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Abstract 

 In this paper, the synthesis, the characterization and the scintillation properties of LuPO4 

doped, with several concentrations of Ce3+, Eu3+ and Tb3+ ions, are presented. These materials have 

been synthesized by sol-gel process. The purity of powders has been verified by X-Ray diffraction 

and the results confirm the xenotime structure of all the materials. A thermogravimetric analysis 

allows the obtention of informations on the crystallisation of LuPO4 and the study of its evolution 

from the amorphous to crystalline form. The morphology of the powders has been studied by 

Scanning Electron Microscopy and shows that the powders are constituted of small particles with 

narrow size distribution. Optical properties have been studied in order to determine the scintillation 

performances of these materials. The optima are obtained for Ce3+, Eu3+ and Tb3+ concentration of 

respectively 0.1%, 10% and 5% with high scintillation yields. This study thus confirms the 

potentialities of these materials as scintillators. 



 3 

Introduction 

 Nowadays, research focussed on inorganic scintillators is in constant development. These 

materials, that convert high energy radiation into UV-Visible light, are used in various applications 

[1]: medical imaging, high energy physics, airport security and industrial control. For medical 

imaging applications, the conversion yield of the scintillating materials has to be improved in order 

to minimize the patient X-rays exposure. The development of materials that present high density are 

particularly interesting in order to get efficient X-ray absorption. 

 The sol-gel process seems to be a good solution for the elaboration of scintillating materials. 

Indeed, the use of molecular precursors in solution confers an important chemical homogeneity to 

these materials. Moreover, the sol-gel route allows the elaboration of materials of different 

composition and doped easily with different ions, in various concentration. The sol-gel derived 

materials are synthesized at lower temperature than the ones elaborated by classical solid state 

synthesis. This point is economically important and can sometimes lead to new phases. 

 Because of the required high density, lutetium based oxides materials are very interesting 

candidates. In order to exhibit luminescence properties, these materials are generally doped with 

rare earth ions. LuPO4, which is known as an efficient scintillator [2], is the subject of this work and 

has been doped with Ce3+, Eu3+ and Tb3+ ions. 

 The emission of Ce3+ doped scintillator is based upon intense and fast 5d → 4f transitions 

and occurs in the UV-blue range for which effective detectors are available. 

 The materials doped with Eu3+ or Tb3+ ions emit in the visible range but with long decay 

time. 

 

Experimental Section 

Materials preparation 

Sol-Gel derived samples 

 In a first step, a mixture of Lutetium and Ln alkoxides (Ln=Eu, Tb or Ce) is prepared by 

metathesis reaction of lutetium anhydrous chloride with potassium isopropanolate as reported for 

various metallic alkoxides [3]. All manipulations are carried out under dry argon atmosphere to 

prevent any influence of air moisture. High purity chlorides (Aldrich) were used; they were dried 

under vacuum before use to ensure total absence of water. LuCl3 and LnCl3 were mixed together in 

anhydrous 2-propanol in required amounts during 2 hours. Potassium isopropoxide was prepared by 

reacting metallic potassium (Aldrich) with anhydrous 2-propanol (Accros). Anhydrous 2-propanol 
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was dried and stored over molecular sieve. Lu/Ln chlorides mixture is then reacted with the 

potassium alcoholate with a K/(Lu+Ln) ratio in slight excess with respect to the stoechiometric 

K/(Lu+Ln)=3 molar ratio. The mixture was then refluxed for 3 hours t 85°C, white precipitate of 

KCl appeared rapidly attesting the formation of the Lu/Ln alkoxides. The obtained sol labeled sol 1 

is then cooled down to room temperature. 

The phosphorus precursor (sol 2) is prepared by reacting anhydrous P2O5 with isopropanol yielding 

a mixture of hydroxo alkoxides (O=P(OH)x(OiPr)3-x,  x=0,1,2,3).   

