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Abstract

In this paper, we consider structure and motion recovery for scenes consisting

of static and dynamic features. More particularly, we consider a single moving

uncalibrated camera observing a scene consisting of points moving along straight

lines converging to a unique point and lying on a motion plane. This scenario may

describe a roadway observed by a moving camera whose motion is unknown.

We show that there exist matching tensors similar to fundamental matrices. We

derive the link between dynamic and static structure and motion and show how the

equation of the motion plane (or equivalently the plane homographies it induces

between images) may be recovered from dynamic features only.

Experimental results on real images are provided, in particular on a 60-frames

video sequence.
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1 Introduction

Most existing works on the geometry of multiple images rely on the assumption that

the observed scene is rigid. The rigidity constraint allows to derive matching relations

among two or more images, represented by e.g. the fundamental matrix or trifocal ten-

sors. These matching tensors encapsulate the motion and the intrinsic parameters of

the cameras which took the underlying images, and thus all the geometric information

needed to perform 3D reconstruction. Matching tensors for rigid scenes can also be

employed for scenes composed of multiple, independently moving objects [3, 5, 16],

which requires however that enough features be extracted for each object, making seg-

mentation, at least implicitly, possible.

On the other hand, there is a growing body of literature [1, 6, 7, 10, 11, 15, 17] deal-

ing with the case of independently moving features, often termed as dynamic features.

The goal of these works is to provide algorithms for dynamic structure and motion re-

covery as well as matching tensors for images of dynamic features. General, as well

as highly constrained, dynamic scenarios, involving monocular or stereo views, have

been investigated.

In this paper, we consider that the observed scene has both a static and a dynamic

part. The static part is unconstrained (but has to be 3D) whereas on the other hand, as

in [1, 6, 7, 11, 15, 17], we consider that dynamic features move along straight lines,

termed motion lines. To further constrain the scenario, we consider that all motion

lines lie on a motion plane and converge to an incidence point. Figure 2 illustrates

this setting. Note that no assumption is made about the camera motion, which rules

out background subtraction techniques, and that the camera is not assumed to be cali-

brated. A real-world instance of this scenario may be the motion of points arising from

roadways seen from above, as for instance, by a moving surveillance video camera, see

figure 1.

This scenario fits into less constrained cases previously examined [1, 6, 7, 11, 15,

17]. The corresponding dynamic structure-and-motion algorithms and matching ten-

sors may therefore be used. The main drawback is that they require, in general, a

number of point correspondences that may not be well-adapted for e.g. robust estima-

3



Figure 1: Selected frames of a video sequence consisting of 60 frames. Modeling

the geometry of images provided by a moving camera observing a roadway is one

application of our scenario. The difficulties of handling such sequences come from

the fact that the scene consists of both static and dynamic features and that there is no

constraint on the unknown camera motion.
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tion based on random sampling techniques, that is most of the time required to devise

practical systems.

Moreover, the following drawbacks arise. The method proposed in [1] requires that

the camera motion is known and that point correspondences over 5 images are pro-

vided. The solutions proposed in [6, 7] rely on the fact that observed features have

constant velocity, as well as most applications, apart from segmentation tensors, pro-

vided in [15]. In [11, 17], 3D views of the scene are required, which implies the use of

two or more synchronized cameras. The H-tensor of [10] necessitates at least 3 images

of static or dynamic points to be computed.

We show that much simpler matching tensors and dynamic structure and motion

algorithms may be derived for the case studied in this paper.

Firstly, in §3, we examine the purely dynamic case, i.e. when only dynamic points

are observed and when camera motion is unknown. We show that in the two-view case,

dynamic structure and motion may be described by a fundamental matrix-like tensor

that we call the C-tensor. Standard techniques, such as robust estimation [13] and

maximum likelihood estimation through bundle adjustment [14] can then be applied in

a straightforward manner to recover this tensor. We then show how dynamic motion

in the multiple-view case can be modeled using a network of constrained C-tensors.

A means to consistently estimate this geometry is provided. Dynamic structure in this

case is also examined.

Secondly, in §4, we investigate the links between the previously-derived dynamic

structure and motion and the projective registration (i.e. static motion) of the images.

