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Asymptotic behaviour of the inductance
coefficient for thin conductors

YOUCEF AMIRAT, RACHID TOUZANI
Laboratoire de Mathématiques Appliquées, UMR CNRS 6620
Université Blaise Pascal (Clermont—Ferrand)

63177 Aubiére cedex, France

Abstract

We study the asymptotic behaviour of the inductance coeflicient for
a thin toroidal inductor whose thickness depends on a small parameter
€ > 0. We give an explicit form of the singular part of the corresponding
potential u® which allows to construct the limit potential u (as € — 0)
and an approximation of the inductance coefficient L®. We establish some
estimates of the deviation u® —u and of the error of approximation of the
inductance. We show that L° behaves asymptotically as Ine, when € — 0.

Résumé

On étudie le comportement asymptotique du coefficient d’inductance pour
un inducteur toroidal filiforme dont ’épaisseur dépend d’un petit paramet-
re € > 0. On donne une forme explicite de la partie singuliere du potentiel
associé u® puis on construit le potentiel limite u (quand € — 0) et on
donne une approximation du coefficient d’inductance L°. On établit des
estimations de ’écart u® —u et de 'erreur d’approximation de I'inductance.
On montre que L® se comporte asymptotiquement comme Ine au voisi-
nage de € = 0.

KEY WORDS : Asymptotic behaviour, self inductance, eddy currents, thin domain
AMS SUBJECT CLASSIFICATION : 35B40, 35Q60



1 Introduction

Electrotechnical devices often involve thick conductors in which a magnetic field
can be induced, and thin wires or coils, as inductors, connected to a power source
generator. The problem is then to derive mathematical models which take into
account the simultaneous presence of thick conductors and thin inductors. For a
two—dimensional configuration where the magnetic field has only one nonvanish-
ing component, it was shown that the eddy current equation has the Kirchhoff
circuit equation as a limit problem, as the thickness of the inductor tends to
Z€ero, see [E] For the three-dimensional case, eddy current models require the
use of a relevant quantity that is the self inductance of the inductor, see [fl], [B].
This number has to be evaluated a priori as a part of problem data. It is the
purpose of the present paper to study the asymptotic behaviour of this number
when the thickness of the inductor goes to zero.

Let us consider a toroidal domain of R3, denoted by ., whose thickness depends
on a small parameter ¢ > 0. The geometry of €2, will be described in the next
section. We denote by I'. the boundary of €., by n. the outward unit normal
to I, and by Q. the complementary of its closure, that is Q. = R3\ Q.. We
denote by ¥ a cut in the domain €., that is, ¥ is a smooth orientable surface
such that, for any € > 0, QL \ ¥ is simply connected.

Let now h® denote the time-harmonic and complex valued magnetic field. Ne-
glecting the displacement currents, it follows from Maxwell’s equations that

curlh® =0, divh® =0 in QL.
Then, by a result in [{f], p. 265, h® may be written in the form
hig, = Vi© + 17V, (1.1)
where I° is a complex number, p° € W1(Q2L) and satisfies
Ap® =0 in Q,

and uf is solution of :

Auf =0 in QL\ 3,

?,;j; =0 onl,,

R (1.2
2.

Here W1(€L) is the Sobolev space
WAL = (s pu € L(9), Vo e LX)},

equipped with the norm

N

lellwicary = (o013 + V0320 ) (1.3)



where LP(€.) denotes the space LP(2L)? and p is the weight function p(x) =
(1+ ||?)7. Let us note here, see [i], pp. 649-651, that

|’U|W1(Q’E) = </§ |V’U|2d$>
4

is a norm on W'(£2.), equivalent to ([.3). In ([.), n is the unit normal on X,

3
u

) across X.
n

1
2

a £
and [uf]y (resp. {8&} ) denotes the jump of u® (resp.
nls
In (EI), the number I° can be interpreted as the total current flowing in the
inductor, see [g].
The inductance coefficient is then defined by the expression

LE:/ |Vu|? da. (1.4)
QA

Our goal is to study the asymptotic behaviour of u and L* as € goes to zero. We
first give an explicit form of the singular part of the potential u® which allows
to construct the limit potential u (as e — 0) and an approximation of the
inductance L. We then prove that the deviation |[u® — ul|y1(q,) and the error

of approximation of L* is at order O(E% ). Finally we show that the inductance
coefficient L° behaves asymptotically as Ine, when € — 0, and we thus recover
the result stated (without proof) in [, p. 137.