Sol 1 and sol 2 are then mixed under stirring and immediate precipitation occurs. The mixture was 

then magnetically stirred for 15 hours at room temperature. The solid is then isolated by 

centrifugation and elimination of the supernatant and washed thoroughly with deionized water in 

order to eliminate water soluble KCl. The badly defined amorphous lutetium alkoxo phosphate is 

dried for about 6 hours at 80°C and the dry xerogel obtained is then fired at 1100 °C for 24 hours.  

LuPO4 powders doped with Ce3+, Tb3+ and Eu3+ ions have been prepared with an atomic ratio of 

0.1, 0.2, 0.3, 0.5 and 1 % for Ce3+, 0.2, 0.5, 1, and 5% for Tb3+ and 0.2, 0.5, 1, 5 and 10 % for Eu3+. 

Co-precipitated samples 

 For sake of comparison, Eu3+ doped LuPO4 samples have been prepared by co-precipitation.  

A mixture of Lu2O3 and Eu2O3 is prepared in required amount. A solution of phosphoric acid 

(C=0.2 M) is then added to the oxides mixture and refluxed for 15 hours. The resulting white 

powder is then washed thoroughly with de-ionized water and finally fired in the same conditions 

than sol-gel derived samples (1100 °C for 24 hours).  

 

Characterization 

 X-Ray diffraction patterns have been measured for all powders on a Siemens D501 

diffractometer working in the Bragg-Brentano configuration with Cu-Kα radiation (λ = 1.5406Ǻ). 

 Infrared spectra were recorded on a Perkin Elmer 2000 FTIR spectrometer using the KBr 

pellet technique.  

 Thermogravimetric analysis were performed using a Metler Toledo 851 apparatus. Samples 

were heated in air with a rate of 1 °C.min-1. 

 Micrographs were recorded using a Cambridge StereoScan 360 SEM operating at 20 kV. 

Samples were prepared by depositing a small quantity of powder on adhesive carbon film before 

coating the surface with gold. 
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 The excitation spectra of all the powders, doped with Ce3+, Eu3+ or Tb3+, were recorded at 

room temperature using a Xenon lamp as continuous excitation source and a Triax 320 

monochromator coupled with a CCD detector. 

 The scintillation spectra were recorded with a Jobin-Yvon Triax 320 monochromator 

coupled with a CCD camera after excitation of the samples with a tungsten X-ray tube working at 

35 kV and 15 mA. The signal was collected near the sample with an optical fiber. For relative 

conversion yield estimation, the samples were placed in a quartz tube with a fixed position 

throughout the measurements. For measurements of scintillation yields, of Ce3+ or (Eu3+, Tb3+) 

doped samples, polycristalline BGO or Gd2O2S:Tb3+ powder were respectively used as a standard. 

 Emission spectra were recorded at room temperature with a single monochromator Jobin 

Yvon HR 100 spectrometer. For Eu3+, resonant excitation in the 5D0 level was achieved using a 

ND62-Continuum dye laser pumped by a frequency doubled pulsed Continuum Surelite I 

Nd3+ :YAG laser. A mix of Rhodamine 590 and 610 was used for the dye solution. For Tb3+, a 

pulsed nitrogen laser (Jobin Yvon) was used with excitation wavelength λ=337.1 nm. 

Time resolved emission was monitored with an EG&G Boxcar and fluorescence lifetimes were 

measured with a LeCroy 400 MHz oscilloscope. 

The afterglow measurements were performed at room temperature on the samples corresponding to 

concentration optima. The excitation was performed during 10 s with a X-ray source working at 40 

kV and 35 mA. Gd2O2S:Tb3+ powder was used as a reference. 

 

Results and Discussion 

Characterization 

X-Ray Diffraction 

 Figure 1 shows the XRD patterns for LuPO4 powders doped with Ce3+, Eu3+ and Tb3+ ions. 

