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Abstract—Between 2014 and 2018, the Islamic State in Iraq
and Syria (ISIS) perfected the use of social media for its
propaganda. To understand and counter these efforts by ISIS,
it is critical to analyze their propaganda materials. During the
past few years, a systematic effort has been made to catalog and
annotate these materials which appear in the form of images,
video and text. However due to the sheer volume of the material,
it is an extremely onerous task to maintain. In this work, we
present a deep learning solution to automatically identify and
tag images for assault rifles. We present our experiments of a
semantic segmentation approach to localization of assault rifles in
a self-collected and maintained data set. Our goal is to consume
minimal amount of data and cater to an analysis platform. The
state of the art for object localization is the Convolutional Neural
Network (CNN). A limitation of CNN is that it only handles
images of fixed dimensions. One way to deal with this limitation
is to re-size the input images, however this is not an ideal solution.
A more flexible approach is to use a Fully Convolutional Network
(FCN), which provides a robust solution for varied sizes of input
images. We show that FCNs can achieve high performance in
detecting and localizing objects in a real world setting, with non-
curated data. We also show that by using a step wise training
pipeline it is possible to learn a representation of the object using
a bounding box annotation.

Index Terms—localization, Fully Convolutional Networks, as-
sault rifles, semantic segmentation.

I. INTRODUCTION

The Islamic State in Iraq and Syria’s (ISIS) Virtual

Caliphate [1] is still active and disseminating propaganda

despite recent aggressive actions taken by social media com-

panies. Since the declaration of the “Caliphate” in 2014, ISIS

has taken jihadist media production to new heights, releasing

a steady stream of images and videos to circulate Jihadi

messages and attract new recruits from the region and globally.

This research is partly funded by the Department of Defense’s Minerva
Research Initiative (Documenting the Virtual Caliphate Minerva #N00014-
16-1-3174) and the Office of Naval Research. All opinions are exclusively
those of the authors and do not represent the Department of Defense or the
Navy

Fig. 1. Brief illustration of the methodology

Ubiquitous tools and technology help in content creation and

propagation, and all this is happening at very large volumes

and frequencies. It is important to note that analyzing these

propaganda materials will help in turn regulating and ulti-

mately creating a safe environment [2]. Due to the volume of

multimedia generated, it is humanly impossible to analyze or

even to study the material systematically. Usually the require-

ment to analyze the propaganda material assumed time con-

straints. In order to handle the volume and velocity of data, a

seamless system is needed from which it is possible to observe

all the platforms where these propaganda images/videos/texts

are circulated. Also when said media is graphic and can

incite violence, adverse effects for the attitude/mentality of

scholars studying these materials is inevitable. Since there are

many outlets from where the propaganda is shared it becomes

rather tedious and time consuming to analyze all this material

manually. These factors dictate that an automated and seamless

system should be designed and implemented to analyze the

materials. Besides, it is evident that the system should be

constructed using the principles of data science.
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A. Overview

Due to more aggressive screening and social media com-

panies implementing their terms of service to delete propa-

ganda material from traditional applications such as Twitter,

Facebook and YouTube, much of this terrorist propaganda is

becoming scarcer by the day, but more privacy and anonymity-

centric social media are being used as tools for the dissemina-

tion of propaganda. One such media platform is Telegram.

On Telegram, ISIS manipulates an environment rich with

addictive properties, creating online spaces that encourage

group identity, shared opinions, and dominant ideologies,

while exploiting the individual “need” to be a part of the

group. “Documenting the Virtual Caliphate” is the first up to

date, multilingual, and searchable database of archived ISIS

visual propaganda. This database represents a living archive

of ISIS’ official multimedia content and provides the grounds

for a systematic analysis of ISIS materials by researchers.

