Metadata, citation and similar papers at core.ac.uk

Provided by HAL Clermont Université

HAL

archives-ouvertes

Light transmission by subwavelength square coaxial
aperture arrays in metallic films
Antoine Moreau, Gérard Granet, Fadi Baida, Daniel Van Labeke

» To cite this version:

Antoine Moreau, Gérard Granet, Fadi Baida, Daniel Van Labeke. Light transmission by sub-
wavelength square coaxial aperture arrays in metallic films. Optics Express, Optical Society of
America, 2003, 11, pp.1131. <hal-00090743>

HAL Id: hal-00090743
https://hal.archives-ouvertes.fr /hal-00090743
Submitted on 1 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche frangais ou étrangers, des laboratoires
publics ou privés.


https://core.ac.uk/display/49303393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00090743

Light transmission by subwavelength square

coaxial aperture arrays in metallic films

A. Moreau, G. Granet
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24 Avenue des Landais 63177 Aubiére cedex, France

F.I. Baida, D. Van Labeke

Laboratoire d’Optique P.M. Duffieux,
CNRS UMR 6603 Institut de Microtechniques de Franche-Comté,
Université de Franche-Comté 25030 Besangon cedex,France

Abstract: Using Fourier Modal Method, we study the enhanced trans-
mission exhibited by arrays of square coaxial apertures in a metallic
film. The calculated transmission spectrum is in good agreement with
FDTD calculations. We show that the enhanced transmission can be
explained considering a few guided modes of a coaxial waveguide.
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Introduction

Nowadays, opticians are greatly interested in structures that exhibit anomalous effects
because they have potential applications in novel photonic devices. The extraordinary



enhanced transmission by subwavelength metallic hole arrays is one such phenomenon.
Since the publication of Ebbesen et all , many experimental and theoretical studies
were carried out in order to determine the physical origin of the observed enhanced
transmission. Three kinds of explanations where proposed since, relating the enhanced
transmission to the excitation of surface plasmons,*= to a Fabry—Perot cavity behavior
of the holes,*®' or explaining the transmission in terms of dynamical diffraction.® It is
now established that both horizontal and vertical resonances play a role in the extraor-
dinary transmission® . It is then of importance to characterize and to understand the
electromagnetic behavior of the channel through wich the light propagates inside the
metallic film™ . Recently, numerical simulations have shown that a transmission as high
as 80 % can be obtained with anular apertures™ . The aim of the present communication
is to study the spectral response of metallic films with square coaxial aperture. Those
structures are similar to the above mentioned ones from the electromagnetic point of
view. Since the aperture dimensions are of the order of magnitude of the wavelength a
rigorous electromagnetic theory is necessary to analyze the behavior of such structures.
Although the FDTD method allows to calculate rigorously the reflection and transmis-
sion of a plane wave by a periodical structure in the resonance domain, the Fourier
Modal Method gives a more physical insight in the present resonant phenomenon’?
The diffraction problem is reduced to the search of eigenvalues and eigenvectors of a
particular matrice. It permits to calculate the effective index of the modes of the coaxial
aperture and the coupling of these modes with the reflected and transmitted order.

2 Statement of the problem

Let us consider a metallic film deposed on a glass substrate with an engraved periodic
structure of square coaxial apertures ( see Fig. [Il).
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Fig. 1. Coaxial square aperture in a metallic film
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The refractive index of the metal is described by a simple free-electron Drude model
with a plasma frequency w, = 1.374 x 10*® s land a relaxation time 7 = 0.3 x 101 s
The periods are d, in the x-direction and d, in the y-direction. The width and the
position of an aperture are controlled by two parameters wy and wa (see Figlll). Lastly
the thickness is denoted by h . The structure is illuminated in vacuum, under normal
incidence, by a monochromatic linearly polarized plane wave, with a wavelength A, a
wavenumber k = 27/ and a time dependence exp(iwt). Our goal is to calculate and to
understand the reflection and transmission spectrum of this structure with the help of



the Fourier Modal Method. In the layer, any component F' of the electric or magnetic
field can indeed be expressed as a superposition of eigenmodes:

F(z,y,2) = Y (A exp(=ikve2) + A, exp(ikyy(z = 1)) Frungmn(2,y)
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where m and n are integers such that —M < m < M and —N < n < N . The
integers M and N describe the truncation scheme. The matrix from which eigenvalues
and eigenvectors are calculated is then of rank 2(2M +1)(2N +1) . Al and A, are the
unknown complex amplitudes of the upward and downward propagating or decaying
waves. Our numerical code includes the correct factorization rules derived by Li* , our
personnal parametric formulation, and the S matrix approach for writing the boundary
conditions. Although it is not the scope of this paper, it should be emphasised that
the above mentionned numerical tools are of great importance to obtain reliable and
converged results. In order to compare the Fourier modal method and the FDTD that
was used by Baida and Van Labeke™ we have calculated the transmission spectrum of
a structure with the following parameters: wy = 105 nm, we = 155 nm, d,; = d, = 300
nm, h = 150 nm , ny = 1.45.
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Fig. 2. Transmission of a square coaxial aperture calculated with the FDTD (blue
line) and the Fourier Modal Method (red line)

It can be seen that both methods give resonances at the same place even though a
small difference is observed in their intensity.