The remaining of this paper is organized as follows. In Section 2 we precise the
geometry of the inductor by considering that this one is obtained by generating
a toroidal domain around a closed curve, the internal radius of the torus being
proportional to a small positive number €. Section 3 states the main result and
Section 4 is devoted to the proof.

2 Geometry of the domain

We consider a toroidal domain, with a small cross section. This domain may
be defined as a tubular neighborhood of a closed curve. Let v denote a closed
Jordan arc of class C? in R3, with a parametric representation defined by a
function g : [0, 1] — R? satisfying

g9(0)=g(1), g'(0) =g'(1), 1g'(s)| = Co > 0. (2.1)

For each s € (0,1] we denote by (¢(s),v(s),b(s)) the Serret—Frénet coordinates
at the point g(s), i.e., t(s),v(s),b(s) are respectively the unit tangent vector
to 7, the principal normal and the binormal, given by
! t/
t:g—/, V=17, b=t xv.
lg'| ']
We have the following well-known Serret—Frénet formulae :

t =k, v = —kt+71b, b = —71U,



where £ and 7 denote respectively the curvature and the torsion of the arc 7.
Let Q = (0,1)? x (0,27) and let § denote a positive number to be chosen in a
convenient way. We define, for any ¢, 0 < € < 4, the mapping F. : Q@ — R3 by

Fc(s,6,0) = g(s) +re(§)(cos O v(s) + sin 0 b(s)),
where r.(§) = (6 — €)€ + . We have

F.
88_ =g +re(cosOv +sinfb’)

S

= (|g'| — rercosO)t + rem(cosb —sinfv),

aFEf(a )(cos@v +sinfb)

o g)(cosfv +sind b),
OF. :

90 =7r.(—sinfv + cosdb).

The jacobian of F'. is therefore given by
JE(Sa 57 9) = (6 - E)GE(Sa 57 9)7”5(6),

where
a(s,&,0) = |g'(s)| — re(£)r(s) cos 6.
According to (@), if 4 is chosen such that
()l <lg'(s)l,  0<s<1,

then
0<C < a. < Cg, (2.2)

and the mapping F. is a C'-diffeomorphism from Q into A = FE(SA))
Here and in the sequel, the quantities C,Cy,Cs,... denote generic positive
numbers that do not depend on .

FIGURE 1 — A sketch of the inductor geometry
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We now set, for any 0 < ¢ < 4,
Qs = A} = Fo(Q), Q) =R3\ 0y, QL = Int(Q URY), Q. =R3\ Q.
For technical reasons, we choose in the sequel 0 < ¢ < %.

Given a function v on A%, we define the function ¥ on Q by v =vo F.. If
ve LP(AY), 1 < p < oo, then ¥ € LP(Q) and we have

/ vdm:/Aﬁ(éfs)agrgdﬁ.
AS ¢

If v € WP(A?), 1 < p < oo, then © € WP(Q)) and we have

o =~ O0F. — .
5 Vo - 95 Vo (agt+ reTcosfb— r.rsinfv), (2.3)
G OF. .
g—EZVv-aag = (0 —e)Vv - (cosfv +sinfb), (2.4)
ov =~ OF. — .
%—Vv- 50 =r.Vuv-(—sinfv + cosb). (2.5)
From (R.4) and (R.5) we deduce
—~ sinf 0v  cosf 0v
V’U~b—5_56—€+T%, (26)
—~ cosf Ov  sinf OV
V’l}'ljfé_ga—é_*?%, (27)
and then, with (2.3) we get
— 1 /(o0 ov
Therefore, for u and v in H'(A?),
re Ou Ov rea. Ou O0v
Nvdx = (6 — - —
/Agvuw vl 5)/52(% Ds Ds (5o O O€
+ Qe + TQTE a_aa_ﬁ
Te a. ) 06 00
reT (OuOv Ouov N
— o (g@ + @g) ) dz. (2.9)

We also define the set I = (0,1) x (0,27) and the mapping G : [ — R3 by
G.(s,0) = g(s) +e(cosOv(s) +sind b(s)).

