
Minimum Implicational Basis for -Semidistributive

Lattices

Philippe Janssen, Lhouari Nourine

To cite this version:

Philippe Janssen, Lhouari Nourine. Minimum Implicational Basis for -Semidistributive Lat-
tices. Information Processing Letters, Elsevier, 2006, 99 (5), pp.199-202. <lirmm-00101743>

HAL Id: lirmm-00101743

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00101743

Submitted on 28 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL Clermont Université

https://core.ac.uk/display/49303159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00101743


ARTICLE IN PRESS
JID:IPL AID:3459 /SCO [m3+; v 1.59; Prn:16/05/2006; 13:58] P.1 (1-5)

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
TE
D

P
R

O
O

F

Information Processing Letters ••• (••••) •••–•••
www.elsevier.com/locate/ipl

Minimum implicational basis for ∧-semidistributive lattices

Philippe Janssen a, Lhouari Nourine b,∗

a LIRMM, Université Montpellier II, 161, rue Ada, F34392 Montpellier cedex 5, France
b LIMOS, Université Blaise Pascal, Campus des cézeaux, F63173 Aubiere, France

Received 13 January 2006; received in revised form 21 February 2006; accepted 21 April 2006

Communicated by L. Boasson

Abstract

For a ∧-semidistributive lattice L, we study some particular implicational systems and show that the cardinality of a minimum
implicational basis is polynomial in the size of join-irreducible elements of the lattice L. We also provide a polynomial time
algorithm to compute a minimum implicational basis for L.
© 2006 Published by Elsevier B.V.
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E1. Introduction

This paper deals with the computation of a minimum
implicational basis for a closure system. Computing a
minimum implicational basis for a lattice given by its
poset of irreducible elements is an important problem,
which has applications to many areas of computer sci-
ence, in particular to databases and AI [1,4,6,7,10]. For
a survey on this problem and related areas, see [3].

The complexity of this problem remains open for
general lattices. Recent progress on the status of this
problem, and in particular solvability by limited non-
determinism [5], suggests however that this problem is
more likely to be expected tractable than intractable [4].

It has been already shown that this problem is
tractable for the two classes of locally distributive lat-
tice [2] and of modular lattices [14]. In this paper we

* Corresponding author.
E-mail addresses: pja@lirmm.fr (P. Janssen), nourine@isima.fr

(L. Nourine).
0020-0190/$ – see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.ipl.2006.04.004
show by using a dependence relation in [11] that the
class of ∧-semidistributive lattices is another tractable
case.

Consider a finite set U . A subset C ⊆ 2U is said to
be a closure system if C is closed under set-intersection
and containing the set U . An implication on U is an or-
dered pair (A,B) of subsets of U , denoted by A → B .
The set A is called the premise and the set B the con-
clusion of the implication A → B . Let Σ be a set of
implications on U . A subset D ⊆ U is Σ -closed if for
each implication A → B in Σ , A ⊆ D implies B ⊆ D.
The set of Σ -closed subsets of U , denoted by C(Σ), is
a closure system on U . Conversely, given a closure sys-
tem C on U , a family Σ of implications on U is said an
implicational basis for C if C = C(Σ). An implicational
basis is said minimum if it has a minimum number of
implications.

In this paper, we study the latticial version of this
problem. We view a lattice L as the closure system CL

on the set J (L) of its join-irreducible elements. More
precisely, put J (a) = {j ∈ J (L): j � a} for a ∈ L.
 102
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(b) (b)

Fig. 1. (a) A lattice L where join-irreducible (resp. meet-irreducible) elements are labeled by letters (resp. numbers); (b) The closure system cl

associated to L.
T
67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104
U
N

C
O

R
R

E
C

Then CL = {J (a): a ∈ L} is a closure system on J (L)

which, as a lattice ordered by inclusion, is isomorphic
to L.

Fig. 1 gives an example of the closure system CL as-
sociated to a lattice L.

The closure system CL can be defined by the set
of its meet-irreducible elements M(CL) = {J (m): m ∈
M(L)}, where M(L) denotes the set of meet-irreducible
elements of L. Each element of CL can be obtained as
intersection of some elements of M(CL).

The problem we study is:

Problem: Minimum implicational basis
Instance: The set of meet-irreducible elements M(CL)

of the closure system CL.
Question: Find a minimum basis Σ for CL.

This problem remains open for general lattices.
Duquenne [2] has given a latticial version of this prob-
lem and shown that it is polynomial for upper locally
distributive lattices or antimatroid. Recently, Wild [14]
has proposed a polynomial time algorithm to compute
an optimal1 implicational basis for modular lattices. In
the following, we study the case of ∧-semidistributive
lattices. For such lattices we show that the number of
implications of a minimum implicational basis is at
most |J (L)|2 and give a polynomial time algorithm to
compute such a basis.

