial production of medicinally important 
compounds. The increased use of plant cell culture 
systems in recent years is perhaps due to an improved 
understanding of the secondary metabolite pathway in 
economically important plants. Advances in plant cell 
cultures could provide new means for the cost-
effective, commercial production of even rare or exotic 
plants, their cells, and the chemicals that they will 
produce. Knowledge of the biosynthetic pathways of 
desired compounds in plants as well as of cultures is 
still rudimentary and strategies are consequently 
needed to develop information based on at cellular and 
molecular level. 
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