We give means for constrained estimation of camera motion.

Thirdly, in §5, we derive a matching tensor that is valid for both static and dynamic

points. Prior segmentation of points into static/dynamic is therefore not necessary. This

tensor is based on [16] and is modeled by a (6 × 6) matrix.

Experimental results on real images may be seen throughout the paper and in §6.
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Figure 2: The dynamic scenario considered in this paper — unconstrained static points

and points moving independently in a pencil of lines converging to the incidence point

and lying on the motion plane. The motion plane and the incidence point are assumed

to be static. However, most results derived in this paper are still valid without this

assumption. In most practical cases, the incidence point lies at infinity since motion

lines are parallel.
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2 Background and Notation

We consider sets of 3D points, each of them denoted as U , that may be split into dy-

namic and static points respectively denoted as X and Q. Corresponding time-varying

3D coordinates are respectively denoted by U,U ′,U′′, . . . , X,X′,X′′, . . . and Q.

Images of these points are respectively denoted by u,u ′,u′′, . . . , x,x′,x′′, . . . and

q,q′,q′′, . . . . Figure 2 illustrates some of these notations. The incidence point is de-

noted by B. It has coordinates B and projects to b,b ′,b′′, . . . . It lies on the motion

plane π that has coordinates πT ∼ (π̄ 1). The projective space of dimension d is

denoted by P
d. Everything is homogeneous (i.e. defined up to scale).

3 Purely Dynamic Views

Here we restrict to the case where only dynamic points can be observed from the scene.

We assume that the different views are not registered, i.e. projection matrices are not

available. We derive dynamic matching tensors for the two- then the multiple-view

case. Figure 3 shows a toy example overlaid with dynamic features.

3.1 Two Views: The 7-dof C-Tensor

Figure 3: Dynamic points used for the experiments on the toy images. Note that four

points are lying on a car which overtakes another one in the second image, and therefore

do not fulfill the dynamic motion associated to the other points.

Derivation. We propose a way to derive the C-tensor, encapsulating the dynamic

two-view motion. Alternatively, other means could be used, such as P
3 → P

2 projec-
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tion matrices within the framework of [15] or similarly to the join tensors of [17].

Let H be the unknown homography induced by the motion plane between the two

views considered. Using H, we may predict the projection x̃′ of X in the second view

if X was static as x̃′ ∼ Hx. The image line m′ of the motion line associated to X can

then be obtained in the second view as the line joining b ′ and x̃′:

m′ ∼ [b′]× Hx,

where [b′]× is the (3 × 3) skew-symmetric cross-product matrix. Obviously, a neces-

sary condition for X and X′ to be instances of the same dynamic point X is that x ′ lies

on m′, which yields:

x′TCx with C ∼ [b′]× H, (1)

where we call C the 7-dof C-tensor (see below). It encapsulates the image signature of

the dynamic two-view motion for the scenario previously described.

It is straightforward to see that the C-tensor has the same algebraic structure as the

fundamental matrix. More precisely, the following analogy may be established. The

projections of the incidence point play the roles of the epipoles while the 1D homogra-

phy between the two motion line pencils corresponds to the epipolar transformation.

Properties. From the above-proposed analogy, several properties of the C-tensor

may be easily derived. The C-tensor is rank-2 and has 7 dof. The projection of the

indidence point in the first image, respectively in the second image, is the right null-

space, respectively the left null-space, of the C-tensor: Cb = C Tb′ = 0(3×1). The

extended motion line transformation G (a 5-dof 2D line-to-line homography relating

the motion line pencils) is linked to the C-tensor as:

G ∼ C [b]× and C ∼ G [b]× . (2)

To understand the above expressions, consider a motion line m in the first image:

[b]× m is a point on this line (b is interpreted as a line that does not contain the point

b) and C [b]× is the corresponding motion line in the other image. A similar reasoning

may be done to understand the expression of C from G.
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Similarly, a canonic plane homography, denoted as H � can be recovered as well as

a 3-dimensional set of 2D homographies Ha consistent with C:

H� ∼ [b′]× C and Ha ∼ H� + b′aT. (3)

Note that Ha is a set of 2D homographies containing the plane homography H induced

by the motion plane. We will see in §4.1 that when the fundamental matrix F (weak

calibration of the cameras) is available, it is possible to recover the unknown H by

computing the intersection of the family Ha and the 3-dimensional family of plane

homographies defined by F.