2. Some properties of ∧-semidistributive lattices

Let L be a finite lattice. We note ∨ the join operation,
∧ the meet operation and ≺ the cover relation of L. If j

is a join-irreducible element of L, we use j∗ to denote

1 An implication is known as optimal if the sum of the cardinality
of the premises and the conclusions of all the implications is minimal.
E
D

P
Rthe unique element covered by j . Dually, we use m∗ to

denote the unique element covering a meet-irreducible
element m.

We will use the arrow relations introduced by Wille
[15]: for x, y ∈ L,x ↓ y means that x is a minimal ele-
ment of {z ∈ L: z � x}, x ↑y means that y is a maximal
element of {z ∈ L: z � y} and x � y means that x ↑ y

and x ↓ y. Recall that ↑,↓,� are relations defined on
J (L) × M(L), where J (L) is the set of join-irreducible
elements and M(L) the set of meet-irreducible elements
of L.

In the following, we deal essentially with ∧-semidis-
tributive lattices. Let us recall that a lattice L is said
∧-semidistributive if for all elements x, y, z ∈ L, x ∧
y = x ∧ z implies x ∧ y = x ∧ (y ∨ z). A ∧-semidis-
tributive lattice is said semidistributive if for all ele-
ments x, y, z, x ∨y = x ∨ z implies x ∨y = x ∨ (y ∧ z).
The following characterization of these lattices are well
known (see, for example, [6]):

Property 1. A finite lattice L is ∧-semidistributive if
and only if for any j ∈ J (L) there exists a unique m ∈
M(L) such that j � m.

For any ∧-semidistributive lattice L and j ∈ J (L),
we denote by m(j) the unique element m ∈ M(L) such
that j � m.

We define the mapping γ :J (L) → 2M(L) by γ (j) =
{m ∈ M(L): j ↓ m}. This mapping was introduced
in [12] to define colored posets, which provides a new
representation for lattices, and specially for upper lo-
cally distributive lattices. Fig. 2 shows the γ mapping
of the lattice of Fig. 1. Note that this lattice is semidis-
tributive.

We consider one of the standard dependence rela-
tions defined on join-irreducible elements (assuming
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Fig. 2. The arrow relations and mapping γ of the lattice in Fig. 1.

Fig. 3. The graph of the B relation for the lattice in Fig. 1.

that the lattice L is ∧-semidistributive) as follows (see,
for example, [8,11]):

Let j, j ′ ∈ J (L).
Then j B j ′ iff j 
= j ′, j ′ � m(j), j ′∗ � m(j).

For an illustration of that definition, see Fig. 3.
There are relationships between the existence of cy-

cles in the graph of the relation B and some classes of
lattices. For example, Nation has shown that a ∧-semi-
distributive lattice is semidistributive if and only if it
contains no B-cycle of length 2 [11].

The following lemma gives a rewriting of the defini-
tion of the relation B using the mapping γ .

Lemma 1. Let L be a ∧-semidistributive lattice, j, j ′ ∈
J (L).

j B j ′ iff j 
= j ′ and m(j) ∈ γ (j ′).

3. Minimum implicational basis for
∧-semidistributive lattices

In this section, we give a polynomial time algorithm
to compute a minimum implicational basis for a ∧-se-
midistributive lattice.

We start with two technical lemmas on closed sets
of a closure system CL. The first one is obvious since
the elements of CL are order ideals of the induced poset
by J (L).

Lemma 2. Let j, j ′ ∈ J (L) such that j < j ′ and X ∈
CL. Then j ′ ∈ X implies j ∈ X.

Consider now a ∧-semidistributive lattice L and
j, j ′ ∈ J (L) such that jBj ′. We denote by Pjj ′ the set
J (j∗) ∪ J (j ′).
E
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Lemma 3. Let L be a ∧-semidistributive lattice and
j, j ′ ∈ J (L) such that jBj ′ and X ∈ CL. Then Pjj ′ ⊆ X

implies j ∈ X.

Proof. Let x ∈ L such that X = J (x) and Pjj ′ ⊆ X.
Since J (j∗) ⊂ X this implies that j∗ ∨ j ′ � x, and then
it suffices to prove that j � j∗ ∨ j ′.

Suppose that j � j∗ ∨ j ′ and let m′ ∈ M(L) be a
maximal element of {z ∈ L | z � j and z � j∗ ∨ j ′}. By
definition of m′, we have j ↑ m′. Moreover j ↓ m′ since
j∗ � m′. Thus j � m′.