Our research team has collected data from these networks

which distributes a form of material known as photo reports
and created a file system database. This is usually a set of

images related thematically and by location compiled into

a PDF document. The photo reports are released by ISIS

regulated outlets therefore while authenticity is important we

believe that the data is authentic and outside intervention on

these images is minimal. It is necessary to extract images from

these photo reports, while there could be insignificant images

(‘word arts’, ‘arrows’, ‘insignia’ etc.) in these documents in

order to feed them into the deep learning framework; presently

we need to filter the images generated by the PDF image

extractor. We break down the data set into images and store

them using the date and an index given to the image according

to the order ISIS organized them in the photo report. The

data set includes numerous objects of interest. During the

first phase as a proof of concept, we determined to localize

assault rifles in the propaganda images. Since we are creating

a platform for a analysis framework, we will need the counts

of objects appearing in the image. Therefore we need a object

detection or a semantic segmentation or a hybrid model to

satisfy this requirement rather than just a classification model.

To this end we create a precise deep learning model so that

it is possible to distinguish comparable types of weapons in

the images such as large machine guns and various other hand

guns versus assault rifles. The framework should be accurate

enough to detect the difference between these objects while

being fast. The main difficulty in using deep learning models is

the limitation of annotated data. Even though we have 19,000+

images at hand, the annotated subset is quite small in size;

Only 905 images.

Typically these photo reports are formed using different

photos taken by different devices, this results in images with

a variety of dimensions. Due to this it is not possible to use

CNNs as the architecture for a deep learning solution [3], [4].

CNNs use a fully connected layer at the end and the number

of neurons in the fully connected layer is computed using the

dimensions of the previous feature vector. Dimensions of the

feature vector depends on the input image and the convolution

and pooling operations in the CNN [4]. This led us to use

FCNs in our experiments due to its robustness for the image

size. In an FCN, we have one convolution layer and an up-

sampling layer instead of a fully connected layer at the end

[3].

We discuss how the various models of FCN as proposed

in [5] are behaving and performing in our data set. We also

conduct experiments in different types of data generated and

extracted from the same data set.

B. Problem Statement

The goal of the research is to design and implement an AI

framework based on Deep Learning techniques to document

and analyze terrorist propaganda images. The deep learning

platform should be fast enough and accurate enough to support

the requirement of the AI framework.

A subset of the 19,000+ images data set was extracted that

contained images of assault rifles. We shall call this subset

as the assault rifle data set (asr). In the assault rifle data set

there are images of various dimensions and we were required

to create a deep learning framework to localize assault rifles.

While the framework should have an acceptable accuracy rate,

it should also be fast enough to handle our large 19,000+ data

set. The framework should also be able to provide analysis of

how many assault rifles are in use in all of these images.

The rest of the paper is organized as follows: In Section II

we present a survey of significant methods used in object de-

tection and localization. Then, in Section IV a brief summary

of the procedures and methods are laid out. Finally, in V we

report the results and present a discussion.

II. RELATED WORK

Object localization is not a new topic for computer vision.

First use of neural networks goes back to [6]. We conduct

experiments of the behaviour of FCNs with limited annotations

on a new and noisy data set. Therefore we take inspiration

from transfer learning [7] and already established and state

of the art of object recognition principles [8] [4] [5]. It is a

well known fact that stacking layers into deep architectures

will allow a neural network to learn complex patterns. This

was first proven by [8] and then again by [9]. It is important

to note that both of these models are CNN based models and

intuitively, stacking more layers will increase the number of

Fig. 2. Training pipeline
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Fig. 3. This shows the distribution of object of interests area to the whole
image area as a percentage

parameters to train. However, the architecture of CNNs will

significantly decrease the number since they are learning the

filter weights using back propagation, instead of the pixel wise

relations [4].

Region based Convolutional Neural Networks (RCNN) [10]

and its derivations are now a canonical standard for object

detection; they improve the speed of detection by introducing

a regression based solution. RCNNs using selective search [11]

extracts proposed regions and instead of using a window scan
mechanism, RCNNs use a combination of simple machine

learning techniques such as Support Vector Machines or Linear

Regression [3] to come up with the four corners of a bounding

box . Fast R-CNN [12] inspired by RCNNs incorporates two

augmentations for the RCNN algorithm which makes it much

faster compared to RCNNs. Fast R-CNNs use CNN to extract

features before the selective search which makes the search

space smaller and instead of the traditional machine learning

techniques, this uses a softmax layer to compute the regression

output. There is another variation for this model which is

known as Faster R-CNN [13]. Among other augmentations

the significant speed improvement was due to Faster R-CNN

got rid of the slow selective search and incorporated a region

proposal network [13] [14].