Estimation. Another consequence of the analogy between the C-tensor and the fun-

damental matrix is that one can apply any two-view projective structure and motion

algorithm to estimate C. For instance, we use the 8 point algorithm [9] embedded in a

RANSAC-based robust estimation scheme [4] to compute an initial guess of C, that we

further refine using uncalibrated two-view bundle adjustment. In this case, the projec-

tive depths of points represent in fact their displacement along the motion lines. Figure

4 shows the result of computing pair-wise C-tensors.

Figure 4: Motion line pencils estimated using two-view projective bundle adjustment.

For the middle image, we compute the motion line pencils with respect to two C-

tensors (with the first and with the third images). Note the significant discrepancy

between them. This discrepancy will be eliminated by a consistent parameterization of

the multiple-view case, see §3.2. Note also that points lying on the overtaking car have

been discarded as outiers.
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3.2 Multiple Views: The 5-dof C-Tensor

We show that the relationships between n unregistered dynamic views are contained in

n − 1 C-tensors submitted to some additional consistency constraints, which express

the fact that the incidence point is unique, regardless of the current time instant.

Degrees-of-freedom analysis and derivation. From the previous section, we al-

ready know that for n = 2 views, the dynamic geometry has 7 dof and is represented

by a 7-dof C-tensor, say C. Consider now a third view of the same scene which shares

dynamic features with at least one of the two other views, say the second one. One

can compute the C-tensor C ′ between the second and the third view. However, one

has to remember that for a given time instant, the incidence point has a fixed position.

Therefore, C and C ′ have to share the second image b′ of the incidence point for being

consistent, which provides 2 constraints and leaves 7 + 7 − 2 = 12 dof for the dy-

namic geometry for n = 3. It is then straightforward to derive that the n-view case has

7 + 5(n − 2) = 5n − 3 dof.

The dynamic geometry of a set of n images can therefore be conveniently modeled

by a 7-dof C-tensor between two reference views and a network of n − 2 5-dof C-

tensors. A 5-dof C-tensor is a C-tensor with one constrained incidence point. A means

to compute such a constrained C-tensor, given its right kernel, is provided in the next

paragraph.

Concerning the dynamic structure, each point has 2 + (n − 1) = n + 1 dof corre-

sponding to its position in the motion plane and n − 1 motions along its motion line.

Threading C-tensors. Once a solution has been obtained for the 7-dof C-tensor mod-

eling the dynamic geometry of two particular images, subsequent 5-dof C-tensors have

to be computed given one projection of the incidence point, e.g. with their left or right

kernel known. Enforcing these consistency constraints when threading C-tensors is im-

portant since only 5 point correspondences instead of 7 are necessary to solve for the

constrained tensor, as shown below. Moreover, the solution obtained is consistent and

may be refined directly without prior correction using non-linear methods to obtain,

e.g. a maximum likelihood solution.
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We propose a linear algorithm inspired by [8] for estimating 5-dof C-tensors using

5 or more point correspondences while enforcing the consistency constraints. Using

equation (1) and the factorization (2) of the C-tensor, we may write:

x′TG [b]× x = 0, (4)

where G contains the unknown motion line pencil transformation and b is the known

projection of the incidence point in the first image. Let us see how to solve for G. Let

[b]× ∼ UΣVT be a singular value decomposition of [b]× where Σ = diag(1, σ, 0).

An efficient solution to obtain this decomposition is given in [8]. By replacing into

equation (4), we obtain:

x′TḠȳ = 0 with

⎛⎜⎜⎜⎝ Ḡ(3×2)

0

0

0

⎞⎟⎟⎟⎠ = GUΣ and

⎛⎝ ȳ(2×1)

y

⎞⎠ = VTx.

