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Abstract

We address the problem of camera motion and 3D structure reconstruc-
tion from line correspondences across multiple views, frominitialization to
final bundle adjustment. One of the main difficulties when dealing with line
features is their algebraic representation.

First, we consider the triangulation problem. Based on Plücker coordi-
nates to represent the 3D lines, we propose a Maximum Likelihood algo-
rithm, relying on linearizing the Plücker constraint and on a Plücker cor-
rection procedure, computing the closest Plücker coordinates to a given 6-
vector.

Second, we consider the bundle adjustment problem, which isessentially
a nonlinear optimization process on camera motion and 3D line parameters.
Previous overparameterizations of 3D lines induce gauge freedoms and / or
internal consistency constraints. We propose the orthonormal representa-
tion, which allows handy nonlinear optimization of 3D linesusing the min-
imum 4 parameters with an unconstrained optimization engine.

We compare our algorithms to existing ones on simulated and real data.
Results show that our triangulation algorithm outperformsstandard linear
and bias-corrected quasi-linear algorithms, and that bundle adjustment using



our orthonormal representation yields results similar to the standard Maxi-
mum Likelihood trifocal tensor algorithm, while being usable for any num-
ber of views.

1 Introduction

The goal of this paper is to give methods for reconstruction of line features from
image correspondences over multiple views, from initialization to final bundle ad-
justment. Reconstruction of line features is an important topic since it is used
in areas such as scene modeling, augmented reality and visual servoing. Bun-
dle adjustment is the computation of an optimal visual reconstruction of camera
motion and 3D scene structure, where optimal means Maximum Likelihood in
terms of reprojected image error. We make no assumption about the calibration
of the cameras. We assume that line correspondences over at least three views are
available1.

While the multiple-view geometry of lines is well-understood, seee.g.[5, 11],
there is still a need for practical structure and motion algorithms. The factorization
algorithms [15, 18, 25] yield reliable results but requiresall lines to be visible in
all views. We focus on the common three-stage approach, seee.g. [11, §17.5],
consisting in(i) computing camera motion using inter-image matching tensors,
(ii) triangulating the features and(iii) running bundle adjustment.

There exist reliable algorithms for step(i). In particular, it can be solved by
computing trifocal tensors for triplets of consecutive images, usinge.g.the auto-
matic computation algorithm described in [11,§15.6], and registering the triplets
in a manner similar to [6]. Other integrated motion estimation systems are [20],
based on Kalman filtering techniques and [26], registering each view in turn.

In steps(ii) and(iii), one of the main difficulties when dealing with line fea-
tures arises: the algebraic representation. Indeed, thereis no minimal, complete
and globally non singular parameterization of the 4-dimensional set of 3D lines,
seee.g. [11, §2.2]. Hence, they are often overparameterized,e.g.as the join of
two points or as the meet of two planes (8 parameters), or by the 6 coefficients
of their Plücker coordinates, which must satisfy the bilinear Plücker constraint.
Another overparameterization is two images of the line (6 parameters). The most
appropriate representation depends upon the problem considered. For example,
the algorithm in [11,§15.2] shows that the ‘two image lines’ representation is

1Line correspondences over two views do not constrain the camera motion.
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well-adapted to the computation of the trifocal tensor, while the sequential algo-
rithm of [20] is based on Plücker coordinates.

Concerning step(ii), many of the previous works assume calibrated cameras,
e.g.[14, 21, 23, 27] and use specific Euclidean representations.The linear three
view algorithm of [27] and the algorithm of [23] utilize a ‘closest point+direction’
representation, while [21] uses the projections of the lineon thex = 0 and the
y = 0 planes, which has obvious singularities. These algorithmsyield sub-optimal
results in that none of them maximizes the individual likelihood of the recon-
structed lines.

Bundle adjustment, step(iii), is a nonlinear procedure involving camera and
3D line parameters, attempting to maximize the likelihood of the reconstruction,
corresponding to minimizing the reprojection error when the noise on measured
features has an identical and independent (i.i.d.) normal distribution. Previously-
mentioned overparameterizations are not well-adapted to standard nonlinear opti-
mization engines. The ‘two point’ and the ‘two plane’ overparameterizations have
4 degrees of internal gauge freedoms2 which may induce numerical instabilities.
The ‘two image lines’ parameterization has 2 degrees of internal gauge freedoms
and implies that one may have to choose different images for different lines since
all lines may not be visible in all images. Also, one must check that the chosen
images are not too close to each other. Finally, direct optimization of Plücker
coordinates makes sense only if a constrained optimizationtechnique is used to
enforce the bilinear Plücker constraint. An appropriate representation would not
involve internal constraint or gauge freedom.

To summarize, there is a need for an efficient optimal triangulation algorithm,
and a representation of 3D lines well-adapted to nonlinear optimization. We ad-
dress both of these problems through the following contributions.

In §3, we give an overview of various 3D line representations an their charac-
teristics.

In §4, we propose triangulation methods based on using Plückercoordinates to
represent the lines. A simple and optimal algorithm is obtained based on lineariz-
ing the bilinear Plücker constraint within an iterativelyreweighted least squares
approach.

In §5, we propose a nonlinear representation of 3D lines that we call theor-
thonormal representation. This representation allows efficient nonlinear optimiza-
tion since only the minimum 4 parameters are computed at eachstep which allows

2For the former one, the position of the points along the line,and the free scale factor of the
homogeneous representation of these points.
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the use of a standard unconstrained optimization engine. With this representation,
there is no internal gauge freedom or consistency constraint, and analytic differ-
entiation of the error function is possible.

Finally, §6 validates our algorithms and compares them to existing ones. The
next section gives some preliminaries and notations and states the problem.

2 Preliminaries and Notation

Notation. We make no formal distinction between coordinate vectors and phys-
ical entities. Everything is represented in homogeneous coordinates. Equality up
to scale is denoted by∼, transposition and transposed inverse byT and−T. Vec-
tors are typeset using bold fonts (L, l), matrices using sans-serif fonts (S, A, R)
and scalars in italics. Bars represent inhomogeneous leading parts of vectors or
matrices,e.g.MT ∼

(
M̄T | m

)
. TheL2-norm of vectorv is denoted‖v‖. The

identity matrix is denotedI. SO(2) andSO(3) denote the 2D and 3D rotation
groups.

The 2D orthogonal (Euclidean) distance between pointq and linel weighted
by q3 is:

d2
⊥(q, l) = (qTl)2/(l21 + l22). (1)

Matrix factorization. We make use of the Singular Value Decomposition of
matrices, dubbedSVD. TheSVD of matrix A is Am×n = Um×nΣn×nVT

n×n, where
U andV are orthonormal, andΣ is diagonal, containing the singular values ofA in
decreasing order. TheQR factorization of matrixA is Am×n = Qm×mRm×n, with
Q orthonormal andR upper triangular. More details on these matrix factorizations
can be read ine.g.[7].

