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Abstract

We present an efficient modal method to calculate the two-dimensional
Green’s function for electromagnetics in curvilinear coordinates. For this
purpose the coordinate transformation based differential method, intro-
duced for the numerical analysis of surface-relief gratings, is directly used
with perfectly matched layers (PMLs). The covariant formalism Maxwell’s
equations, very convenient for the non-orthogonal coordinates formula-
tion, also gives an unified analysis of PMLs. Numerical results for a line
source placed above a perfectly conducting corrugated surface are pre-
sented.

1 Introduction

In 1994 Bérenger introduced the perfectly matched layers (PMLs) in finite-
difference time-domain (FDTD) [1]. Since then the PMLs have been successfully
combined with others methods in particular in the frequency domain. Chew
and Weedon have shown in [2] the PML concept to be equivalent to a complex
stretching on the coordinate space of Maxwell’ equations. Then Teixeira et al.

have interpretated this stretching as being equivalent to an analytical continu-
ation of the coordinate space to a complex coordinate space [3]. More recently
Teixeira et Chew proposed a unified analysis using differential forms [4]. In
practice one main feature of the PMLs, which appears in many applications,
lies in the fact that the PMLs allow to use modal expansion technics . For
example consider a problem which is translation invariant in one direction. The
computing domain is defined by placing in this direction two parallel perfectly
electric conducting plates backed by a PML. So the original configuration is
turned into a closed waveguide whereas the PMLs provide free space radiation
conditions [5].

In optics the diffraction gratings have been widely studied since the fifties.
The differential methods are based on the Floquet’s expansion which is a gener-
alized Fourier expansion. So it was very natural to apply the technics developped
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for studying gratings to non-periodic configurations by introducing PMLs [6].
Note that in this formalism the only pseudo-periodic condition must be veri-
fied whereas Dirichlet boundary conditions are imposed by the electric walls in
the waveguide approach. In addition non-orthogonal co-ordinate systems can
be successfully used in some gratings problems and then the covariant form of
Maxwell’s equations is really suitable [7].

The aim of this paper consists in computing the 2D Green’s function in the
so-called translation coordinates by using PMLs. Our purpose is to present a
method which is very easy to implement. In the first section we introduce the
tensorial covariant Maxwell’s equations in which a change of metric is recognized
as being equivalent to a change of medium. This interpretation is used in the
second section to introduce PMLs in non-orthogonal coordinates. The third
section is devoted to the 2D Green’s function computation which is reduced to
a numerical eigenvalue problem.

2 Covariant EM, metric and PML

The vector space R
3 is identified to an affine space. At a point x defined by

its coordinates (x1, x2, x3) in a basis (e1, e2, e3), the time-harmonic Maxwell’s
equations with electrical sources are represented in the covariant formulation

ξijk∂jHk = iωDi + J i, ξijk∂jEk = −iωBi i, j, k = 1, 2, 3, (1)

where ∂i =
∂

∂xi
and ξijk denotes the Levi-Civita tensor. These equations are

written with the time convention eiωt and the Einstein’s convention which are
used throughtout this paper. We emphasize that the covariant equations do
not depend on a metric contrary to the constitutive relations. For example the
contravariant components Bi and Di are linked to the covariant components Hi

and Ei in an homogeneous isotropic medium by

Di = ε
√

ggijEj , Bi = µ
√

ggijHj , (2)

where gij denote the contravariant components of metric tensor which are ob-
tained by inverting the matrix constituted by the covariant components gij(x

1, x2, x3).
It is very important to remark that the relations Eq. 2 are also verified with the
metric gij(x

1, x2, x3) = δij and a medium whose magnetic and electric proper-
ties are characterized by the tensors

εij(x1, x2, x3) = εΛij(x1, x2, x3), µij(x1, x2, x3) = µΛij(x1, x2, x3), (3)

where
Λij(x1, x2, x3) =

√
ggij(x1, x2, x3). (4)

This medium exhibits the same behavior for the electric and the magnetic fields
since the only tensor Λ is sufficient for expressing the constitutive relations. So
the electromagnetic field expressed with a metric g (gij 6= δij) in an homoge-
neous medium is the same as an electromagnetic field expressed with a Cartesian
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metric (gij = δij) in a medium defined by the original metric g. More generally
a change of the metric can be considered as a change of medium. For exam-
ple let us consider a coordinate system (x1

′

, x2
′

, x3
′

) deduced from Cartesian
coordinates (x1, x2, x3) = (x, y, z):

Φ : (x1, x2, x3) = (x, y, z) → (x1
′

, x2
′

, x3
′

), (5)

with

x1
′

(x) =

∫ x

0

s1(x
′)dx′, x2

′

(y) =

∫ y

0

s2(y
′)dy′, x3

′

(z) =

∫ z

0

s3(z
′)dz′. (6)

The change of coordinates induces the metric

gi′j′(x
1
′

, x2
′

, x3
′

) =
∂xi

∂xi′
∂xj

∂xj′
δij . (7)

Following the previous point of view we may associate the change of metric and
the material tensor deduced from Eq. 4 and Eq. 7:

Λ(x1, x2, x3) = Λ(x, y, z) =















s1(x)

s2(y)s3(z)
s2(y)

s1(x)s3(z)
s3(z)

s1(x)s2(y)















. (8)

This tensor is the one which appears in the formalism proposed by Sacks et al.