Orthophosphates LnPO4 present two crystalline types depending on the nature of Ln3+ cation. In 

effect, LuPO4 crystallizes with the xenotime type [4] whereas CePO4 and EuPO4 crystallize with the 

monazite type [5]. However the XRD patterns only show the xenotime structure of LuPO4, 

confirming the substitution of Lu3+ by Ln3+ (Ln: Ce, Eu or Tb) in solid solution. It is significant to 

specify that LuPO4:Ce3+ can be obtained without presence of CePO4 until a maximal Ce 

concentration of 1% at. Indeed, the X-ray diffraction pattern of a LuPO4:Ce3+ (2%) powder shows 

the presence of both LuPO4 and CePO4 phases. So the solid solution for LuPO4 xenotime is 
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observed up to 1%, 10% and 5% for respectively cerium, europium and terbium ions. Solid solution 

limits have not been determined for Eu3+ and Tb3+ doped materials and higher concentration might 

be possible while keeping the xenotime structure and a monophasic material. 

 

FTIR Spectroscopy 

 Fourier Transform Infra-Red spectroscopy has been carried out on different samples doped 

with Ce3+, Eu3+ and Tb3+ ions. All recorded IR spectra are similar, no significant change is observed 

upon doping with Ce3+, Eu3+ or Tb3+ ions. One of the recorded spectra is displayed in Figure 2. All 

the bands, observed in the range 500-1200 cm-1 correspond to (PO4)3- groups present in the 

structure. The bands observed between 500 and 640 cm-1 and at about 1000 cm-1 correspond 

respectively to bending vibrations δO-P-O and stretching vibrations νP-O [6]. At about 519 cm-1 the 

bands relative to stretching vibrations νLu-O can also be observed. The mode observed around 3500 

cm-1 corresponds to stretching mode of residual OH groups νO-H. FTIR spectra correspond to a 

unique phase identified as LuPO4 regardless of the doping level and the nature of the doping ion. 

Residual hydroxyls groups coming from the hydrolysis of alkoxides precursors are observed and 

will be confirmed by luminescence decay measurements. 

 

Thermal analysis 

 In order to get informations on the cristallisation of LuPO4, a thermal analysis has been 

performed. The evolution from the amorphous to crystalline form is then studied. A 

thermogravimetric analysis has been carried out on LuPO4 powder elaborated by sol-gel process 

and the resulting thermogramm is presented in Figure 3. The first derivative is also shown in order 

to clearly identify the temperatures associated with the different weight losses.  

 A first weight loss is observed around 100°C and can be allotted to the elimination of 

adsorbed species such as alcohol or water molecules [7]. A second significant weight loss, observed 

at about 200°C, corresponds to the condensation of the material. There is a condensation of the 

alkoxy and hydroxy groups with subsequent alcohol or water elimination.  Some residual organic 

compounds can also be directly pyrolyzed. At this temperature, the inorganic skeleton is formed.  

Total loss of weight is approximately 20%. 
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Scanning Electron Microscopy 

 Scanning Electron Microscopy allows the extraction of informations about the morphology 

of the powders synthesized by sol-gel process and treated at 1100°C for 24 hours. The images, 

recorded at 10 000x magnification, are given in Figure 4. The powders are homogeneous and 

constituted of small spherical particles. The size distribution of these particles is uniform which is a 

usual consequence of the use of sol-gel process.  

   

Optical properties 

Excitation spectra 

 Figure 5 shows the excitation spectra recorded for Ce3+, Eu3+ and Tb3+ doped LuPO4 

powders. The measurements were performed at room temperature by fixing the emission 

wavelength at 360 nm, 592 nm and 541 nm for respectively LuPO4:Ce3+ (0.5%), LuPO4:Eu3+ (10%) 

and LuPO4:Tb3+ (5%). Excitation spectra recorded for other concentrations are identical and are not 

presented.  

 In the case of LuPO4:Ce3+, two main bands are observed which correspond to the transitions 

between the 4f level and the excited 5d levels: T2 and E of Ce3+ [8], further splitting of the 5d levels 

is not observed probably due to the poor resolution in our room temperature spectra. 