Maximum likelihood estimation. As noted in [11,§15.7.2], no matter how
many points are used to represent an image linel, the quadratic error function
on it can be expressed in the formd2

⊥(x, l) + d2
⊥(y, l) for two weighted points

x, y on l. We will use this representation for simplicity. If we have 3D lines
S = {L1, . . . ,Lm} and camerasM = {P1, . . . , Pn}, the negative log likelihood
functionE(S,M) for the reconstruction, corresponding to the reprojectionerror,
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can be written in terms of individual reprojection errorsE(Lj,M) for each linej:

E(S,M) =

m∑

j=1

E(Lj,M) (2)

E(Lj,M) =
n∑

i=1

(
d2
⊥(xij, lij) + d2

⊥(yij , lij)
)
. (3)

3 Representing 3D Lines

We describe several representations for 3D lines in projective space and their char-
acteristics. Some of these representations are ‘partial’ in the sense that they can
only represent a subset of all 3D lines. For example, some work on metric re-
construction, particularly in photogrammetry, assume that the reconstructed lines
do not lie at infinity. The goal of this study is to choose a representation for the
triangulation and bundle adjustment problems. Concerningthe triangulation, the
most important criterion is that the reprojected lines is a linear function of the 3D
line. Bundle adjustment is a nonlinear procedure allowing more flexibility in the
choice of the parameterization. The quality of the parameterization is assessed
based on criteria such as the number of internal gauge freedoms or internal con-
straints. A summary of the reviewed representations is finally provided. The first
representation that we describe is the Plücker coordinates. We link all the other
representations to Plücker coordinates.

3.1 Complete Representations

Plücker coordinates. Given two 3D pointsMT ∼
(
M̄T | m

)
and NT ∼(

N̄T | n
)
, one can represent the line joining them by a homogeneous ‘Plücker’

6-vectorLT ∼
(
aT | bT

)
, seee.g.[11, §2.2]:

{
a = M̄× N̄

b = mN̄− nM̄.
(4)

Other conventions for Plücker 6-vectors are also possible. Each comes with a
bilinear constraint that the 6-vector must satisfy in orderto represent valid line
coordinates. For our definition, the constraint is:

C(L) = 0 where C(L) = aTb. (5)
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Similarly, one can construct the Plücker coordinates of a line defined as the meet
of two planes. The Plücker coordinates of a line defined as the meet of two planes
PT ∼ (P̄T | p) andQT ∼ (Q̄T | q) are given by:

{
a = pQ̄− qP̄
b = P̄× Q̄.

(6)

As an example, triangulation from two views has the following closed-form solu-
tion. Let P1 andP2 be the two projection matrices andl1 andl2 the two imaged
lines. The Plücker coordinates of the corresponding 3D line are given as the meet
of the two viewing planesπi ∼ PiTli.

Given a standard(3× 4) perspective projection matrixP ∼ (P̄ | p), a(3× 6)
matrix projecting Plücker line coordinates [2, 5] is givenby:

P̃ ∼ (det(P̄)P̄−T | [p]×P̄). (7)

It can be easily derived by expanding the expression of the 2Dline joining the
projections of two points:

l ∼ m ∧ n

∼ (PM) ∧ (PN)

∼ (P̄M̄ + mp) ∧ (P̄N̄ + np)

∼ (P̄M̄) ∧ (P̄N̄) + mp ∧ (P̄N̄)− np ∧ (P̄M̄)

∼ det(P̄)P̄−T(M̄ ∧ N̄) + [p]∧P̄(mN̄− nM̄)

∼ P̃L.

Seoet al.[20] use the Plücker coordinates representation for sequential Structure-
From-Motion with a Kalman filtering technique. Pottmannet al. [17] use these
coordinates for 3D shape reconstruction and understandingfrom 3D data.

Pair of points or pair of planes. These are two dual representations, described
in details in [11,§2.2.2]. In the first case, the line is defined as the join of two
pointsM andN, and in the second case, it is defined as the intersection of two
planesP andQ. These representations have similar characteristics. They have 8
parameters, hence 4 degrees of gauge freedom, the position of the points along the
line (respectively the position of the planes in the pencil of planes around the line)
and the scale factors in the homogeneous coordinates of the points or the planes.
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For metric reconstruction, if one drops the lines at infinity, the two point repre-
sentation has 6 parameters. There is a direct link with Plücker coordinates using
equations (4) and (6). The reprojected linel is a bilinear function of the entries of
the point or the plane coordinates. For example, for the two point representation,
l ∼ (PM) × (PN). Hartley [10] proposes a triangulation algorithm based on
these representations. Habibet al. [9] use the two point representation for bundle
adjustment. They consider that the line is not at infinity. The ambiguity on the
position of the points along the line is fixed by constrainingthem to reprojected
near the end-points observed in one of the images.

3.2 Partial Representations

Closest point and direction. A 3D line is represented by its closest point to
the origin, with coordinatesQT ∼ (Q̄T 1), and its direction, with coordinates
QT

∞ ∼ (Q̄T

∞ 0), giving a total of 6 parameters. This representation does not
include lines at infinity and hence can not be used in projective space. The link
with the Plücker line coordinatesL is given by:

L ∼




Q̄× Q̄∞

Q̄∞




.

Reprojecting the line with the camera matrixP ∼ (P̄ p) is a bilinear function of
the line parameters:l ∼ (P̄Q̄ + p)× (P̄Q̄∞). The line reconstruction algorithms
proposed by Wenget al. [27] for three views and by Taylor and Kriegman [23]
for multiple views use this representation. In the field of photogrammetry, Tom-
maselli and Lugnani [24] use this representation for bundleadjustment. Mulawa
and Mikhail [16] use the additional constraint‖Q̄∞‖ = 1.

Two projections. A 3D line can be represented by two projections [10, 21].
This is related to the fact that reconstructing a line from two views has in general
a unique solution.

Spetsakis and Aloimonos [21] use the intersection of two planes, one parallel
to the planex = 0, and the other one parallel to the planey = 0. These two planes
are formulated using 4 parametersa, b, c andd by x = az + b andy = cz + d
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respectively. The pencil of pointsQ on the 3D line is parameterized by thez
coordinate:

Q ∼




az + b
cz + d

z
1


 .

This representation has obvious singularities: lines which are parallel to the plane
z = 0 can not be represented. Indeed, the points lying on such lines have a
constantz coordinate, and since the points are parameterized by this coordinate,
one always gets the same point if thez coordinate is constant. One can link this
representation to the Plücker coordinatesL of the line by considering any two
points lying on the line,e.g.for z = 0 andz = 1, and equation (4), giving:

L ∼




d
−b

bc− da
a
c
1




.