The boundary of € is then represented by I's = Gg(f). We have

866‘5 = (|g'| —ercosO)t + eT(cos§ b —sinfv),
s

0G. :

50 =e(—sinfv + cosdb).



If w € L2(T.), we define @ € L2(T') by @ = w o G, and we have
/ wdo = /A@5(|g'| —ekcosh)do. (2.10)
r. r

Clearly, Q. and its complementary €. are connected domains but they are not
simply connected. To define a cut in 2, we denote by X the set Fio((0,1)2x{0})
and 0% = Fo((0,1)x {1} x{0}). Let ¥’ denote a smooth simple surface that
has 9% as a boundary and such that the surface ¥ = ¥’ U X is oriented and
of class C! (cf. [{]). We denote by ST (resp. ¥7) the oriented surface with
positive (resp. negative) orientation, and by n the unit normal on ¥ directed
from Xt to 7. If w € W1(R3\ ¥), we denote by [w]s the jump of w across X
through n, i.e.
[w]z = ’LU|E+ — w‘zf.

3 Formulation of the problem and statement of
the result

We consider the boundary value problem

Au® =0 in QL \ X,
Ou =0 on I';,
on. (3.1)
[uls =1, '
[au ] o,

on |y

where n. denotes the unit normal on I'. pointing outward Q. and n is the unit
normal on ¥ oriented from X1 toward ¥ ~. The inductance coefficient is defined
by

Lf = / |Vuf|? de. (3.2)
QNS
We want to describe the asymptotic behaviour of u* and L® as ¢ — 0.

We first exhibit a function that has the same singularity as might have the
solution of Problem (B.1]) (as ¢ — 0). Let us define

0 ~
6(57559> = % @(5)5 (55579) € Qv

where ¢ € C%(R) and such that

P =1for0<¢<

] W

(€)= 0 for € >

N~

We then define v : R3 — R by :

O(Fyt(x)) if e Qs,
v(x) = 0 : ,
0 if x € Qf.



Let us also define

~ 1 ksin® T20&ksing O [T .
0) = — _ | =
1(5,6,9) 2mag < )3 a? Os <a0>) 4
0 0 ~
2 _ / -~ 1 9 Q
+27ra052§( ao |g|)90+2ﬂ_62905 (5557 )G )
f F;l(x if x € Qs,
0 if x € Qf,
() = { 7€) if £ € Qs, with (5,£,0) = Fy ' (),
xr) =
i 0 if @ € Q.
We have the following result.
Proposition 3.1. The function v is solution of
Av=f in R3\ 3,
[U]E =¥, (33)
)
—| =0.
on|s
Moreover, it satisfies
v _ 0 onTl (3.4)
One & '

Proof. The first equation in (B.3) follows readily from definitions of f and v. Tt
remains to check the boundary conditions. On 3, we have obviously

v
5 = | — = 0
[U]EU [an]%
On Xy, we have
Vs =0 Yy =0,

whence [v]s; = . We also have, according to (R.§), (-7),

—~ T 1 1

. =——0t+ =7 —— b for 6 =2
VU‘ZO 27Ta0(p + 1) i 2mH€ v o i
— T 1

o =——pt+——0b for 6 = 0,
VU‘ZO 27ra0('0 * 2md€ 7 o

with 3 = (0,1)2. The normal to X is defined by
1

= _ e s |
n ((|g’| — 0¢K)2 + 52527_2)% ((lg'l ¢k) ért)
Therefore
‘9_/“\ _ % (|g/| — 5¢k . 5572)
Onlso  2r((|g| — 0€r)2 +026272)3 \ 06 o )



and then 5
3],
Yo

on
We have, by (R-6)-R-9).
— 1 /00 ov cosf 0v  sinf v
= (= =) ¢ - _ -
VU= (as Tae) +( AT 39) v
(sin@&_ﬁ n cos@@_@) b
o 0¢ 8¢ 00/
The normal to T'; is parametrically represented by —(cos@v + sinfb). Then,
since ¢'(5) = 0,
v 10v, e 0 €
=22 (5.2.0)=——-0(=)=0.
One |r. 50e 50 = 352 (5) =0
O

We conclude that v is solution of Problem (B.3).