[8]. The physical realizability of material characterized by Λ can be discussed but
this is not necessary providing that the computed fields inside the material are
regarded as nonphysical. The perfectly matched layer corresponds to complex
valued functions si. This case may be mathematically interpreted as the analytic
continuation of the metric to a complex metric.

Now assume the metric induced by the coordinate system (x1
′

, x2
′

, x3
′

) to
be given by g′ij(x

1
′

, x2
′

, x3
′

) = δij . Then the natural vector basis (ei) of the

system (x1, x2, x3) become:

ei =
∂xi′

∂xi
ei′ , (9)

with ||ei′ || = 1. The modified metric of the system (x1, x2, x3) is defined as

g′ij(x
1, x2, x3) = g′ij(x, y, z) =





s2
1(x)

s2
2(y)

s2
3(z)



 , (10)

and

√

g′g′ij(x1, x2, x3) =















s2(y)s3(z)

s1(x)
s1(x)s3(z)

s2(y)
s1(x)s2(y)

s3(z)















. (11)
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Reporting Eq. 2 and Eq. 11 in Eq. 1 the covariant Maxwell’s equations may
be written as

ξijk∂jEk = −iωµ
si+1si+2

si
Hi, ξijk∂jHk = iωε

si+1si+2

si
Ei + J i, modulus 2,

(12)
where i, j, k = x, y, z. The basis ei is no more normalized since ||ei||2 = s2

i .
The coordinate system is in fact the system (x, y, z) but the metric has been
modified.

3 PMLs in a non-orthogonal curvilinear coordi-

nates system

The previous scheme, introduced for a PML medium, can be briefly recalled as
follows:

1. a coordinate system (x1
′

, x2
′

, x3
′

) is deduced from the Cartesian system
(x1, x2, x3) = (x, y, z) by Φ (Eq. 6):

Φ : gij(x
i) = δij −→ gij(x

i′), (13)

2. we consider the metric of this system to be equal the original one i.e.

g′ij(x
i′ ) = δij ,

3. by applying the inverse coordinate change we are led to a modified metric
for the system (x1, x2, x3)

Φ−1 : g′ij(x
i′ ) = δij −→ g′ij(x

i). (14)

The generalization of this scheme consists starting from any coordinates
system (x1, x2, x3) and proceeding with the same change Φ as previously:

Φ : gij(x
i) → gij(x

i′ ),

Φ−1 : g′ij(x
i′ ) = gij(x

i′ ) → g′ij(x
i).

(15)

Practically the g′ij(x
i′ ) can be directly deduced from the gij(x

i) by considering

these as functions of xi′ instead of xi, then replacing
∂

∂xi
by

∂

∂xi′
and finally

computing the g′ij(x
i) by means of Φ−1.
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4 Translation coordinates

The so-called translation coordinate system [7] is defined from the Cartesian
system by

x1 = x,

x2 = y − a(x) (16)

x3 = z,

where a(x) is a periodic function with period d. Eq. 16 yields the natural metric

gij(x
1, x2, x3) =















1 +
da

dx1

da

dx1

da

dx1
0

da

dx1
1 0

0 0 1















. (17)

The metric g′ij(x
1
′

, x2
′

, x3
′

) is written by substituting x1
′

for x1:

g′ij(x
1
′

, x2
′

, x3
′

) =















1 +
da

dx1′

da

dx1′

da

dx1′
0

da

dx1′
1 0

0 0 1















. (18)

The modified metric of the system (x1, x2, x3) is obtained by means of the
coordinates change Φ−1:

g′ij(x
1, x2, x3) =

∂xk

∂xi

∂xl

∂xj
g′kl(x

1
′

, x2
′

, x3
′

). (19)

Eq.6, Eq. 18 and Eq. 19 yield

g′ij(x
1, x2, x3) =















s1s1

(

1 +
da

dx1′

da

dx1′

)

s1s2

da

dx1′
0

s1s2

da

dx1′
s2s2 0

0 0 s3s3















, (20)

where
da

dx1′
is considered as a function of x1.