Ayache and Faugeras [4] use this representation for mobile robot navigation. In
the field of photogrammetry, Habib [8] extends this representation by using dif-
ferent pairs of planes depending on the 3D line, in order to avoid the singularities.

Hartley [10] uses two images of the line. This representation has the following
singularities: all 3D lines lying in an epipolar plane induced by the two cameras
have the same images in both views. The 3D lines that can not beuniquely repre-
sented thus form a Linear Line Complex, seee.g.[22]. Note that these singulari-
ties can be encountered in practice. The Plücker coordinates corresponding to this
representation can be calculated by intersecting the two viewing planes induced
by the two image lines using equation (6). Hartley shows thatthe reprojection of
the line in other views in a bilinear function of the parameters.

The Denavit-Hartenberg parameters. The Denavit-Hartenberg representation
[3] has become the standard way of representing robots and modeling their mo-
tions. The idea is to relate each joint to the next by using theminimal 4 parameters,
namely two distances and two angles. A general 3D Euclidean transformation, be-
tween two Euclidean coordinate frames, has 6 degrees of freedom. For using the
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Denavit-Hartenberg representation, thex-axis of one coordinate frame has to be
aligned with the line orthogonal to thez axes of both coordinate frames, which
cancels out 2 degrees of freedom, 1 in rotation and 1 in translation. This suggests
to represent a 3D line by thez-axis of a coordinate frame, and to parameterize it by
the 4 Denavit-Hartenberg parameters with respect to a reference coordinate frame,
e.g.the world coordinate frame. The Plücker coordinates corresponding to these
parameters can be obtained bye.g.applying the coordinate transformation given
by the 4 parameters to thez-axisLT

z ∼ (0 0 0 0 0 1) of the reference frame using
a 3D line rigid displacement matrix [2]. The projection equation is nonlinear in
the Denavit-Hartenberg parameters since it involves products and trigonometric
operators.

One problem with this parameterization is that two distances are used as pa-
rameters, which prevents from representing the lines at infinity. There is also an
indeterminacy in the choice of one of the coordinate frame when the line is parallel
to thez-axis of the reference coordinate frame.

Roberts [19] proposes to model 3D lines using two distances and two angles.
His representation has drawbacks similar to those described above.

Note that there are other representations for modeling robots. For example,
Hayatiet al. [12] introduce an extra rotation parameter to the Denavit-Hartenberg
representation to model the error due to near parallel axes.This representation is
thus not minimal.

3.3 Summary

Table 1 summarizes the characteristics of the aforementioned representations, and
of the orthonormal representation that we propose in§5. We observe that the only
representation for which the reprojected lines is a linear function of the 3D line
parameters is the Plücker coordinates. It is also seen thatbesides our orthonormal
representation, no other complete representation allows aminimal update with
4 parameters, which is due to gauge freedoms and / or internalconsistency con-
straints. Minimal update is an important criterion for using a representation within
bundle adjustment.

4 Triangulation

This section discusses computation of structure given camera motion. We propose
direct linear and iterative nonlinear methods to recover Plücker line coordinates.
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representation comp. # gauge # cstr reprojection min. up.

closest point and direction no 1 1 bilinear no
two image lines no 2 0 bilinear no
Denavit-Hartenberg no 0 0 non-linear yes
two points or two planes yes 4 0 bilinear no
Plücker coordinates yes 1 1 linear no
orthonormal representation yes 0 0 non-linear yes

Table 1: Summary of different representations for 3D lines with their character-
istics. The ability of the representation to cover all linesin P

3 is on the column
‘comp.’ (completeness). The number of gauge freedoms (column ‘# gauges’)
and internal constraints (column ‘# cstr’) are strongly linked. The ‘reprojection’
column is about the equation for reprojecting the 3D line with a perspective cam-
era. The column ‘min. up.’ indicates if the representation can be updated with 4
parameters.

These algorithms are general in the sense that they can be used with calibrated,
partially calibrated or uncalibrated cameras.

First, we describe a somehow trivial linear algorithm wherea biased error
function (compared to the reprojection error) is minimized. This algorithm is
subject to the same kind of drawback as the eight-point algorithm for computing
the fundamental matrix: due to possible noise in the data, the resulting 6-vectors
do not generally satisfy the bilinear Plücker constraint (5), similarly to the matrix
computed by the eight-point algorithm not being rank deficient [11, §10.2]. We
propose what we call aPlücker correctionprocedure, which allows to compute
the closest Plücker coordinates to a 6-vector.

Second, we propose an algorithm where the reprojection error of the line is
minimized. The cornerstone of this algorithm is the linearization of the Plücker
constraint.

Since the reconstruction of each line is independent from the others, we drop
thej index in this section.

4.1 Linear Algorithm

We describe a linear algorithm, ‘LIN ’. In the reprojection error (3), each term is
based on the square of the 2D point-to-line orthogonal distanced⊥, defined by
equation (1). The denominator of this distance is the cause of the nonlinearity.
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Ignoring this denominator leads to an algebraic distance denotedda, biased com-
pared to the orthogonal distance. It is linear in the predicted linel and defined by
d2

a(q, l) = d2
⊥(q, l) w2 = (qTl)2, where the scalar factorw encapsulates the bias

asw2 = l21 + l22:

(wi)
2

=
(
(P̃iL)1

)2

+
(
(P̃iL)2

)2

. (8)

We define the biased linear least squares error function:

B(L,M) =

n∑

i=1

(
(xiTP̃iL)2 + (yiTP̃iL)2

)
(9)

= ‖A(2n×6)L‖
2 with A =




. . .

xiTP̃i

yiTP̃i

. . .


 . (10)

SinceL is an homogeneous vector, we add the constraint‖L‖2 = 1. TheL that
minimizesB(L,M) is then given by the singular vector ofA associated to its
smallest singular value, that we compute usingSVD. Due to noise, the recovered
6-vector does not in general satisfy the Plücker constraint (5).

4.2 Pl̈ucker Correction

The Plücker correction procedure is analogous to the standard rank correction of
the fundamental matrix based onSVD: the eight-point algorithm linearly com-
putes a full-rank matrixF, whose smallest singular value is nullified to obtained
the rank-two matrix̂F, seee.g.[11]. Matrix F̂ is the closest rank-two matrix toF,
in the sense of the Frobenius norm. It is used to initialize nonlinear algorithms.

The Plücker correction procedure computes the closest Pl¨ucker coordinates to
a given 6-vector, where closest is to be understood in the sense of theL2-norm,
equivalent to the matrix Frobenius norm. It is also equivalent to the Euclidean
distance between two points inR6. This correction is necessary to initialize
the nonlinear algorithms from the solution provided by linear methods ignoring
the Plücker constraint. Pottmannet al. [17] use the Euclidean distance between
Plücker coordinate vectors to compare 3D lines. They underline the facts that this
distance is practical for minimization purposes and is in accordance with visual-
ization in the region of interest,i.e.near the origin.