Lemma 3.1. For any 1 < p < 2 we have
feLP(R?), ve LR} NWHP(R?\ X).

Proof. Clearly v € L>®(R?). Let us calculate the LP-norm of f. Using the

mapping F ! we have

”f”zzp(ma\z) = Hf”ip(gé)
1 / 1 nsin97725§nsin972 T -
(27 Jo lao 6¢ a? 9s \ao ) ) 7
0
(200 —19') &'+ 5 &

p
62 ag € dz.

L0
an f 02
Owing to (R.) and to the fact that @ is of class C2, we deduce that the above
integral is finite provided that 1 < p < 2.
Using (R.6)-(£.9), we get
02 2 1 AP
@7+ (matig)?

52
”VU”};_,p(]Rz\g) = W/ﬁaof (5_2
With the same argument as for f, we deduce that the above integral is finite iff
O

P
2

dz.

1<p<2.
Let us now set w® = u¢ — v. We have by subtracting (B.3) from (B.1)),
—Aw=f in QL\ X,
1>
w =0 onl,,
one (3.5)
[wé]z =1- P -
a &€
{ 2 } = 0.
on |




We note here that Problem (B.§) differs from (B.I]) by the value of the jump of
the solution across ¥ and by the presence of a right-hand side f. However, we
notice that (1 — ¢) vanishes in a neighborhood of 9% and then, for Problem
(E), the jump of w® vanishes in a neighborhood of 0X.
Now, to study the asymptotic behaviour of w® and L® as € — 0 we consider the
following decomposition. Let w; denote the solution of

Aw; =0 in R®\ %,

()]s =1— ¢,

2] _, 36
on |5

wi(z) = O(|=| ™) || — oo.

Using [@], p. 654, and the fact that (1 — ¢) vanishes in a neighborhood of 0%,
we see that Problem (B.6) has a unique solution in W'(R?\ ) given by

_ 1 n(y) (z—y) 3
wy(x) = e /2(1 - @(y))w do(y), reR”\ X (3.7)

Then we write w® = w; + w5, where the function wj is solution of the exterior
Neumann problem :

—Aw; = f in Q,
8w§ a’u}l

= - Fev .
o . on (3.8)
wi(x) = O(|lz| ™) || — oc.

We have the following result.
Lemma 3.2. Problem (B.§) admits a unique solution w§ € W*(QL).
Proof. Differentiating (B.7), we obtain for z € I'. :
own 1 ne(x) - n(y)
@) = 3= [0- )T doy)

on. " 4nm |

3 (ne(z) - (z —y)) (n(y) - (z —y))
_E 2(1_()0(:'/)) |a37y|5

do(y).
Owing to the definition of ¢, the integrals over X reduce to those over ¥ where
- 1
Y=®.((0,1) x (5, 1))ux.

So, for & € T and y € f], e —y| > % since ¢ is chosen not greater than g.
Therefore

<, (3.9)
Le=(T:)

awl
on,

and, since fio, € L*(€2.), then Problem (B-9) is a classical exterior Neumann
problem which admits a unique solution wj € W'(QL), see [{], p. 343. O



Let finally wy denote the unique solution in W1(R3) of

—Aws = f in R3,
. (3.10)
wa(®) = O(|z|™), 2| — oo.
As it is classical (see [[ for instance) the function ws is given by
1
wo () = 1Y) dy, x € R3.