Note that Ḡ is defined by 6 homogeneous parameters ḡ ∈ P
5, which is consistent with

the fact that G has 5 dof1. Expanding this equation leads to the following homogeneous

linear system for ḡ:

A(m×6) · ḡ(6×1) = 0(m×1) with A =

⎛⎜⎜⎜⎝
· · ·

x′
1ȳ1 x′

1ȳ2 x′
2ȳ1 x′

2ȳ2 ȳ1 ȳ2

· · ·

⎞⎟⎟⎟⎠ ,

where m is the number of point correpondences considered. Note that 5 equations are

sufficient to solve for Ḡ in the least squares sense. The singular vector associated with

the smallest singular value of A, that may be obtained using singular value decomposi-

tion, provides the least squares solution for ḡ, then Ḡ. From Ḡ, one can further obtain

C as:

C ∼

⎛⎜⎜⎜⎝ Ḡ(3×2)

0

0

0

⎞⎟⎟⎟⎠VT.

1ḡ is the row-wise vectorization of Ḡ.
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Figure 5: Motion line pencils estimated using two-view projective bundle adjustment

between the first and the second views and constrained estimation of a 5-dof C-tensor

between the second and third views. Note that the motion lines pencils are perfectly

aligned in the second image.

Estimation. The 7-dof C-tensor between two particular views may be estimated us-

ing the 8 point algorithm. Other 5-dof C-tensors may be computed using the above-

described constrained method, possibly embedded in a RANSAC-based robust estima-

tion process [4]. Figure 5 shows the result of such a constrained computation. This

provides an initial guess of the dynamic registration, which may be refined as follows.

As in the case of multiple-view bundle adjustment, minimizing the reprojection er-

ror, i.e. the discrepancy between measured and predicted features yields the maximum

likelihood estimator. We employed such a means directly for the two-view case since

there was a direct analogy. For the multiple-view case however, one can not directly use

standard bundle adjustment techniques for the following reasons. Firstly, the projective

multiple-view motion has 11n− 15 dof whereas dynamic motion involves 5n− 3 dof.

Secondly, a reconstructed static point has 3 dof whereas a dynamic point has n + 1

dof (provided it is visible in every image considered). Therefore, the problem must be

specifically parameterized.

A consistent parameterization of the problem is the following. Dynamic motion can

be parameterized using n images of the incidence point and n − 1 3-dof motion line

pencil transformations, which yield the required 2n+3(n−1) = 5n−3 dof. Minimally

parameterizing these entities can be done using techniques inspired from standard non-

linear estimation of the epipolar geometry, see e.g. [2, 18]. Dynamic structure can be

parameterized as one unconstrained image point and n − 1 image points constrained
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on known image lines, which yield the required 2 + n − 1 = n + 1 dof. Representing

an image point on a known image line can be done using 1 parameter.

4 Mixing Static and Dynamic Features

In this section, we consider that enough static points may be used to perform a weak

calibration of the cameras, i.e. to projectively register them. A classical means for

such a registration is to compute static structure and motion between two particular

views and iteratively register the other views using 3D-to-2D point correspondences.

We derive the links between the dynamic structure and motion given in §3 and classical

static structure and motion and show how the above-mentioned registration algorithm

can be constrained by known C-tensors.

4.1 Two Views

We represent the projective two-view motion by the fundamental matrix F. Firstly, we

investigate the link between F and the C-tensor C. Secondly, we show that if F and C are

known, the plane homography H induced by the motion plane may be recovered and

we give a closed-form solution in terms of F and C as well as a means to use standard

homography estimation algorithms.

4.1.1 The Link Between C and F

To establish this link, we consider the plane homography H induced by the motion

plane. This homography can be written in terms of the C-tensor as H a, see equation

(3), where the unknown 3-vector a is used to span the space of 2D homographies

consistent with C. The fundamental matrix can be formed from any plane homography

as F ∼ [e′]× H and in particular Ha which yields:

F ∼ [e′]× ([b′]× C + b′aT). (5)

This equation, that we call the F-C-consistency constraint, shows that F has only 5

dof corresponding to the right epipole and the equation a of the motion plane. It is

13



equivalent to the fact that F and C share a 2D homography. Therefore, given C, 5 point

correspondences should be enough to estimate F. However, due to the non-linearity of

equation (5) for the unknowns e ′ and a, we can not estimate F linearly using 5 point

correspondences. Another solution is to use the fact that the incidence point B is a

static point and that therefore, b and b ′ give one constraint on F through the funda-

mental equation b′TFb = 0. A minimum of 6 other static points are then sufficient to

estimate F.