More formally, letLT ∼ (aT | bT) be a 6-vector that does not necessar-
ily satisfy the Plücker constraint (5), i.e.aTb might be non-zero. We seek
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L̂T ∼ (uT | vT), defined byminbL,uTv=0 ‖L̂ − L‖2. This is a linear least squares
optimization problem under a nonlinear constraint. Although it has a clear and
concise formulation, it isnot trivial.

Obviously, one can modify one entry of the Plücker coordinates in accordance
with the Plücker constraint,e.g.seta1 = −(a2b2 + a3b3)/b1. This simple solution
has the disadvantage that the entry must be chosen dependingon the actual values
of the coordinates since the correction rule uses a division. Also, all entries are
clearly not treated uniformly.

By comparison, our solution orthogonally projects the 6-vector on the Klein
quadric and treats all its entries the same way. Kanatani [13] proposes a general
iterative scheme for projecting points on nonlinear manifolds, such as projecting
points inR

6 on the Klein quadric. Our algorithm performs this projection in a
non iterative manner, which thus guarantees that the optimal projected point on
the Klein quadric,i.e. the optimal 3D line, is found. Its derivation is quite tricky
but it can be readily implemented with few lines of code from its summary shown
in table 2.

• Compute the Singular Value Decomposition(a b) = ŪΣ̄V̄T.

• Let Z̄ = Σ̄V̄T, form matrixT = ( z21 z22

z12 −z11
).

• Compute the singular vector̂v associated to the smallest singular value
of matrixT.

• DefineV̄ =
(

v̂1 −v̂2

v̂2 v̂1

)
and set(u v) ∼ Ū V̂ diag

(
V̂TΣ̄V̄T

)
.

Table 2: ThePlücker correctionalgorithm. Given a 6-vectorLT ∼ (aT | bT),
this algorithm computes the closest Plücker coordinatesL̂T ∼ (uT | vT), i.e.
uTv = 0, in the sense of theL2-norm, i.e.‖L̂− L‖2 is minimized.

A geometric interpretation. We interpret the 3-vectorsa, b, u andv as coor-
dinates of 3D points. These points are not directly linked tothe underlying 3D
line. This interpretation is just intended to visualize theproblem. The Plücker
constraintuTv corresponds to the fact that the lines induced by the origin with u

andv are perpendicular. The correction criterion is the sum of squared Euclidean
distances betweena andu and betweenb andv. Hence, the problem may be for-
mulated as finding two pointsu andv, as close as possible toa andb respectively
and such that the lines induced by the origin withu andv are perpendicular. We

12



begin by rotating the coordinate frame such thata andb are transferred on the
z = 0 plane. This is thereduction of the problem. We solve the reduced prob-
lem, by finding two points on thez = 0 plane, minimizing the correction criterion
and satisfying the Plücker constraint. Finally, weexpress the solutionback to the
original space.

Reducing the problem. Let us define the(3 × 2) matricesC̄ ∼ (a b) and
Ĉ ∼ (u v). The Plücker constraint is fulfilled if and only if the columns of matrix
Ĉ are orthogonal. We rewrite the correction criterion as :

O = ‖L− L̂‖2 = ‖C̄− Ĉ‖2.

Using the followingSVD C̄(3×2) = Ū(3×2)Σ̄(2×2)V̄
T

(2×2) :

O = ‖ŪΣ̄V̄T − Ĉ‖2 = ‖Σ̄V̄T − ŪTĈ‖2,

sinceŪ has orthonormal columns. We defineZ̄ = Σ̄V̄T andẐ = ŪTĈ. Matrix V̄

is orthonormal and̄Σ is diagonal, hence the rows ofZ̄ are orthogonal (i.e. Z̄Z̄T is
diagonal, but not̄ZTZ̄). Note that̂Z = ŪTĈ implies Ĉ = ŪẐ, even ifŪŪT is not
the identity3. The problem is reduced to finding a column-orthogonal4 matrix Ẑ,
as close as possible to the row-orthogonal matrixZ̄.

Solving the reduced problem. We parameterize the column-orthogonal matrix
Ẑ asẐ = V̂Σ̂, whereV̂ is orthonormal and̂Σ is diagonal. Hence :

O = ‖Σ̄V̄T − V̂Σ̂‖2 = ‖V̂TΣ̄V̄T − Σ̂‖2.

The diagonal matrix̂Σ which minimizes this expression is given by the diagonal
entries ofV̂TΣ̄V̄T, and does not depend on the solution forV̂. The orthonormal

3Indeed, denoteui the columns of matrix̄U and formU = (u1 u2 u1×u2). We haveUT
Ū =

( I(2×2) 0(2×1))
T. Let us multiply the correction criterion byUT: O = ‖( V̄Σ̄ 0(2×1))

T
−

UTĈ‖2. DenoteY(3×2) = UTĈ. The optimal solution has the formYT = ( ẐT
0(2×1)), since,

according to the geometric interpretation, the corrected points u and v must lie on the plane
defined by pointsa, b and the origin, the planez = 0. Therefore, we obtain̂C = UY = ŪȲ.

4The fact that matrix̂Z = ŪTĈ is column-orthogonal is induced from the Plücker constraint.
Indeed, this constraint implies thatĈ is column-orthogonal, hencêCTĈ is diagonal. MatrixUTĈ,
whereSO(3) ∋ U = (u1 u2 u1 × u2) = (Ū ū), is also column-orthogonal. Observe that
ĈTUUTĈ = ĈTŪŪTĈ + ĈT

ūū
TĈ = ĈTŪŪTĈ sinceūTĈ = 0

T. Hence, matrix̄UTĈ is column-
orthogonal.
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matrix V̂ = (v̂1 v̂2) is given by minimizing the sum of squares of the off-diagonal
entries ofV̂TZ̄, with Z̄ = Σ̄V̄T = (z1 z2) :

O = (v̂T

1 z2)
2 + (v̂T

2 z1)
2.

Define the 2D rotation matrix with angleπ/2 by M = ( 0 −1
1 0 ) and parameterize

the orthonormal matrix̂V by a unit vector̂v, as :
{

v̂1 = v̂

v̂2 = Mv̂,

The correction criterion can be rewritten as :

O = (v̂Tz2)
2 + (v̂TMTz1)

2 = ‖Tv̂‖2 with T =

(
zT

2

zT

1 M

)
.

The unit vector̂v minimizing this expression is given by the singular vector asso-
ciated to the smallest singular value of matrixT.