The major limitation of CNNs which prevents us from

applying CNNs for this data set is that CNNs require that the

images be in a fixed dimension; Our data set consists of images

of various sizes and resolutions. This is because as explained

earlier, the images are acquired, edited, and circulated by

different sources. Fixing or standardizing the dimension of the

image is also a sub-optimal solution because figure 3 shows

that most images have the object of interest concentrated in

a small area and this will make it difficult for the network

to learn the actual representation of the assault rifles and

detect, rather it will learn the background information which

is abundant in the image. In [15] this can be seen as they

detect both ’L‘ shaped objects and firearms at the same time.

Also, since [15] is a CNN based network it is not possible

to use this to detect assault rifles in our data set. There is

other research done on the same topic [16] [17] with CNNs

achieving good performance, since authors are using CNNs

the techniques used there is not applicable in our data set.

While specific work done on related fields are not applicable,

general detection platforms based on CNNs such as RCNN,

Fast-RCNN, Faster-RCNN and YOLO [18] are not applicable

as well.

Fully Convolutional Neural Networks are almost identical

to the architecture to the CNNs. The difference is at the final

layers. FCN architecture allows it to process arbitrary sized

input [5]. The theory behind the architecture is that instead

of using a fully connected layer to classify the pixels of an

image, we use the pooled smaller images [5] and feed it into

an up-sampling layer. This process brings the image back to its

original proportions. Also, this provides the pixel wise output,

which makes it very easy to apply in semantic segmentation.

This up-sampling can be achieved by using up-sampling layers

(also known as deconvolution layers). It is possible to obtain

this up-sampling at any point of convolution in the network,

if it is done at a shallow layer one needs to up-sample using a

higher factor [5]. This is due to the fact that complex features

are learnt in deeper levels [8] [9]. [5] showing that at different

depths of their network up-sampling and fusing the outputs it

is possible to get various granularities for the output.

There are variants of FCN such as Region based Fully

Convolutional Network (R-FCN) [19]. This also improves the

speed of detection by incorporating region proposal into the

FCN.

III. DATA

We are using several data sets to train and test the model.

These were created because in initial experiments, the network

failed to learn from the original images. After conducting addi-

tional experiments, we discovered that the model learns object

representations if it received objects without distractions, such

as background and other complex objects. Hence we created

a series of data sets which are shown in Table I. There are

different ways of extracting the object of interest from the

image. You can extract the object using a buffer zone and save

the image. If there are multiple objects in the image, you can

extract each object separately and save them each as separate

images. Also, you could create one image which includes all of

the objects in the same image. Doing so the network will learn

that there are more than one object of interest in the image

while learning its object representation. Also, by changing the

buffer size of the image we can control the context of the

object of interest the model see. We created several data sets

having different buffer sizes as well.

Moreover, since there are similar objects for interested

object; grenade launchers, light machine guns etc. we needed

to teach the network what comprises the features of a non-

assault rifle. To this end we added negative images data set.
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IV. METHODOLOGY

The assault rifles data set consists of 905 images with

annotated assault rifles using a bounding box. There are

images of various dimensions and in most images the object of

interest is small. The distribution of the area is as illustrated in

figure 3. This presented a significant problem for the training

of the model. The initial deployments of the model failed to

learn the distributed representation of the assault rifle. We took

two measures, using pre-trained weights and then to augment

the data set in several steps to make it easier for the model to

give attention to the salient features of interest. Worth noting

that before augmenting the data set, we first divide the assault

rifle data set into training and testing sets and the following

augmentations were done only for the training set. The testing

was done on the data subset which was not modified, hence

our claim of learning the object representation still stands. An

illustration of the training procedure is shown in figure 1.

Training in our experiments is a pipeline procedure, there

are different components and each component is a FCN model.