  The excitation spectrum recorded for LuPO4:Eu3+ is constituted of lines corresponding to 

4f-4f transitions. The band observed at about 470 nm is attributed to 7F0 → 5D2 transition and the 

ones situated in the range between 300-430 nm correspond to 7F0 → 5F2, 5HJ, 5D4, 5GJ, 5L8, 5L6, 5D3 

transitions. The excitation band located below 250 nm corresponds to the charge transfer absorption 

[9]. 

 The excitation bands observed for LuPO4:Tb3+ powder, in the range of 300-400 nm, are 

characteristic of 4f-4f transitions. They correspond to 7F6 → 5H6, 5H7, 5L8, 5L9, 5D2, 5G5, 5L10, 5G6 

and 5D3 transitions [10].  

 

Emission spectra 

 The emission spectra have been recorded at room temperature under X-ray excitation for 

LuPO4 powders doped with different concentrations of Ce3+, Eu3+, Tb3+ ions (Figure 6).  

BGO (Bi4Ge3O12) and Gadox (Gd2O2S:Tb) emission spectra have also been recorded in order to 

estimate the scintillation yields. BGO and Gadox will respectively allow the scintillation yields 

measurements of Ce doped materials and Eu and Tb doped materials. 
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 In the case of LuPO4:Ce3+ (Figure 6 (a)), two emission bands characteristic of 5d → 2F5/2 

and 5d → 2F7/2 transitions of Ce3+ can be observed in the region of 300-400 nm. The optimum is 

obtained for LuPO4:Ce3+ (0.1%). The Ce3+ doped materials present an emission in the UV-blue 

range. 

 For LuPO4:Eu3+, the emission spectra have been recorded for powders elaborated by sol-gel 

process (Figure 6 (b)) and by co-precipitation. The two spectra are similar and constituted of bands 

corresponding to 5D0 → 7FJ (J = 0-4) transitions of Eu3+ ions. The numbering of the different lines 

fairly respect the D2d point group. The spectral distribution of the Eu3+ doped materials results in a 

global orange-red emission.  

 LuPO4:Tb3+ emission spectrum (Figure 6 (c)) exhibits, in the range between 475-650 nm, 

several bands characteristic of 5D4 → 7FJ (J = 3-6) transitions of Tb3+ ions. 5D4 → 7F5 transition is the 

most intense and confers to the materials a global greenish emission. 

 

Luminescence decays 

For practical applications, the lifetime of the emission is a very important parameter. Decay curves 

have been measured for the optima concentrations. Due to the very short radiative lifetime of Ce3+ 

(25 ns in LuPO4), the decay curve has not been measured for the Ce3+ doped samples. 

The decay curves obtained for the co-precipitated LuPO4:Eu3+ 5 % and for the sol-gel derived 

LuPO4:Eu3+ 5 % and LuPO4:Tb3+ 5% samples have been measured. The decays were all fitted with 

a single exponential as shown in Figure 7. The lifetimes given on the graph are 3.9 ms, 2.5 ms and 

2.5 ms for LuPO4:Eu3+ 5 % co-precipitated, LuPO4:Eu3+ 5 % and LuPO4: Tb3+ 5 % sol-gel 

respectively. The shorter radiative lifetime of the sol-gel derived sample as compared to the co-

precipitated one is related to higher residual OH concentration in the material prepared by sol-gel 

chemistry as observed for YPO4 [11]. The measured lifetimes are fully compatible with 

applications. 