Expressing the solution. From vector̂v which solves the reduced problem, we
form the orthonormal matrix̂V =

(
v̂1 −v̂2

v̂2 v̂1

)
. The diagonal matrix̂Σ is given by

Σ̂ = diag(V̂TΣ̄V̄T).

4.3 Quasi-Linear Algorithms

We describe algorithms ‘QLIN1’ and ‘QLIN2’, that consider the reprojection error
(3). They are based on an iterative bias-correction, through reweighting of the
biased error function (9). Such algorithms are coined quasi-linear.

We showed previously that the orthogonal and the algebraic distances are re-
lated by a scalar factor, given by equation (8), depending onthe 3D line. The
reprojection error and the biased error functions are therefore related by a set of
such factors, one for each image of the line. The fact that these factors depend on
the unknown 3D line suggests an iterative reweighting scheme.

The first approach that comes to mind is ‘QLIN1’. The linear system consid-
ered for methodLIN is formed and solved. The resulting 6-vectorL0 is corrected
to be valid Plücker coordinates. This yields a biased estimate of the 3D line. Us-
ing this estimate, weight factors that contain the bias of the linear least squares
error function are computed, and used to reweight the equations. The process is
iterated to compute successive refined estimatesLk until convergence, wherek is
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the iteration counter. Convergence is determined by thresholding the difference
between two consecutive errors. It is typically reached in 3or 4 iterations.

Experimental results show that this naive approach performs very badly, see
§6. This is due to the fact that the Plücker constraint is enforced afterhand and is
not taken into account while solving the linear least squares system.

To remedy to this problem, we propose ‘QLIN2’, that linearizes and enforces
the Plücker constraint (5), as follows. The algorithm is summarized in table 3.
Rewrite the constraint asC(L) = LTGL whereG(6×6) = ( 0 I

I 0
). By expanding this

expression to first order around the estimateLk, and after some minor algebraic
manipulations, we obtain the following linear constraint on Lk+1:

Ck(Lk+1) = LT

k GLk+1 = 0.

We follow the constrained linear least squares optimization method summarized
in [11, §A3.4.3] to enforce this linearized constraint, as well as‖Lk+1‖ = 1. The
idea is to find an orthonormal basis of all possible vectors satisfying the constraint
and to solve for a 5-vectorγ expressed in this basis. Such an orthonormal basis
is provided by computing the nullspace ofLT

k G usingSVD. Let V̄ be a(6 × 5)
orthonormal matrix whose columns span the basis (i.e.LT

k GV̄ = 0), we define
Lk+1 = V̄γ, henceCk(Lk+1) = LT

k GV̄γ = 0 and‖Lk+1‖ = ‖γ‖. We solve for
γ by substituting in equation (10) (‖ALk+1‖

2 = ‖AV̄γ‖2). The singular vector
associated to the smallest singular value of matrixAV̄ provides the solution vector
with unitL2-norm such thatB(Lk+1,M) is minimized.

1. Initialization: Form the linear least squares systemA from equation
(10), computeL0 by minimizing‖AL0‖

2, see§4.1, and by applying the
Plücker correction procedure described in§4.2. Setk = 0.

2. Constraint linearization:Compute the Singular Value Decomposition
LT

k G ∼ uTdiag(1, 0, 0, 0, 0, 0)(v(6×1) | V̄(6×5))
T
.

3. Estimation:Computeminγ,‖γ‖2=1 ‖AV̄γ‖2 and setLk+1 = V̄γ.

4. Bias-correction: Reweight the linear systemA by computing the
weights according to equation (8).

5. Iteration: Iterate steps 2, 3 and 4 until convergence.

Table 3: The quasi-linear algorithm ‘QLIN2’ for optimal triangulation.

15



5 Bundle Adjustment

Bundle adjustment is the nonlinear minimization of the reprojection error (2), over
camera and 3D line parameters. We focus on the parameterization of 3D lines.
Parameterizing the camera motion has been addressed ine.g.[1, 11,§A4.6].

5.1 Problem Statement

As said in the introduction, there are various possibilities to overparameterize the
4-dimensional set of 3D lines. In the context of nonlinear optimization, choosing
an overparameterized representation may induce the following problems. First,
the computational cost of each iteration is increased by superfluous parameters.
Second, artificial freedoms in the parameter set (internal gauge freedoms) are in-
duced and may give rise to numerical instabilities. Third, some internal consis-
tency constraints, such as the Plücker constraint, may have to be enforced.

These reasons motivate the need for a representation of 3D lines allowing
nonlinear optimization with the minimum 4 parameters. In that case, there is
no free scale induced by homogeneity or internal consistency constraints, and an
unconstrained optimization engine can be used.

5.2 The Orthonormal Representation

The orthonormal representation has been introduced in [1] for the nonlinear opti-
mization of the fundamental matrix with the minimum 7 parameters. It consists
in finding a representation involving elements ofSO(n) and scalars (hence the
term ‘orthonormal representation’). In particular, no other algebraic constraints
should be necessary, such as the rank-two constraint of fundamental matrices or
the bilinear Plücker constraint. Using orthonormal matrices implies that the repre-
sentation is well-conditioned. Based on such a representation, local update using
the minimum number of parameters is possible.

Commonly used nonlinear optimization engine,e.g. Newton type such as
Levenberg-Marquardt, often require the Jacobian matrix ofthe error function with
respect to the update parameters. In the orthonormal representation framework,
we split it as the product of the Jacobian matrix of the error function considered
with respect to the ‘standard’ entity representation,e.g.the fundamental matrix or
Plücker coordinates, and theorthonormal Jacobian matrix, i.e. for the ‘standard’
representation with respect to the update parameters.

16



Example: representingP
1. We derive the orthonormal representation of the 1-

dimensional projective spaceP1. This is used in§5.3 to derive the orthonormal
representation of 3D lines. Letσ ∈ P

1. Such a 2-vector is defined up to scale and
has therefore only 1 degree of freedom. We represent it by anSO(2) matrix W

defined by:

W =
1

‖σ‖

(
σ1 −σ2

σ2 σ1

)
. (11)

The first column of this matrix isσ itself, normalized to unit-norm. Letθ be
the update parameter. A local update step isW ← WR(θ) whereR(θ) is the 2D
rotation matrix of angleθ. The Jacobian matrix∂σ

∂θ
evaluated atθ0 = 0 (the update

is with respect to a base rotation) is given by:

∂σ

∂θ

∣∣∣∣
θ0

=
∂w1

∂θ

∣∣∣∣
θ0

=

(
−σ2

σ1

)
= w2, (12)

wherewi is thei-th column ofW.