5 2D Green’s function
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For the purpose of this paper we assume s2 and s3 to be equal to one and we
simplify the notation by substituting s for s1.From Eq. 20 we obtain

√

g′g′ij(x1, x2, x3) =













1

s
−ȧ 0

−ȧ s (1 + ȧȧ) 0

0 0 s













. (21)

where

ȧ =
da

dx1′
(x1)

We consider any problem which is invariant with the z = x3 direction (∂3 = 0).
In a domain without source (J i = 0) Eqs. 1 and 2 yield the propagation equation
written in the translation coordinate system

[

1

s
∂1

1

s
∂1 −

(

1

s
∂1ȧ + ȧ

1

s
∂1

)

∂2 + (1 + ȧȧ) ∂2
2 + ω2ǫµ

]

Ψ(x1, x2) = 0 (22)

where Ψ holds for Ez or Hz. This equation can be obtained by substituting

the operator
1

s

1

∂1

for
1

∂1

in the equation obtained in the original translation

coordinate system Eq. 16. The second order differential equation can be written
as two first order coupled equations:

[

−i
1

s
∂1ȧ − iȧ

1

s
∂1 1 + ȧȧ

1 0

]

i∂2

[

Ψ

Ψ̇

]

=

[ 1

s
∂1

1

s
∂1 + ω2εµ 0

0 1

]

[

Ψ

Ψ̇

]

(23)
where Ψ̇ = i∂2Ψ. Since the functions ȧ and s depend on the only x1 variable
we may assume an exponential x2 dependence e−iβx2

and replace the operator
∂2 by the −iβ coefficient. Assuming ȧ to be a periodic function, the solutions
may be approximated by expanding Ψ into Fourier basis en(x1) = exp(−iαnx1)
where αn = n2πx1/d, n ∈ Z and d is the period.

Ψ(x1, x2) = e−iβx2
∑

n

Ψn(β)en(x1). (24)

In Fourier space Eq. 23 yields the matrix equation

[

−s−1
αs−1

α + ω2εµI 0

0 I

] [

Ψ

Ψ̇

]

=

β

[

−s−1
αȧ − ȧs−1

α I + ȧȧ

I 0

] [

Ψ

Ψ̇

]

(25)

where the bold symbols denote matrices. α is a diagonal matrix formed by
αn, s and ȧ are Toeplitz matrices whose the mn element is the (m− n) Fourier
coefficient of the corresponding function and s−1 is the inverse matrix. Ψ and Ψ̇

6



are column vectors formed by the Fourier coefficients of Ψ and Ψ̇ with respect
to x1. So the Fourier expansion results in a fully discrete spectrum of eigen
modes

Ψq(x
1, x2) = e−iβqx

2 ∑

n

Ψnqen(x1) (26)

where βq is an eigenvalue of Eq. 25 and Ψnq the Fourier coefficient of the cor-
responding eigen function Ψq. In this way we can obtain a modal expansion
very suitable to calculate the radiated field of a periodic electric source with
the only condition that the period of the source is the same as the period d of
the function ȧ(x1). Numerically the infinite matrices in Eq. 25 are necessary
truncated. The eigenvalues can be divided into two sets. The first set, Σ−, con-
tains the negative real eigenvalues and the complex eigenvalues having positive
imaginary parts. The second set, Σ+, contains those with the opposite signs.

The 2D Green’s function G(x1, x2), periodic with respect to x1, obeys the
equation:

[

1

s
∂1

1

s
∂1 −

(

1

s
∂1ȧ + ȧ

1

s
∂1

)

∂2 + (1 + ȧȧ) ∂2
2 + ω2ǫµ

]

G(x1, x2)

= δ(x2 − X2)
∑

n

δ(x1 − X1 − nd) (27)

Since
∑

n

δ(x1 − X1 − nd) =
∑

n

1

d
e∗n(X1)en(x1), (28)

where the asterisk refers to the complex conjugate, the Green’s function may
be expanded in Fourier series

G(x1, x2) =
∑

n

Gn(x2)en(x1), (29)

and Eq. 27 can be converted into a matrix equation in Fourier space:

L[Gn(x2)]+M [∂2Gn(x2)]+N [∂2
2Gn(x2)]+ω2ǫµ[Gn(x2)] = δ(x2−X2)

1

d
[e∗n(X1)],

(30)
with

L = −s−1
αs−1

α,

M = is−1
αȧ + iȧs−1

α,

N = I + ȧȧ.