Scintillation yields 

 Scintillation yields have been measured for all the powders by comparing the integrating 

areas of the emission spectra of the sample and the reference (BGO or Gadox). Scintillation yields 

under γ-rays excitation are respectively 8060 photons/MeV [12] and 78000 photons/Mev [13] for 

BGO and Gadox. The yields of our materials were calculated from reference values which are 

obtained under γ-ray excitation. Our measurements have been performed under X-ray excitation, so 

the results given for the scintillation yields under γ-ray excitation might be under-estimated. The 

scintillation yields for all the samples and their evolution as a function of the doping ion 

concentration are presented in Figure 8. 
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 For Ce3+ doped LuPO4, the optimum is obtained for a Ce concentration of 0.1% with a 

scintillation yield of about 10200 photons/MeV. This result is in good agreement with the published 

value of 12000 photons/MeV [14]. The scintillation yield of LuPO4:Ce3+ has been improved by 

optimizing the Ce concentration. Indeed, recent work [15] presents the scintillation yield of 

different Ce doped materials and in particular the one of LuPO4:Ce3+ (1%) which was equal to 7400 

photons/MeV. This paper [15] also presents results concerning the cerium oxidation state in cerium 

doped sol-gel derived materials indicating the presence of Ce4+
 ions, so this observation can explain 

the fact that the measured yields are lower than those published in the literature. However, it is 

always difficult to compare the results obtained on single crystals and on powders. Moreover the 

results depend strongly on the experimental set-up. 

  In the case of Eu3+ doped LuPO4 powders, the maximum is obtained for LuPO4:Eu3+ (10%) 

when powders are elaborated by sol-gel process. For an europium concentration of 5%, the 

scintillation yields are respectively about 5400 photons/MeV and 9400 photons/MeV for the 

material elaborated by sol-gel process and the one synthesized by co-precipitation. We can see that 

the scintillation yields obtained for the materials synthesized by co-precipitation are higher than 

those of the corresponding sol-gel derived materials. A possible explanation could be the presence 

of OH residual groups in the materials prepared by sol-gel route as already postulated from the 

lifetime measurements and illustrated by FTIR measurements. 

 Different scintillation yields have been measured for LuPO4:Tb3+, and particularly for Tb3+ 

concentration varying from 0.2 to 5%. LuPO4:Tb3+ (5%) present the higher scintillation yield since 

this one is equal to about 9200 photons/MeV. 

 

Afterglow 

 The afterglow value is an important characteristic for scintillating materials used in 

tomography. Indeed, for an application in tomography, the scintillator afterglow should be weak 

because a lot of images are recorded successively in a short time.  

 The afterglow behaviours for Ce3+, Eu3+ and Tb3+ doped LuPO4 powders are presented in 

Figure 9. The afterglow of Gadox (Gd2O2S:Tb) was also measured as a reference. The materials 

present an afterglow of 0.9%, 0.35%, 2.5% and 0.007% at 1 s after X-rays turn-off, for LuPO4:Ce3+ 

(0.1%), LuPO4:Tb3+ (5%), LuPO4:Eu3+ (10%) elaborated by sol-gel process and Gadox 

respectively. The relatively high afterglow of Eu3+ doped samples could be restrictive for practical 

applications. LuPO4:Eu3+ (5%) synthesized by co-precipitation present an afterglow equal to 1% at 

1 s after X-ray turn-off.  
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Conclusion 

 The sol-gel process is a good technique which allows the elaboration of scintillating LuPO4 

powders doped with different rare earth ions. These sol-gel derived powders present good 

cristallinity and purity, a homogeneous distribution of the particles and a controlled morphology. 

The scintillating properties of Ce3+, Eu3+ or Tb3+ doped LuPO4 powders were studied and high 

scintillation yields were obtained. These materials appear to be promising scintillators. 

The optical properties of the prepared materials are not different from the ones of analogous solid 

state derived materials. The main advantage of sol-gel chemistry remains the possibility to prepare 

easily various compositions changing both the nature of the oxide matrix and the rare earth doping 

ions. The maximum possible concentration of doping ions is always higher for sol-gel derived 

materials than for the ones derived from solid state reaction and in particular single crystals. In 

some cases new compositions unreachable by solid state reaction are possible.  

Furthermore, the sol-gel process developed in this work will allow the production of these materials 

as thin films which is a highly desirable configuration for X-ray intensifying screens. 