3 Discussion

3.1 Analysis of the mode

Our goal is to analyze the enhanced transmission using the guided modes of the coaxial
apertures. Since we consider a metallic medium, an aperture is very weakly coupled with
its neighbours. A mode for the entire structure thus corresponds to the excitation of a
particular mode of a sole aperture in every aperture. Indeed, the eigenvalues and the
fields corresponding to an eigenmode do not change when the distance between holes



varies. Hence we may make no distinction between the modes supported by the structure
and the modes of a sole coaxial aperture and the eigenvalues vy, give an immediate access
to the effective index of each mode.

Because of the metal all the propagating constants are complex but some of them
can be considered as guided modes with low losses. For the considered structure we
have found that there were three such modes, two of them being degenerated due to
the square symetry . The numerically obtained dispersion relations are plotted on Fig.
B and Fig. B
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Fig. 3. dispersion curves of the first mode. blue line: real part. red line: imaginary
part. The presence of dips is probably due to the rigtht angle corners.
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Fig. 4. dispersion curves of the second mode. blue line: real part. red line: imaginary
part. The presence of dips is probably due to the rigtht angle corners.

Figure B and Fig. Bl show the map of the modulus of the transverse electric field of
the first and second modes.
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Fig. 5. Modulus of the transverse electric field of the first guided mode.

Fig. 6. Modulus of the transverse electric field of the second guided mode.

The mode whose effective index has the largest real part and the lowest imaginary
part corresponds to the TEM mode of the same coaxial structure with perfect conducting
walls. This mode is characterized by an electric field normal to the walls and has no
cut-off. In the present case, it is not strictly speaking a TEM mode since its effective
index is greater than one. However, when the width of the aperture becomes larger, the
coupling between the opposite sides of the coaxial waveguide diminishes resulting in a
lower effective index. The two other guided modes have a cut-off around A = 845 nm.

3.2 Analysis of the coupling of the modes to free radiation

We have shown the existence of attenuated guided modes. In the present section we
are interested in the way they can be excited by an incident plane wave. The S matrix
approach is a very appropriate tool for such an analysis. Let us consider the particular
wavelength A = 558 nm where a resonance occurs. Figure [ and Fig. B show the twenty
first calculated modal coefficients corresponding to the upwards and downwards waves



inside the aperture when the film is illuminated by a z polarized plane wave under
normal incidence.
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Fig. 7. The twenty first modal amplitude coefficients inside the coaxial on the upper
face. The red bar corresponds to an attenuated guided wave.
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Fig. 8. The twenty first modal amplitude coefficients inside the coaxial on the lower
face. The red bar corresponds to an attenuated guided wave.

For convenience, they have been sorted in decreasing order. In order to get some
physical information from this spectrum analysis, we have carefully normalized all the
eigenvectors. It should be noted that the above coefficients are calculated on the inter-
face where the corresponding wave has been excited. By considering the eigenvalues,
ie the normalized propagating constants, one can easily deduce which kind of mode is
excited. Figure [ represents the location in the complex plane of the progating constant
assciated to the modal amplitude of Fig.[d. In Fig. [ the first and the third mode are a
degenerated mode whose the imaginary part of the effective index is as high as 22.8. In
the present case, we can conclude that the mode responsible for the resonant transmis-



sion is the attenuated guided mode that matches the polarization of the incident wave.
This mode has an effective index of 1.39 — 0.006s.
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Fig. 9. The ten first complex propagating constants associated to the ten first modes
that are exited on the upper face inside the coaxial waveguide. The red one corre-
sponds to an attenuated guide wave, its value is: v = 1.39 — 0.006:.

4 Conclusion

We have numerically studied the spectral response of subwavelength coaxial apertures.
We have calculated the propagating constants of the modes supported by a square
coaxial waveguide. Some of them correspond to attenuated guided modes. However, the
excitation of such modes is only possible when the incident wave matches the mode
profile. Due to the electric properties of metals at optical wavelengths, the dispersion
relations of the modes of the transmission channel are very specific and very differ-
ent from those of the same channel with perfectly conducting walls. This preliminary
study paves the way for future investigations in order to engeneer the modes and their
excitation for applications.
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