From Eq. 26 the functions Gn(x2) may be written as a modal expansion:

Gn(x2) =
∑

q

AqΨnqe
−iβqx

2

. (31)

In free space the radiation conditions in the x2 direction are enforced by holding
the set of eigenvalues Σ+ in the domain x2 > X2 and the set Σ− in the domain
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Figure 1: A line source below a sinusoidal coordinate line.

x2 < X2 Considering the derivative ∂2 within the sense of distributions Eq. 30
yields the system of equations

M [G+
n (X2) − G−

n (X2)] + N [∂2G
+
n (X2) − ∂2G

−

n (X2)] =
1

d
[e∗n(X1)],

N [G+
n (X2) − G−

n (X2)] = 0, (32)

and

N [∂2G
+
n (X2) − ∂2G

−

n (X2)] =
1

d
[e∗n(X1)],

[

G+
n (X2) − G−

n (X2)
]

= 0, (33)

which provides the numerical values of the coefficients Aq.

6 Results

In this section, we provide numerical examples to illustrate the effectiveness of
our formulation. The first one deals with the radiation of an electric current
line source in free space. In that case it can be shown that the exact solution
for the electric field is given by:

Ez(x, y) = H2
0

(

k
(

(x − X1)2 + (y − X2)2
)1/2

)

(34)

where H2
0 is the zeroth order Hankel function of the second kind and k the wave

number. Fig 1 illustrates the geometry of our numerical experiment. In Eq16,

we have used the function a(x) = .5 ∗ h(1 + cos
2πx

d
) with h = λ , d = 10λ

. The source is located at
(

X1, X2
)

= (d/2,−λ/10) . The PML function has
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Figure 2: Radiation of a line source at x2 = 0: imaginary part of the zeroth
order Hankel function of the second kind. The full line is for the closed-form
solution and crosses inside circles are for the modal solution

been chosen to be the most simple one :

s(x1) =







1 − iη if 0 < x1 < xm

1 if xm < x1 < d − xm

1 − iη if d − xm < x1 < d
(35)

with η = 1, 5 and xm = λ/10. Fig 2 shows a comparison of the imaginary part of
the electric field at x2 = 0 obtained from the closed form solution and from the
modal solution. It is seen that agreement is excellent even close to the source.

Figure 3: A line source at the focus of perfectly conducting parabola.

The second example is for a line source located at the focus of a parabola.
The width of the parabola is d = 15λ, and the focus is f = d/4. (see Fig 3).

Fig 4 represents a map of the total electric field.
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Figure 4: Modulus of the electric field radiated by a line source at the focus of
a parabola.

7 Conclusion

In this paper we have introduced complex coordinate streching in the so-called
translation coordinate system. We have computed the 2D free-space Green func-
tion using a numerical modal technic in conjunction with Fourier expansions.
Hence, as expected, we have verified that complex coordinate streching behaves
as a radiation condition in a general non orthogonal coordinate system. How-
ever, in our opinion, the most interesting part of this preliminary work is the
fact that we have obtained a series expansion linked to any coordinate system.
Thus, when solving a given problem where radiation occurs, we may choose
the most convenient coordinate system. Moreover the above approach can be
extended to non homogeneous media in a straightforward manner.
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[1] J. Bérenger, ”A Perfectly Matched Layer for the Absorption of Electromag-
netic Waves,” J. Comput. Phys., 114 (1994), 185-200.

[2] W. C. Chew and W. H. Weedon, ”A 3D perfectly matched medium from
modified Maxwell’s equations with stretched coordinates,” Microwave Opt.

Technol. Lett., 7 (1994), 599-604.

[3] W. C. Chew, J. M. Jin, and E.Michielssen, ”Complex coordinate stretching
as a generalized absorbing boundary condition,” Microwave Opt. Technol.

Lett., 15 (1997), 363-369.

[4] F. L. Teixeira and W.C. Chew, ”Differential Forms, Metrics, and the Re-
flectionless Absorption of Electromagnetic Waves”, J. Electromagn. Waves

Appl., 13 (1999), 665-686.

10



[5] H. Derudder, F. Olyslager, and D. De Zutter, ”An efficient series expan-
sion for the 2-D Green’s function of a microstrip substrate using perfectly
matched layers,” IEEE Microwave Guided Wave Lett., 9 (1999), 505-507.

[6] E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, ”Use of gratings in
integrated optics”, J. Opt. Soc. Am. A, 18 (2001), 2865-2875.

[7] J. Chandezon, D. Maystre, G. Raoult, ”A new theorical method for diffrac-
tion gratings and its numerical application”, J.Optics, 11 (1980), 235-241.

[8] Zachary S. Sacks, David M. Kingsland, Robert Lee, and Jin-Fa Lee, ”A P

[9] erfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary
Condition,” I.E.E.E. Trans. Antennas Propagat. 43 (1995), 1460-1463.

11