Sol-gel process appears to be a simple and more flexible process for preparing oxides scintillators. 

In particular, it allows a high output screening of compositions and a high versatility in term of final 

shape.  
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Figures captions 
Figure 1: X-Ray diffraction patterns recorded for (a) LuPO4:Ce3+ (1%), (b) LuPO4:Eu3+ (10%) and 

(c) LuPO4:Tb3+ (5%) with the corresponding reference patterns (dotted lines) 

Figure 2: FTIR spectrum of LuPO4 powder heated at 1100°C for 24 hours 

Figure 3: TG curve obtained from LuPO4 powder and first derivative curve (dotted line) 

Figure 4: SEM micrographs of LuPO4 powders treated at 1100°C for 24 hours 

Figure 5: Excitation spectra of LuPO4:Ce3+, LuPO4:Eu3+ and LuPO4:Tb3+ recorded at room 

temperature and respectively at λem = 360 nm, λem = 592 nm and λem = 541 nm 

Figure 6: Emission spectra recorded at room temperature under X-Ray excitation on (a) 

LuPO4:Ce3+, (b) LuPO4:Eu3+ and (c) LuPO4:Tb3+ (The emission spectra of LuPO4:Eu3+ powders 

synthesized by co-precipitation are not presented, but they are similar to the ones recorded for the 

Eu3+ doped powders elaborated by sol-gel process) 

Figure 7: Decay curves recorded at room temperature for LuPO4: Eu3+ 5 % co-precipitated (a), 

LuPO4: Eu3+ 5 % sol-gel (b) and LuPO4: Tb3+ 5 % sol-gel (c). Decays have been fitted with a single 

exponential and lifetimes are given on the graph. 

Figure 8: Relative scintillation yields of LuPO4:Ce3+, LuPO4:Eu3+ and LuPO4:Tb3+ samples 

Figure 9: Afterglow measurements on LuPO4:Ce3+, LuPO4:Eu3+ and LuPO4:Tb3+ and on Gadox 

under X-ray excitation with a 10 s irradiation time 
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Figure 1: X-Ray diffraction patterns recorded for (a) LuPO4:Ce3+ (1%), (b) LuPO4:Eu3+ (10%) and (c) 

LuPO4:Tb3+ (5%) with the corresponding reference patterns (dotted lines) 
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Figure 2: FTIR spectrum of LuPO4 powder heated at 1100°C for 24 hours 
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Figure 3: TG curve obtained from LuPO4 powder and first derivative curve (dotted line) 
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Figure 4: SEM micrographs of LuPO4 powders treated at 1100°C for 24 hours 
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Figure 5: Excitation spectra of LuPO4:Ce3+ (0.5%), LuPO4:Eu3+ (10%) and LuPO4:Tb3+ (5%) recorded at 

room temperature and respectively at λem = 360 nm, λem = 592 nm and λem = 541 nm 
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Figure 6: Emission spectra recorded at room temperature under X-Ray excitation on (a) LuPO4:Ce3+, (b) 

LuPO4:Eu3+ and (c) LuPO4:Tb3+ (The emission spectra of LuPO4:Eu3+ powders synthesized by co-

precipitation are not presented, but they are similar to the ones recorded for the Eu3+ doped powders 

elaborated by sol-gel process) 
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Figure 7: Decay curves recorded at room temperature for LuPO4: Eu3+ 5 % co-precipitated (a), LuPO4: Eu3+ 5 

% sol-gel (b) and LuPO4: Tb3+ 5 % sol-gel (c). Decays have been fitted with a single exponential and 

lifetimes are given on the graph. 
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Figure 8: Relative scintillation yields of LuPO4:Ce3+, LuPO4:Eu3+ and LuPO4:Tb3+ samples  
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Figure 9: Afterglow measurements on LuPO4:Ce3+, LuPO4:Eu3+ and LuPO4:Tb3+ and on Gadox under X-ray 

excitation with a 10 s irradiation time  
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