T 4r R3 |T — Y

Summarizing the decomposition process of the solution to Problem (@), we
have
u® =v+ w +wj in QL\ X,

where v, w; and w are solutions of (B.3), (B.€) and (B.§) respectively.
We now state our main result.

Theorem 3.1. Let u® be the solution of Problem (@) and let L® be the
inductance coefficient defined by (B.2). Let u be the function defined in R3 \ X

by u = v +w; + wa, where v, wy and ws are solutions of (B.3), (B.§) and (B.10)
respectively. Then for any n > 0 :

lu — u[lw () = O(877), (3.11)

14
Lc = 727 1n€+L’f/ flwy + we) dx
™ R3

where £ is the length of the curve vy and

0, 5 1 §%¢7? b2
r_ by, 0 L 20 ~\2 ~2\ - L
L = 7Tln2—i- /<a0§9 @)+ ” @)dm—i—fv/; 27r§d€'

2 ~
47 Q

The next section is devoted to the proof of this result.

4 Proof of Theorem 3.1

Let us first give estimates of the trace on I'. for functions of W1(QL) or W1P(QL),
3

5 <p<2

2

Lemma 4.1. There is a constant C, independent of &, such that :
[l < Ce? |ne|? [Y]lwrayy  for all v € WH(QL), (4.1)
1 a_2
Il e < € (e 1lwisn + 375 196l nnag) )

for all 1 € W'?(Q.) with compact support, g <p<2. (4.2

10



Proof. Let ¢ € Cl(ﬁle) with compact support and let 1; : Q0 — R defined by
V(@) =(F.(2), @l
Let us first prove ([..1). We have

PN
0.0.0) =36 1.0) - [ Fsconds  (soel
0
Consequently,
1 a,lz)\ 2
|’¢)(55079)|2 < 2|1/}(57 159)|2 +2 ( 8_6(8,579) df) ) (43)
0
and, using the Cauchy—Schwarz inequality and @) :
~ ~ | 1 o |2
2 2 Y
Fs.0.0P <2000 10P +2 ([ ) ( | aeref e e
~ 19 L o |2
< 2|Y(s,1,0)|* +2C4 (/ —d§) / aere| == | d¢
o Te 0 o3
~ 1 o |2
< 20i(s 1O + o] [ aure| e[ ae, (4.4)
0 0¢
for (s,0) € T. Since by (B.10),
[y = [ c(s,0)(5,0.0) dss (15)
91 qe0) =5 [ as(s 010 1,0) dsds (46)

with
as(s,0) = a:(s,0,0), «s(s,0) =as(s,1,0).

We deduce from (Q), after multiplication by €a. and integration in s, 0,

91 e0r,) < 2 [ addls.1.6) dsds + Caclncl / acacre[ | da
r

Using (R.2)) and the estimates 0 < C} < ae, as < Cf, we get

~ 012
HwHQL?(FE) §C3€(S[CY5|’L/J(S,1,9)|2 clscl9—|—6'4(€|ln(€|/Aa,gﬁE Z—ZJ‘ dz.
i o

But @) yields
ety =0-9 [ (25 5) + 525 () + £ ()

11




Therefore
1672,y < CaelldlTary) + Csel el (VT2 (ns)-

Using the trace inequality and the fact that the support of ¥ is compact, we

obtain
19l Z2(r.) < (Cs Coe + Csellnel) [V [|72 ()
< Crellne| ||V¢||%/V1(Q;)-

By density, (EI) follows.
Let us now prove ([L.2). We have

1
- 2 _ 7 2 Q N2
960,007 = 190100 = [ )7 e
~ 1oy
— 2 _
= s 10 —2 [ 5 e

Multiplying by € and integrating in s, 6, we get

1 27 N 1 27 N ’\8’1//;
s/ / |1/;(s,0,9)|2d9ds:5/ / |1/;(s,1,9)|2 d9d5725/1/;— dz.
o Jo 0o Jo o 0

Using ([LA), () and (£.9), we get

SO0
1901Z2(r,) < Csell¥llZar,) + Coe /ﬁwa—g dz|.