4.1.2 Retrieving H

Given the C-tensor and the epipolar geometry, it is possible to recover the plane ho-

mography induced by the motion plane π. The following three paragraphs give respec-

tively an analysis of the generic degenerate cases, in which the motion plane can not

be uniquely recovered, a closed-form solution in terms of the C-tensor and the funda-

mental matrix and a more physically meaningful solution taking feature positions into

account.

Point prediction and degenerate cases. Let x, x̃′ be the projections of a 3D point

X ∈ π in two images. Point x̃′ can be predicted by intersecting the motion line and the

epipolar line associated to x in the second image:

x̃′ ∼ (Cx) × (Fx). (6)

This prediction equation is used in the two methods proposed below for recovering the

plane homography H. It is valid provided that x does not lie on the image line b × e.

Indeed, if x ∈ (b×e), then the motion line x×b is the same as the epipolar line x×e,

and the only constraint that one can infer on point x̃′ is that it lies on the line Fx ∼ Cx,

the epipolar / predicted motion line. Including this condition in the prediction equation

(6) yields:

∀x ∈ P
2,
(
xT(b × e) �= 0

)⇒ (x̃′ ∼ (Cx) × (Fx)) . (7)

We now turn to studying the degenerate cases where point x̃′ can not be uniquely

predicted whatever point x is, i.e. degenerate cases depending on the camera posi-

tions and the direction of motion. These degenerate cases are described by the fact
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that the epipolar and the predicted motion line in the second image are identical, i.e.

∀x ∈ P
2, Cx ∼ Fx. Obviously, this appends when C ∼ F. We show below that

this corresponds to the fact that the incidence point B lies on the baseline i.e. the line

joining the two centers of projection C and C ′. We use the following equivalence:

(B ∈ (CC′)) ⇔ (e ∼ b) ⇔ (e′ ∼ b′). Replacing e′ by b′ in the F-C-consistency

constraint (5) yields:

F ∼ [b′]× ([b′]× C + b′aT)

∼ [b′]2× C
∼ C,

which shows2 (B ∈ (CC′)) ⇒ (F ∼ C). Showing (F ∼ C) ⇒ (B ∈ (CC′))

is straightforward: (F ∼ C) ⇒ (e ∼ b) ⇒ (B ∈ (CC′)). Hence, the prediction

equation (6) degenerates if and only if the incidence point lies on the baseline. Note

that the formulation (7) accounts for this case since (B ∈ (CC ′)) ⇔ (b ∼ e) ⇒
(∀x ∈ P

2, xT(b × e) = 0). This means that xT(b × e) = 0 describes all generic

degenerate cases for point prediction or computation of the plane homography H.

In practice, when the incidence point is at infinity, a degeneracy occurs when the

baseline is parallel to the motion lines. This configuration can easily be avoided, e.g.

for road surveillance, if more that one camera are used, then they can be mounted on a

bridge perpendicular to the road.

A closed-form solution. In general, the mapping represented by equation (7) is bi-

linear in x, i.e. it does not correspond to an homography. We show that it reduces

to a linear mapping, which is the plane homography H, provided that the F-C con-

sistency constraint is satisfied, i.e. that they are compatible with a shared H. In

this case, we may write C ∼ H−T [b]× and F ∼ H−T [e]×, which yields x̃′ ∼[
H−T [b]× x

]
× H−T [e]× x. This equation reduces to x̃′ ∼ Hx after some algebraic

manipulations and provided that x does not lie on the image line b × e, which is a

2The last equality follows from the fact that Cx is the predicted motion line, [b′]× Cx is its intersection

with the line of equation b′ (which never contains the projection of the incidence point since b′Tb′ =

‖b′‖2 �= 0), and finally, [b′]2× Cx is the predicted motion line itself, from which [b′]2× C ∼ C follows.
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already required for the prediction equation to be valid.