Updating SO(3). A matrix U ∈ SO(3) can be locally updated using 3 param-
eters by any well-behaved (locally non singular) representation, such as 3 Euler
anglesθT = (θ1 | θ2 | θ3) as:

U← UR(θ) with R(θ) = Rx(θ1)Ry(θ2)Rz(θ3), (13)

whereRx(θ1), Ry(θ2) andRz(θ3) areSO(3) matrices representating 3D rotations
around thex-, y- andz-axes with angleθ1, θ2 andθ3 respectively. The Jacobian
matrix is derived as follows. As in theSO(2) case, the update is with respect
to a base rotation. The orthonormal Jacobian matrix is therefore evaluated at
θ0 = 0(3×1):

∂U

∂θ

∣∣∣∣
θ0

=

(
∂U

∂θ1

∣∣∣∣
θ0

|
∂U

∂θ2

∣∣∣∣
θ0

|
∂U

∂θ3

∣∣∣∣
θ0

)
.

After minor algebraic manipulations, we obtain:

∂U

∂θ1

∣∣∣∣
θ0

=
∂ (URx(θ1)Ry(θ2)Rz(θ3))

∂θ1

∣∣∣∣
θ0

= (03 | u3 | − u2) , (14)
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whereui is thei-th column ofU. Similarly:

∂U

∂θ2

∣∣∣∣
θ0

= (−u3 | 03 | u1) (15)

∂U

∂θ3

∣∣∣∣
θ0

= (u2 | − u1 | 03) . (16)

These expressions are vectorized to form the orthonormal Jacobian matrix.

5.3 The Case of 3D Lines

The case of 3D lines is strongly linked with the cases ofSO(2) andSO(3), as
shown by the following result:

Any (projective) 3D lineL can be represented by:

(U, W) ∈ SO(3)× SO(2),

whereSO(2) andSO(3) are the Lie groups of respectively(2 × 2) and (3 × 3)
rotation matrices.(U, W) is the orthonormal representation of the 3D lineL.

The proof of this result is obtained by showing that any 3D line has an
orthonormal representation(U, W) ∈ SO(3) × SO(2), while any (U, W) ∈
SO(3)× SO(2) corresponds to a unique 3D line. The next paragraph illustrates
this by means of Plücker coordinates.

Note that this result is consistent with the fact that a 3D line has 4 degrees of
freedom, since an element ofSO(2) has one degree of freedom and an element of
SO(3) has 3 degrees of freedom.

Using this representation of 3D lines, we show that there exists a locally non
singular minimal parameterization. Therefore, 3D lines can be locally updated
with the minimum 4 parameters. The update scheme is inspiredfrom those given
above for 2D and 3D rotation matrices, and can be plugged intomost of the ex-
isting nonlinear optimization algorithms. These results are summarized in table
4.

Relating Plücker coordinates and the orthonormal representation. The or-
thonormal representation of a 3D line can be computed from its Plücker coordi-
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natesLT ∼ (aT | bT), as follows. Let̄C(3×2) ∼ (a | b) be factored as :

C̄ ∼
(

a
‖a‖

b
‖b‖

a×b
‖a×b‖

)

︸ ︷︷ ︸
SO(3)




‖a‖

‖b‖





︸ ︷︷ ︸
(‖a‖ ‖b‖)T∈P1

.

In practice, we useQR decomposition,̄C(3×2) = U(3×3)Σ(3×2). The special form
of matrixΣ, i.e. the zero at the(1, 2) entry is due to the Plücker constraint. While
U ∈ SO(3), the two non-zero entries ofΣ defined up to scale can be represented
by anSO(2) matrixW, as shown in§5.2.

Going back from the orthonormal representation to Plückercoordinates is triv-
ial. The Plücker coordinates of the line are obtained from its orthonormal repre-
sentation(U, W) as:

LT ∼ (w11u
T

1 | w21u
T

2 ), (17)

whereui is thei-th column ofU.

A 4-parameter update. Consider(U, W) ∈ SO(3)× SO(2), the orthonormal
representation of a 3D line. SinceU ∈ SO(3), as reviewed in§5.2, it can not
be minimally parameterized but can be locally updated usingequation (13), as
U← UR(θ) whereθ ∈ R

3. Matrix W ∈ SO(2) can be updated asW ← WR(θ),
whereθ ∈ R. We define the update parameters by the 4-vectorpT ∼ (θT | θ).

We denoteJ the (6 × 4) Jacobian matrix of the Plücker coordinates, with
respect to the orthonormal representation. MatrixJ must be evaluated atp0 =
0(4×1):

J|p0
=

(
∂L

∂θ1

∣∣∣∣
p0

|
∂L

∂θ2

∣∣∣∣
p0

|
∂L

∂θ3

∣∣∣∣
p0

|
∂L

∂θ

∣∣∣∣
p0

)
.

By using the orthonormal representation to Plücker coordinates equation (17)
and the Jacobian matrices forSO(2) and SO(3), as defined by equations
(12,14,15,16), we obtain, after minor algebraic manipulations:

J(6×4) =

(
0(3×1) −σ1u3 σ1u2 −σ2u1

σ2u3 0(3×1) −σ2u1 σ1u2

)
. (18)

19



Initialization. The initial guess is given by the Plücker coordinatesLT

0 ∼
(aT

0 | b
T

0 ).

• Compute the orthonormal representation(U, W) ∈ SO(3)× SO(2) of

L0 by QR decomposition(a0 | b0) = U

(
σ1

σ2

)
and setW = ( σ1 −σ2

σ2 σ1
).

• The 4 optimization parameters arepT = (θT | θ) where the 3-vectorθ
and the scalarθ are used to updateU andW respectively.

Update.(i.e. one optimization step)

• Current line isLT ∼ (w11u
T

1 | w21u2
T) and∂L/∂p is given by equa-

tion (18).

• Computep by minimizing some criterion.

• UpdateU andW: U← UR(θ) andW← WR(θ).

Table 4: Elements for 3D line optimization using the minimal4 parameters
through the orthonormal representation.

Geometric interpretation. Each of the 4 above-defined update parametersp

has a geometric interpretation. MatrixW encapsulates the ratio‖a‖/‖b‖, hence
the distanced from the originO to L. Thus, parameterθ acts ond. Matrix U is
related to a 3D coordinate frame attached toL. Parameterθ1 rotatesL around a
circle with radiusd, centered onO, and lying on the plane defined byO andL.
Parameterθ2 rotatesL around a circle with radiusd, centered onO, and lying in
a plane containingO, the closest pointQ of L to O, and perpendicular toL. Pa-
rameterθ3 rotatesL around the axis defined byO andQ. For the last three cases,
the angles of rotation are the parameters themselves. This interpretation allows
to easily incorporate a priori knowledge while estimating aline. For example, to
leave the direction of the line invariant, one may use the 2 update parametersθ2

andθ, while to leave the distance of the line to the origin invariant, one may use
the 3 update parametersθ. This allows to solve constrained line estimation cases,
as summarized in the table below, indicating which update parameters to optimize
in which case:
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scenario θ1 θ2 θ3 θ

fixed direction × ×
fixed normal to the plane formed with the origin× ×
fixed distance to the origin × × ×

6 Experimental Results

6.1 Simulated Data

Our simulated experimental setup consists of a set of cameras looking inwards at
3D lines randomly chosen in a sphere with a 1 meter radius. Cameras are spread
widely around the sphere, at a distance of roughly 10 meters away from the centre
of the sphere. We fix the focal length of the cameras to 1000 (innumber of pixels).
Note that this information is not used in the rest of the experiments. The end-
points of all lines are projected in all views, where their positions are corrupted
by an additive Gaussian noise. We vary the parameters of thissetup to assess and
compare the quality of the different estimators on various scene configurations.