(4.7)

To estimate the integral in the previous relationship we use the Holder inequality

-~ NG opp N\ | )
Y— dx S(/r wqdw) (/7‘ —‘ da:) (/r mdm) ,
/g o€ oV o 10¢ o °
_ 3 . 1,1, 1 _ . _ 3
Whereq—BTpandmlssuchthat]—o—i—E—i—m—l, l.e.,m_@—fG.

(E),(@)) Wephave

_ 1 /0% 0PN\2 1 /99\2
VY|l Lrasy = (/ﬁ(é—s)aere (a—g(g _T%) +E(@)

Using (R.2), we then have

~O o\
952 @) < Cua Wl IVl ( [ 727 da)
Q ag Q

2—m
<Cue ™ [[¢llzaas) VYl Lr(ag)-

12

Using



We note here that m > 2. Then the imbedding of WP(A?) into L(A?) implies

Putting this estimate into (@) yields

2—m

5_4
< Cize ™ [Vollzoas = Crae?™» IVl Loas)-

8_4
19Zzr.) < CsellllZaqr,) + Co Crae ™7 VLo (as):

Using the trace inequality

¥l Lers) < Cus [¥llwrway)s

we get
8_a
lli3ar.) < C (2 11mnmy) +€5 77 V0130 )
8_a
< C (e W0 Bnnany +5 3 IVUIEas))
The conclusion of the lemma follows by density. O

4.1 Proof of Estimate (B.11))

Let w5 = w§ — wsy. Clearly w§ = u® —u, w5 € W(QL) and it satisfies

Aws =0 in Q,
8’[17; 8w1 8w2

= — — I 4.8
on. One.  On. onte (4.8)
ws(z) = O(|=| ™), |z| — +o0.

Using the variational formulation associated with (f.§), Cauchy-Schwarz in-
equality and Estimate (@), we deduce

ow ow
~ 2d :/ 1 2 ~gd
/Q,E |Vws|© de -\ on + . ws do

8w1 811)2 ~
< (>
N H one * on. L2(T.) HU}QHN(FE)
1 L (]|o 0 _
<cetmeft (|52 |5 195 22
one L2(T.) one L2(T.) €
(4.9)
Using (B.9), we have
a 1 1
H w1 < C(measT;)? < Che2. (4.10)
One |l 2(r,)

13



ow
To estimate 8—2’ we use standard regularity results for elliptic problems, see
n

€
B, p- 343, to deduce, since f € LP(R?) for p < 2, that wy € W2P(R?). Then
0
we apply Estimate @) to the function u = %, 1 <4 <3 withp =2—n,
Xq
0<n<i,
H@wg <C 2 Ows +5%7ﬁ 0 Vws .
0xi || par.) 0zi |l (y) i e

Since both norms on the right-hand side of the above inequality are uniformly
bounded and since the outward unit normal n. is uniformly bounded we obtain

< Cet %, (4.11)
L2(T.)

8102
on,

Reporting ([£10) and ({.11)) into (£.d) and using the inequality |Ine| < Ce=27,
we get

[ e < € Vg,
Therefore .
HV{'E;HL2(Q’E) S 0256777 for all n> 0.

4.2 Proof of Estimate (B.12)
To prove (B.1) we need the following lemmas.

Lemma 4.2. We have for all > 0,

.
Q

where w = wy + wa.

|Vo|? dacf/]RS fwdm+/z(lfga) <g—: +2%> do+0(e57), (4.12)

’
=

Proof. Using the decomposition u® = v + w® = v + w; + w§ it follows :

= VePdes [ [GuPdetr [ VoVutde
QX QA\E QS

The estimation of the last two integrals can be achieved as follows. We use (@)
and the Green’s formula to obtain

g €
/ |Vw® |? dx = —/ w® Aw® dx —/ w® w do + / (1- ga)aw do
Q\E Qn\s r. On. ) on.

&€

R ow
= fw d:c—f—/z(l—tp)an do.




Similarly, we use (B.3) to get

. Ov

Q\T Q\z r.  One = on

=— fwed:c—i—/(l—(p)@da.
QL by on

Then

ow® ov
LE:/ Vv2da:f/ fwfda:+/ 1-— ( +2—>do. 4.13
s 17 . L1=9) (G + 25, (4.13)

We can now estimate the error between the above expression of L° and the
desired one. We have, with w = wy + wa,

fwdx — fw® dz
R3 Q!

/ fwy dx — fwy da:Jr/ fws dx — fws de
R3 QL R3 Q

/ fw1 dx
Qa

<

+ / fwadx — fwo dx
R3 QL

+ f(we —w3) de
QL

/fwld:c—i—/ fws dx
QE Qa

For 1 < p < 2 and ¢ such that % + % = 1, we have thanks to Lemma @ and
since we € W2P(Qs) C L*>(Qs),

e

< + fwe — ws) de| .

Qr

<N fllzeny lwell ey

1
< | fllzra.) llwall Lo (o.) (meas Q) =
< Cei.

We also have, since 1 —¢ = 0 in a neighborhood of 3 and then w; € H?()

L>(Q;),
’/ fwy dx
Qa

In addition, since we — w§ = u — u®,

) C

(N5

2 o

< |[fllzecao) lwillLe (o) (meas Qe )z < Cev.

fwe — ws) da
QL

< N fllzrar) v —ufl| Lagar)y-
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Choosing p so that g < 1—52 and using (), we obtain

’/ fwy dx —i—‘/ fws dx| +
QE Qa

for any n > 0. Now we have to estimate the difference of the two integrals over

¥ in ({13) and in ({:13). From (£§), (B-10) and the identity @5 = w§ — w2, we

deduce

ow ow ows
1— =[(1- 2
/Z( w)(an an)do /E( ¥, do
~ 8w1 811)2
= Vw ~Vw€da:+/ w! ( + )do.
/Q;\z: ’ ? . ’ one ~ On.

Then, using estimates (.1, (f.10) and (L.11]) we get for any 0 < n < 2

ow®  Ow
1_ > 27
/E( 2 ( on 8n) do
LQ(FE)>

+Ce? |Inel? [lwallwr(ar)(e? + 37 F7)

=G (I\Vﬁzl\ym;) +C|lnel? (e + E—f) .

flwe — ws) de| < 0537",

Qr

< [[Vwall2(a) V@3 | L2 r)

awl
+ [Jwal|L2(r.)

Te

Hawg
L2(T.) one
< Vw2|\L2((z/E) | Vw2||L2(Q/E)

(4.14)
Using the identity @5 = uf — u and (B.11]), we get
ow ow
1-— do| < Cyes™" 4.15
La-o (5 - 52) ao| <caci (4.15)
for any 7 > 0. Then we obtain the lemma from (f.13)~(}.19) O

Lemma 4.3. We have

l
/ |Volde = ——L1Ine + L' 4+ O(e),
QD 21

where £ is the length of the curve vy and

0, 6 1 . 52 132
LI_2;1 5“1‘@ Q(a0§92(§ol)2 E )d “l‘—[ dg.

Proof. Using the definition of v and the change of variable x = F(Z), it follows

/ |Vo|? dz :/ |Vo|2de = A2 + B®
QD AS
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with

62 6272
A6 _ aof dz / ~2 dz
: / @i [ e
ao ,\2
BS = dz

where ﬁg (0,1) x (5,1) x (0,27). Clearly, we can write

aolf? 2§2A2
® )d+/ﬂ4 dz + O(z).

o 4m? 7r2a0

3
I
S—

Since p(§) =1for 0 < ¢ < %, we can write BY as

27 27 a
Bf:/// /// . A2d0d§ds
%
1 27
—(/ g'(s |d5)/ —+/// - A2d0d£ds
2
g’y 2 O AQ
~In 5+ ln— do d¢ ds
27
5 In 5+—”1 —+/// |g| AQde«fds
27
/// 66%C089A2d9d§d3.

¢ 1“2
:7715+ 1 +—/
1
2

From this and (J.1) follows the lemma.

Estimate (B.19) follows immediately by combining Lemmas [i.9 and [1.3.
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