First the data set is split into training and testing sets and

augmentations are applied to the training set. The training set

then will be used to extract RoIs in the image. Likewise several

types of data sets will be created as explained in IV-A, each

data set will be fed into the pipeline to learn a specific task.

Each component of the pipeline is discussed below.

A. Extraction of the object

In initial training we extracted the object with a small

buffer zone of 10 pixels around the object. This allows the

neural network to see more pixels of ‘assault rifle’ and less

‘background’. This will give an image with at least 80% of the

area is the object of interest. This grants the network to see the

object of interest without getting distracted by the surrounding

context. The network will be trained and predictions and the

model weights are saved as outputs.

In some images, there are multiple assault rifles, because of

data limitations we extracted all rifles as individual ‘extracted’

images and we left images with multiple rifle so that the model

eventually learns to detect multiple objects. This exponentially

increased the data set size to a 2306.

B. Context learning

After that we changed the size of a buffer zone, and then

increased the buffer zone with iterative steps of 10 pixels and

create different data sets. Buffer zone is the area surrounding

the bounding box. Note that we are not changing our annota-

tions with the buffer zone increase and this does not change

TABLE I
GENERATED DATASETS

Data set Description
asr Assault rifle dataset

asr ex asr + extracted images, 10 pixel buffer
asr ex mul asr ex + extraction for each object

asr ex mul [number] [number] size buffer

the size of the data set because we will only be changing the

size of the buffer to generate new data, not mixing data with

the previously generated data. We will be using the previously

learned and saved model outputs in this step transferred into

this model as start up weights. This allows us to reserve the

previously learned features in the model while learning new

features. Since here we are increasing the buffer zone, while

the model sees the object from the previously learned weights,

it also detects the context of the objects location. Iterative steps

of this buffer zone should not increase more than a certain

point because it will again have the same problem of small

object of interest and we identified that to be 50 pixels.

C. Training

In preliminary testing we found out that starting with

weights from [8] yields the best results at the later stages of

the pipeline. Therefore complete testing and evaluation here

onwards is done only using VGG16 weights. In any stage, the

training will go through 3 different phases illustrated in figure

2. There are 3 granularity levels for FCN model proposed

in [5], FCN32 is more coarse or rough while FCN16 and

FCN8 are more finer and tighter when detecting the object.

We created a pipeline for training where any image data

set generated in any of the previous stages go through all

FCN32, FCN16 and FCN8 models. FCN32 will be started

off with VGG16 [8] weights. VGG16 here is pre-trained on

ImageNet [20] data set. In each phase, the model weights

will be transferred into the next level while all predictions are

being recorded. Which means that FCN32 model starting with

VGG16 will be trained and the model which performs the best

in all the epochs will be stored as the best model, this model

weights are then being transferred to FCN16. This is possible

because the configuration of each model are very similar.

For further reading authors direct the readers to [21]. Then

advancing along the pipeline the are finer and tighter around

the edges and will represent a correct object than a bounding

box (semantic segmentation). And when it is learning the

context of the object it learns to omit human hands and other

similar objects which occlude the object of interest (refer to

figure 4).

The underlying network is VGG16, and similar to [8] in

all convolutional layers we have rectified linear unit type

Fig. 4. This shows two examples of tight fitting when extracted images used
in training
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TABLE II
EXPERIMENTS OVER DIFFERENT DATA SETS

Data set Accuracy IOU
asr 71.3 63.9

asr ex mul 79.3 47.9
asr ex mul 50 80.3 55.7
asr neg ex mul 50.0 63.7

of activation. And all ROI pooling will be done with a

max pooling type of operation. In each up-scoring (or de-

convolutional) layer, we have a relevant stride parameter too.

For FCN32, we are using 32 stride in one of the last up-scoring

layer (out of 2 up-scoring layers), in FCN16 we have 16 stride

in the last up-scoring layer (out of 2 up-scoring layers) and

for FCN8 we have 3 up-scoring layers and from which the

middle one will have 8 stride. All up-scoring layers will not

implement a bias.