We compare the 4 methods given in this paper:LIN , QLIN1, QLIN2 andMLE

(bundle adjustment based on our orthonormal representation of 3D lines), as well
as the method given in [11,§15.4.1], denoted by ‘MLE HARTLEY ’. This method
consists in nonlinearly computing the trifocal tensor as well as reconstructed lines
by minimizing the reprojection error (2) and parameterizing the 3D lines by two
of their three images. We also compareQLIN2 to a direct Levenberg-Marquardt-
based minimization of the reprojection error, dubbedNLIN : the two methods gave
undistinguishable results in all our experiments. Note that most existing methods,
e.g.[14, 21, 23, 27] can be applied only when camera calibration is available.

We measure the quality of an estimate using theestimation error, as described
in [11, §4], which also provides the theoretical lower bound. The estimation error
is equivalent to the value of the negative log likelihood (2)(i.e. the reprojection
error).

The results are shown on graphs on figures 1 and 2. We observe that the
different methods are always in the same order. Three distinct behaviours can be
seen. MethodsLIN and QLIN1 give similar results since they are subject to the
same bias induced by ignoring the Plücker constraint untilthe final correction.
MethodsQLIN2 andNLIN are undistinguishable. They give better results than
the biased methods. Finally, methodsMLE and MLE HARTLEY are hardly ever
distinguishable. Their results are the best since they adjust the camera positions
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along with the 3D line parameters.
In more details, we vary the added noise level from 0 to 2 pixels, while con-

sidering 20 lines and 3 views on figure 1 (a). One observes that, beyond 1 pixel
noise, methodsLIN and QLIN1 behave very badly. This is mainly due to the
bias introduced by the Plücker correction procedure. MethodsQLIN2, MLE and
MLE HARTLEY degrade gracefully as the noise level increases. MethodQLIN2
gives reasonable results. MethodsMLE and MLE HARTLEY give undistinguish-
able results, very close to the theoretical lower bound.

We vary the number of lines from 15 to 60, while considering a 1pixel noise
and 3 views on figure 1 (b). Similar conclusions as for the previous experi-
ment can be drawn, except for the fact, that when more than 30 lines are con-
sidered, methodsLIN andQLIN1 give reasonable results. Also, methodsMLE and
MLE HARTLEY give results undistinguishable from the theoretical lowerbound
when more than 45 lines are considered.

Figure 2 (a) shows the results when the number of images is varied from 3 to
12. The algorithms that do not optimize the cameras, namelyLIN , QLIN1, QLIN2
and NLIN , have an error which increases with the number of images, whereas
the bundle adjustment algorithms, namelyMLE andMLE HARTLEY, have an error
which decreases. This is due to the fact that when the number of images increases,
the initial camera estimation degrades, which is characteristic of the camera ini-
tialization algorithm.

When the distance between the lines and the cameras increases, figure 2 (b)
shows that the error decreases for all methods. This is explained by the fact that
the cloud of 3D lines gets smaller and smaller in the images, which decrease the
estimation error, but does not mean that the estimate is better.

We observed that the quasi-linear methods always converge within 5 iterations.

6.2 Real Data

We tested our algorithms on several image sequences. For twoof them, we
show results. We compared methodsLIN , QLIN1, QLIN2 and MLE, since
MLE HARTLEY is for 3 views only.

We observed thatQLIN1 generally needs more iterations to converge than
QLIN2. This is due to the Plücker correction step that significantly modifies the
estimate inQLIN1, while inQLIN2, since the constraint is linearized and enforced
in the estimation, the correction applied to the estimate isless important.
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Figure 1: Estimation error for different methods when varying the variance of
added noise on image end-points (a) and the number of lines considered (b).
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Figure 2: Estimation error for different methods when varying the number of
images (a) and the scene to camera distance (b).
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The ‘books’ sequence. Figure 3 shows images from this 5-frame sequence. We
provided 45 line correspondences by hand. Note that some of them are visible in
two views only. We used these line correspondences to compute the trifocal ten-
sor corresponding to each subsequence formed by triplets ofconsecutive images,
using the linear method described ine.g. [11, §15.2]. We used methodQLIN2
to reconstruct the lines associated with each triplet. We registered these subse-
quences by using the method given in [2]. At this point, we hada suboptimal
guess of metric structure and motion. We further refined it using our triangulation
algorithms, to reconstruct each line by taking into accountall of its images. The
corresponding estimation errors are, respectively forLIN , QLIN1 andQLIN2, 2.30,
2.27 and 1.43 pixels. Note the significant improvement ofQLIN2 compared to the
biased methodsLIN andQLIN1. MethodsQLIN1 andQLIN2 respectively took 4
and 3 iterations to converge.

We used the result ofQLIN2 to initialize our Maximum Likelihood estimator
for structure and motion based on the proposed orthonormal representation to-
gether with a metric parameterization of the camera motion,which ends up with
a 0.9 pixel estimation error.

For each estimation, we reconstructed the end-points corresponding to the first
view (shown on the left of figure 3). The Maximum Likelihood end-points are
given by orthogonally projecting their images onto the image of the corresponding
line.

These results are visible on figure 4. Note the significant improvement of
methodMLE over methodsLIN , QLIN1 andQLIN2. The lines predicted byMLE

and the original lines are undistinguishable. Figure 5 shows the cameras and lines
reconstructed byMLE. There is visually no difference with the reconstruction
provided by algorithmQLIN2, but that reconstructions provided byLIN andQLIN1
appear distorted.

The ‘laptop’ sequence. Figure 6 shows sample images for the 8-frame ‘lap-
top’ sequence, overlaid with the 40 manually-entered line correspondences. We
performed 3D reconstruction by applying the same algorithms as for the ‘books’
sequence. We obtained the following estimation errors for the triangulation al-
gorithms, namelyLIN : 1.34 pixels,QLIN1: 1.29 pixels andQLIN2: 1.04 pixels.
MethodsQLIN1 andQLIN2 took respectively 7 and 5 iterations to converge. For
the bundle adjustment algorithms, we obtained an estimation error of 0.82 pixels.
Figure 7 shows snapshots of the reconstructed 3D models.

These results show that accurate reconstructed models can be obtained on real
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Figure 3: Sample images out of the 5-frame ‘books’ sequence overlaid with
manually-provided lines. Note that the optical distortionis not corrected.
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LIN & QLIN1

QLIN2

MLE

Figure 4: Zoom on some original (white) and reprojected lines (black) for the
‘books’ sequence for different methods.
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Figure 5: Snapshots of the cameras and lines reconstructed by methodMLE for
the ‘books’ sequence. The images shown in figure 3 correspondto the top- and
bottom-most cameras.
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images taken by amateur digital cameras. They also show the importance of run-
ning a final bundle adjustment after initial triangulation.

7 Conclusion

We addressed the problem of structure and motion recovery from line correspon-
dences across multiple views.

First, we proposed an optimal triangulation algorithm. Given camera motion,
the Plücker coordinates of the 3D lines are estimated by minimizing the reprojec-
tion error. The algorithm relies on an iteratively reweighted least squares scheme.
We linearized the bilinear Plücker constraint to incorporate it up to first order in
the estimation process. A Plücker correction procedure isproposed to find the
nearest Plücker coordinates to a given 6-vector.

Second, we proposed the orthonormal representation of 3D lines, which allows
nonlinear optimization with the minimal 4 parameters within an unconstrained op-
timization engine, contrarily to previously proposed overparameterizations. This
representation is well-conditioned and allows analytic differentiation.

Experimental results on simulated and real data show that the standard linear
method and its naive bias-corrected extension perform verybadly in many cases
and should only be used to initialize a nonlinear estimator.Our bias-corrected
algorithm including the Plücker constraint performs as well as direct Levenberg-
Marquardt-based triangulation. It is therefore a good solution to initialize subse-
quent bundle adjustment. Based on our orthonormal representation, bundle ad-
justment gives results close to the theoretical lower boundand undistinguishable
from the three-view maximum likelihood estimator of [11,§15.4.1], while being
usable with any number of views.

References

[1] A. Bartoli. On the non-linear optimization of projective motion using min-
imal parameters. InProceedings of the 7th European Conference on Com-
puter Vision, Copenhagen, Denmark, volume 2, pages 340–354, May 2002.

[2] A. Bartoli and P. Sturm. The 3D line motion matrix and alignement of line
reconstructions.International Journal of Computer Vision, 57(3), May/June
2004.

29



Figure 6: Sample images out of the 8-frame ‘laptop’ sequenceoverlaid with
manually-provided lines. Note that the optical distortionis not corrected.

30



Figure 7: Snapshots of the cameras and lines reconstructed by methodMLE for
the ‘laptop’ sequence.

31



[3] J. Denavit and R. S. Hartenberg. A kinematic notation forlower pair mecha-
nisms based on matrices.ASME Journal of Applied Mechanics, 22:215–221,
1955.

[4] N. Ayache et Faugeras. Maintaining representations of the environment of
a mobile robot.IEEE Transactions on Robotics and Automation, 5(6):804–
819, 1989.

[5] O. Faugeras and B. Mourrain. On the geometry and algebra of the point and
line correspondences betweenn images. InProceedings of the 5th Inter-
national Conference on Computer Vision, Cambridge, Massachusetts, USA,
pages 951–956, June 1995.

[6] A.W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed
or open image sequences. InEuropean Conference on Computer Vision,
pages 311–326, june 1998.

[7] G.H. Golub and C.F. van Loan.Matrix Computation. The Johns Hopkins
University Press, Baltimore, 1989.

[8] A. Habib. Motion parameter estimation by tracking stationary three-
dimensional straight lines in image sequences.International Archives of
Photogrammetry and Remote Sensing, 53, 1998.

[9] A. Habib, M. Morgan, and Y.-R. Lee. Bundle ajustement with self-
calibration using straight lines.Photogrammetric Record, October 2002.

[10] R.I. Hartley. Lines and points in three views and the trifocal tensor.Interna-
tional Journal of Computer Vision, 22(2):125–140, 1997.

[11] R.I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision.
Cambridge University Press, June 2000.

[12] S. A. Hayati and M. Mirmirani. Improving the absolute positioning accuracy
of robot manipulators.Journal of Robotic Systems, 2(4):397–441, 1985.

[13] K. Kanatani. Statistical Optimisation for Geometric Computation: Theory
and Practice. Elsevier Science, 1996.

[14] Y. Liu and T.S. Huang. A linear algorithm for motion estimation using
straight line correspondences.Computer Vision, Graphics and Image Pro-
cessing, 44(1):35–57, October 1988.

32



[15] D. Martinec and T. Pajdla. Line reconstruction from many perspective im-
ages by factorization. InProceedings of the Conference on Computer Vision
and Pattern Recognition, Madison, Wisconsin, USA, volume I, pages 497–
502.IEEE Computer Society Press, June 2003.

[16] D. C. Mulawa and E. M. Mikhail. Photogrammetric treatment of linear
features. International Archives of Photogrammetry and Remote Sensing,
27:383–393, 1988.

[17] H. Pottmann, M. Hofer, B. Odehnal, and J. Wallner. Line geometry for 3D
shape understanding and reconstruction. InProceedings of the European
Conference on Computer Vision, 2004.

[18] L. Quan and T. Kanade. Affine structure from line correspondences with
uncalibrated affine cameras.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(8):834–845, August 1997.

[19] K. Roberts. A new representation for a line. InProceedings of the Confer-
ence on Computer Vision and Pattern Recognition, San Diego,California,
USA, pages 635–640, 1988.

[20] Y. Seo and K. S. Hong. Sequential reconstruction of lines in projective space.
In Proceedings of the 13th International Conference on Pattern Recognition,
Vienna, Austria, pages 503–507, August 1996.

[21] M. Spetsakis and J. Aloimonos. Structure from motion using line correspon-
dences.International Journal of Computer Vision, 4:171–183, 1990.

[22] G. P. Stein and A. Shashua. On degeneracy of linear reconstruction from
three views: Linear line complex and applications.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(3):244–251, 1999.

[23] C.J. Taylor and D.J. Kriegman. Structure and motion from line segments
in multiple images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(11):1021–1032, November 1995.

[24] A. Tommaselli and J. Lugnani. An alternative mathematical model to
collinearity equations using straight features.International Archives of Pho-
togrammetry and Remote Sensing, 27:765–774, 1998.

33



[25] B. Triggs. Factorization methods for projective structure and motion. In
Proceedings of the Conference on Computer Vision and Pattern Recognition,
San Francisco, California, USA, pages 845–851, 1996.
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