We claim that H can be recovered as:

H ∼ (C × F) · diag

(
(C × F)−1

[∑
i

ci

]
×

(∑
i

fi

))
, (8)

where ci and fi designate the i-th column of C and F respectively, and C × F is the

column-wise cross-product of C and F. The proof of this result is obtained as follows.

We already know from equation (7) that ∀x ∈ P
2, (xT(b × e) �= 0) ⇒ (Hx ∼

(Cx) × (Fx)). Applying this equation to each of the 4 vectors forming the canonic

basis of P
2 yields the above-mentioned result. Figure 6 shows the result of estimating

pair-wise homographies and predicting the position of the point features from one view

to the others.

Figure 6: Dynamic points transferred between images using plane homographies as-

sociated with the motion plane, i.e. as if they were static. These plane homographies

have been estimated by hallucinating point correspondences (see text) and minimizing

the symmetric squared distance between measured and transferred features. The final

error is 0.35 pixels while the initial guess provided by the closed-form solution (not

shown here) has an error of 2.77 pixels.

Care must be taken about the use of equation (8). Indeed, when C and F are per-

fectly consistent, the resulting H is unique. On the other hand, when C and F have

been independently estimated, equation (8) gives an approximated solution based on

the transfer of the 4 vectors of the canonic basis of P
2. Since two of these vectors

represent points lying at infinity, the resulting homography may not be well-suited for

points considered, usually lying in the images. Moreover, equation (8) is valid pro-

vided that the points represented by the vectors of the canonic basis of P
2 do not lie
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on the line s = (s1 s2 s3)
T ∼ b × e and hence, the following conditions apply:

s1 �= 0, s2 �= 0, s3 �= 0 and s1 + s2 + s3 �= 0. These conditions mean in particular

that the line s must not be parallel to the x-axis or to the y-axis and must not contain

the origin of the image.

For these reasons, we do not recommend the above-described method for the esti-

mation of the plane homography H from C and F, but rather the method described in

the following paragraph.

A physically meaningful solution. More physically meaningful means to estimate

H, but more computationally expensive, can be obtained by hallucinating static point

correspondences that lie on the plane using equation (6). Any standard method can

then be used to solve for H by minimizing a given criterion, see e.g. [9]:

1. hallucinate point correspondences as:{· · · , (x, (Cx) × (Fx)) ,
(
x′, (CTx′) × (FTx′)

)
, · · ·} ;

2. use any standard method to estimate H.

For example, we have chosen to non-linearly optimize the following cost function us-

ing the Levenberg-Marquardt algorithm initialized by the previously-given closed-form

solution:

H ∼ arg min
H

∑
x↔x′

(
d2 (Hx, (Cx) × (Fx)) + d2

(
H−1x′, (CTx′) × (FTx′)

))
.

Experimental results can be seen on figure 6. Note that hallucinated points are also

used in [12] for the estimation of general structure and motion, given sets of coplanar

points. This method is not subject to any degeneracy other than the generic degenera-

cies preventing the use of the prediction equation (7).

4.2 Multiple Views

In the registered case, 2 views entirely fix the dynamic motion, since the incidence point

and the motion plane may be determined uniquely. On the other hand, each additional

view of a dynamic point adds 1 dof, corresponding to its position on its motion line at

the time instant the picture was taken, as in the purely dynamic case.
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4.2.1 The Link Between C and P

Consider a set of images statically and dynamically registered. Without loss of gen-

erality, assume that two cameras are P ∼ (I(3×3) 0(3×1)) and P′ ∼ (H12
(3×3) e′(3×1)),

where Hij is the plane homography between view i and view j corresponding to the

motion plane. We want to express the link between a third view with camera matrix

P′′ and a 5-dof C-tensor C describing the dynamic geometry between view 2 and view

3. With this choice for P and P′, P′′ ∼ (H13
(3×3) e′′(3×1)), which may be written using

equation (6) as:

P′′ ∼ (H12([b′]× C + b′aT) e′′), (9)

where e′′ is the epipole of view 1 into view 3. We call this equation the P-C-consistency

constraint.

4.2.2 Estimation.

Two cases may be considered. Estimation of the C-tensor given the projection matrix

and conversely. We consider the latter case, altough there exist means for the former.