Fully convolutional layers in between the convolutional

layers and the up-scoring layers will have a 0.5 drop out to

handle generalization of the model. And we are optimizing the

network with stochastic gradient descent. Since we are trans-

ferring the weights of [20] from [8], the network converges

quickly. Authors used about 150 epochs to train the network

in all experiments. And authors are using cross entropy loss

fixed for the 2-dimensional feature vectors.

D. Negative images

A negative image is an image where you do not find an

assault rifle, these images could be any form of other firearms,

any other scene from our data set. A data set with negative

images incorporated into the original training data set was also

created.

E. Testing

In each stage of training using validation data sets and mini

testing sets to evaluate the model performance in each stage

and to log them. Using the initial testing set created from the

original assault rifles data set, we test each model at the end of

the pipeline and report the performance. In each stage of the

training phase we evaluate the model using the mini testing

sets created using the main training set.

Fig. 5. Evaluation outputs on the pipeline, from left FCN32, FCN16 and
FCN8

V. EXPERIMENTS

As discussed in Section IV-C, we have different phases of

training and each phase will output evaluations using mini

testing sets, which are from the respective data set in which

the model is being trained. These results can be used to

explain how the model is behaving at each stage or component

of the pipeline, such as to update the weights taking the

model performance at that particular stage. We can use the

trained FCN8 to detect object without having to go through

the pipeline. This makes the test time quite fast.

Metrics of the results are as follows, Accuracy is set to

be pixel based accuracy per class, meaning that each pixel

of the image is compared with the annotation to test whether

the network predicted the correct output. Since the problem

is defined as semantic segmentation pixel wise accuracy is a

good measure. IOU here in table II is the intersection over

union, since we are ultimately looking for an object we also

have to consider and evaluate the proportion of the area of the

object which is correctly detected.

A. Faster-RCNN on the data set

In order to compare our FCN model performance, we used

Faster-RCNN [13], [22] as a baseline on the data set. We

re-trained [13] to detect assault rifles using our annotations

then used that model to perform detection on our testing data.

We also implemented and measured the pixel based accuracy

on Faster-RCNN to compare the two models. Faster-RCNN

achieves much higher accuracy levels than FCN model. It

achieves 92.72 pixel accuracy against the 80.3 that the FCN

generates.

While Faster-RCNN consumes 3-8 images per second to

generate full bounding boxes, FCN model consumes 16-19

images per second and generates a localization map, which is

more than double the speed. But, to compute full bounding

boxes, the FCN model should be set inside a pipeline where

the final outputs are bounding boxes rather than a segmenta-

tion.

B. Segmentaion with FCN

We again tested FCN model for a segmentation task with

sample images annotated with segmentation of rifles. This

yields a class based accuracy of 66.48 and an IoU of 42.27.

All models have been created and tested with Pytorch [23]

and Pytorch-fcn [24] using two NVIDIA 1080Ti totalling up

to 18GB GPU RAM.

C. Discussion

Our best model accuracy was 80.31%, due to the fact we

are evaluating against bounding boxes and our predictions

are tighter around the borders we are at a disadvantage. It

is interesting to see the model behaviour throughout each

stage of the training; first we feed original images without any

modification to the network, resulting in an accuracy of 71.3.

This is a good benchmark to test our other models. IOU here

is larger because the predicted objects were also bigger and

ultimately making the intersection larger. Then we extracted
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objects out of the images and fed it into the network, this

improves the accuracy by 8%, but as a trade off we can see

the IOU values decrease. The explanation for that is from

now on our predictions become much more smaller making

our intersection smaller and ultimately IOU value smaller.

Then we train a model with larger buffer zone, this gives

the best results we have obtained which is 80.31%. We can

also observe an increase of the IOU, Now the predictions are

much larger. When we mix in negative images into the training

samples our model gets lost in the gradients and fails to learn

anything. And it seems like that it fails to keep the previous

knowledge as well.

This FCN model which is trained for localization does not

perform well with a classification task for assault rifles because

we first start our training process with all images given has

an assault rifle present. