

# Supersymmetry results at the Tevatron F. Badaud

# ► To cite this version:

F. Badaud. Supersymmetry results at the Tevatron. DIS2006 XIV International Workshop on Deep Inelastic Scattering, Apr 2006, Tsukuba, Japan. 2006. <in2p3-00104934>

# HAL Id: in2p3-00104934 http://hal.in2p3.fr/in2p3-00104934

Submitted on 9 Oct 2006

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# SUPERSYMMETRY RESULTS AT THE TEVATRON

FRÉDÉRIQUE BADAUD

on behalf of the CDF and DØ collaborations Laboratoire de Physique Corpusculaire-IN2P3/CNRS, Clermont-Ferrand, France E-mail: badaud@clermont.in2p3.fr

The results for searches for Supersymmetry by the CDF and D $\emptyset$  collaborations in p $\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV are presented here. Searches for chargino/neutralino and the lightest stop, as well as scenarios with R-parity violation are focused here. The integrated luminosity analyzed ranges from 300 to 800 pb<sup>-1</sup> depending on the search. Further informations can be found on the public web pages of the two experiments <sup>1, 2</sup>.

# 1. Supersymmetry

Supersymmetry (SUSY) predicts the existence of a new particle for each of the Standard Model (SM) particles, differing by half a unit in spin but otherwise sharing same quantum numbers. A discrete multiplicative symmetry, called R-parity, is defined as  $Rp = (-1)^{(2S+3B+L)}$  where B is the baryon number, L is the lepton number and S is the spin of the particle, such that a SM particle carries Rp = +1 and a SUSY particle Rp = -1. Supersymmetric particles have not been observed yet implying that SUSY is a broken symmetry. In Rp conserving models, supersymmetric particles are produced in pair and the lightest supersymmetric particle (LSP) is stable. The masses for the proposed superpartners are potentially accessible at the Tevatron.

## 2. Charginos and neutralinos

#### 2.1. Multilepton final state

In the mSUGRA scenario the superparticles are produced in pairs and the lighter charginos and neutralinos, mixed state of electroweak gauginos and higgsinos, and the sleptons, are less massive than gluinos and squarks. The LSP is the  $\tilde{\chi}_1^0$ . In the case where charginos and neutralinos decay leptonically,  $\tilde{\chi}_1^{\pm} \to \ell^{\pm} \nu_{\ell} \tilde{\chi}_1^0$  and  $\tilde{\chi}_2^0 \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$ , very clean final states of 2

Table 1. CDF results of search for  $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to \ell^{\pm} \ell^{\mp} + X$ . LS means Like Sign.

| Channel        | $\mu\mu + \ell$       | $\mu e + \ell$        | $LS \ ee$             | LS $\mu\mu$           | LS $\mu e$            |
|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Luminosity     | $745 \text{ pb}^{-1}$ | $700 \text{ pb}^{-1}$ | $704 \text{ pb}^{-1}$ | $704 \text{ pb}^{-1}$ | $704 \text{ pb}^{-1}$ |
| SM expectation | $0.64 \pm 0.18$       | $0.78 \pm 0.11$       | $2.6\ \pm 0.4$        | $3.5{\pm}0.6$         | $0.7 \pm 0.1$         |
| observed       | 1                     | 0                     | 4                     | 5                     | 0                     |

# 2.2. Diphotons

#### 3. Squarks and gluinos

# 3.1. Stops

test

is 23.0±3.1 (40.7±4.4) for 21(42) observed in the  $e\mu \log \Delta m$  (high  $\Delta m$ ) region. In the  $\mu\mu$  final state the expectation from SM is  $2.88\pm0.43^{+0.10}_{-0.04}$  while 1 event is observed. All the results are compatible with SM expectations. The regions for which the calculated cross section upper limit is smaller than the theoritical cross section are 95% C.L. excluded and are shown in Figure 2.

### 4. R-parity violation

CDF looked for Rp violating SUSY in the multilepton channel. The search is performed under the assumption that SUSY particles are pair produced and decay under Rp conservation while only the LSP can decay into two charged leptons plus a neutrino via the  $\lambda_{121}$  or  $\lambda_{122}$  coupling. Both the 3 and 4 leptons signatures,  $ee\ell(\ell)$  and  $\mu\mu\ell(\ell)$  with  $\ell = e \text{ or }\mu$ , were investigated and the observation is compatible with the expectation. As an example, Figure 4 shows the invariant mass distribution of the leading leptons. The channels are combined and upper limits at 95% C.L. on the cross sections,  $\sigma < 0.21$  pb for  $\lambda_{121} > 0$  and  $\sigma < 0.11$  pb for  $\lambda_{122} > 0$ , are obtained.

## 4.1. Long-lived LSP

DØ looked for the decay of the neutralino to leptons and a neutrino in 383  $pb^{-1}$  of data. The analysis focuses on the scenario where the Rp coupling is weak and the LSP would travel  $\geq 5$  cm before decaying. This possibility was inspired by an excess in dimuon events reported by NuteV. No events are observed with an expectation of  $0.8 \pm 1.1 \pm 1.1$  from backgrounds and the limit set excludes the possibility that the NuteV events are due to neutralino decay.

## 5. Conclusions

CDF and D $\emptyset$  have searched for SUSY and no deviation from the Standard Model have been found. SUSY parameter regions have been excluded. High luminosity samples, corresponding to 1  $fb^{-1}$  are being analyzed.

#### References

- 1. http://www-cdf.fnal.gov/physics/exotic/exotic.html
- 2. http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

3

4



Figure 1. 95% C.L. limit on GMSB SUSY Snowmass Slope obtained in the analysis (thick blue line) and in the previous  $D\emptyset$ result (dot-dashed) purple-line. SUSY LO (NLO) cross-section is shown in black solid (dashed) line.



Figure 3. The red curve is the 95% C.L. limit on pair production of neutral, long-lived particles.



Figure 2. 95% C.L. excluded region in the stop search for the combination of  $e\mu$  and

 $\mu\mu$  final state.



Figure 4. Search for Rp violating SUSY in the multilepton channel. Invariant mass distribution of the leading leptons.