Consider now the meet-irreducible m(j) associ-
ated with j . Then j ′ � m(j) since j B j ′. Thus since
j ′ � m′, m′ and m(j) are two distinct elements such
that j � m′ and j � m(j). This contradicts the fact that
L is ∧-semidistributive. �

We can now define a particular set of implications
associated to a ∧-semidistributive lattice L. Let Σ1 =
{j → J (j)}, Σ2 = {Pjj ′ → j | j ′ ∈ J (L) and j B j ′}
and Σ = Σ1 ∪ Σ2.

For example, the sets of implications Σ1 and Σ2 for
the lattice in Fig. 1 are Σ1 = {b → ab, d → cd, e →
cde,f → cdef,g → cdg} and Σ2 = {acd → e, abc →
d, acdef → b, acdg → b, cdeg → f }.

The following theorem shows that Σ is an implica-
tional basis for CL.

Theorem 1. Let L be a ∧-semidistributive lattice. Then
the set of implications Σ is an implicational basis
for CL.

Proof. We need to show that CΣ = CL.
Let X ∈ CL. By Lemma 2, X is Σ1-closed. By

Lemma 3, X is Σ2-closed. Then X is Σ -closed and
CL ⊆ CΣ .

Now let us show that CΣ ⊆ CL. Let X ∈ CΣ . Let
x0 = ∨

X, i.e., the least closed set containing X. Clearly
X is an ideal since it is Σ1-closed. Suppose that X /∈ CL

and let j be a minimal element of J (x0)\X. Since j �
x0, we have x0 � m(j). Moreover X � J (m(j)), other-
wise one would have

∨
X � m(j) and then

∨
X 
= x0.

Thus there exists an element j ′ ∈ X such that m(j) ∈
γ (j ′) and therefore Pjj ′ → j ∈ Σ with Pjj ′ ⊆ X and
j /∈ X. Then X is not Σ -closed, which concludes the
proof. �
Corollary 1. Let L be a ∧-semidistributive lattice. Then
there exists an implicational basis for CL with at most
|B| + |J (L)| implications, where |B| is the number of
arcs in the relation B .
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Algorithm 1. Minimum-Basis(M(CL)).

Clearly the set Σ of implications obtained as above
is in general not minimum. For instance, for the set
Σ associated to the lattice in Fig. 1, the implication
acdg → b is redundant2 and can be removed from Σ

without changing C(Σ).
In the following we give a polynomial time algorithm

to compute a minimum basis for a ∧-semidistributive
lattice.

3.1. Algorithm

This is based on Theorem 1 and the algorithm in [13].
Indeed, the algorithm in [13] computes a minimum ba-
sis (called there a minimum cover) from any given basis
in polynomial time.

Let M(CL) be the set of meet-irreducible elements.
Consider the closure operator ϕ : 2J → 2J , with for X ⊆
J , ϕ(X) = ⋂{M ∈ M(CL) | X ⊆ M}. The images of
the mapping ϕ are said closed sets, and they correspond
to the elements of the closure system CL.

Remark 1. We replaced P → j by P → ϕ(P ) to guar-
antee the minimality after the calculation of a nonredun-
dant cover of Σ .

Remark 2. Let us note that Algorithm 1 does not com-
pute the same Σ as that of Theorem 1. This to avoid
the computation of the relation B . But like the whole of
the implications calculated by Algorithm 1 contains all
implications of Theorem 1 (relative with the preceding
remark), this guaranteed to us to have a cover of CL.

Theorem 2. Let L be a ∧-semidistributive lattice. Then
Algorithm 1 computes a minimum implicational basis Σ

2 An implication A → B in Σ is said redundant in Σ if it can be
derived using Armstrong rules from Σ\{A → B}.
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of CL in O(|J |5 +|J |3|M(CL)|) time complexity. More-
over, the size of Σ is at most |J (L)|2 implications.

Proof. Theorem 1 guarantees that Σ is a basis for the
closure system CL. Since the conclusions of all impli-
cations are closed by the mapping ϕ, the result in [13]
guarantees that a not redundant basis is minimum.

Computing the closure of a set X ⊆ J (L) by ϕ

can be done in O(|J (L)||M(CL)|) time complexity.
Thus the total time complexity for computing a ba-
sis is in O(|J (L)|3|M(CL)|). Now computing a not
redundant basis can be done in O(|J (L)||Σ |2). Since
Σ has at most |J (L)|2 implications, we conclude that
the time complexity of Algorithm 1 is in O(|J (L)|5 +
|J (L)|3|M(CL)|). �
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