Using the P-C-consistency constraint (9), one may write a linear system for the 6

unknowns a and e′′ where each 3D/2D static point correspondence Q ↔ q gives 2

equations through q ∼ PQ. Therefore, 3 point correspondences are enough to solve

for P′′, instead of 6 in the unconstrained case.

It is possible to refine the obtained solution by non-linearly minimizing the repro-

jection error using techniques from bundle adjustment.

5 A Unified Tensor

The above-proposed methods share the same drawback. They require that static and

dynamic points have been segmented. We derive a unified matching tensor for two

views of both static and dynamic points, inspired from [16]. Consider a point corre-

spondence u,u′ that may be either static or dynamic. If this point is static, then it

must satisfy the fundamental equation u ′TFu = 0 and if it is dynamic, it must satisfy
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equation (1). Therefore, the following constraint must hold:(
u′TFu

)
·
(
u′TCu

)
= 0.

It has been shown in [16] that expanding this equation, and after some algebraic ma-

nipulations, equation û′TSû = 0 can be obtained, where S is the (6×6) unified tensor

(originally called “segmentation matrix”) and ûT ∼ (u2
1 u1u2 u2

2 u1u3 u2u3 u2
3) are

the 6 coordinates of u lifted onto P
5. This tensor has nice properties to describe the

geometry of the scenario considered. However, it is not well-suited for robust estima-

tion since 35 point correspondences are required for its linear estimation. Moreover, a

minimum of 8 static and dynamic point correspondences is required, which increases

the number of iterations of e.g. a RANSAC procedure.

6 Experimental Results Using Real Images

We compute dynamic and static structure and motion on a 60-frame sequence from

which sample images are shown on figure 1. We select dynamic and static features

by hand on the first image and automatically track them through the sequence using a

correlation-based technique. We then used key frames 0, 10, 20, . . . shown on figure 1.

We first perform dynamic structure and motion by sequentially computing C-tensors

as described in §3.2. We then perform constrained static structure and motion as de-

scribed in §4. Lastly, we use these results to recover the plane homographies associated

to the motion plane between key frames, as indicated in §4.1.2. Such homographies al-

low to transfer dynamic features and predict their position in another camera position

and another time instant as if they were static. The result of such transfers is shown on

figure 7.

Figure 7 also shows that the first homography (i.e. between frames 0 and 10) is

relatively accurate since static point positions after transfer seem visually good.

The main problem that we encountered was the computation of the initial 7-dof

C-tensor between the two first frames. Indeed, one may observe that all vehicles have

roughly the same speed, which therefore induces a point-to-point homography between

dynamic features of these two frames. There was therefore a 2-dof ambiguity on the
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Figure 7: Plane homographies recovered using dynamic and static structure and motion

allow to transfer vehicle positions from one key frame to the others as if they were

static. The last two images are zooms on frames 0 and 10 respectively. The first one

shows manually clicked static points (lying on the motion plane) while the second one

shows the transfer of these points using the recovered plane homography (computed

using dynamic points only).
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computation of the 7-dof C-tensor. Instead, we computed a 5-dof C-tensor constrained

by the projection of the incidence point in the first image. This projection was obtained

by intersecting support lines of white bands on the ground.

7 Conclusion

We addressed the case of a specific dynamic scenario describing the motion of point

features along lines converging to the same point and lying onto a motion plane. We

show that very simple matching tensors that we call C-tensors, similar to fundamental

matrices, exist. We show how to constrain static structure and motion by its dynamic

counterpart. Plane homographies associated with the motion plane can then be recov-

ered from dynamic features only. Experimental results show that this approach is fea-

sible in practice and may be used to model e.g. surveillance video cameras observing

roadways.

We believe that these geometrical features may be successfully used to devise com-

pletely automatic systems for vehicule tracking and camera motion estimation. Among

issues for further work, self-calibration of the camera by considering that in practice

the incidence lies most of the time at infinity, could be examined.
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monos, editors, Proceedings of the 15th International Conference on Pattern Recognition,

Barcelona, Spain, volume 1, pages 388–391, September 2000.

[18] Z. Zhang. Determining the epipolar geometry and its uncertainty: A review. International

Journal of Computer Vision, 27(2):161–195, March 1998.

23


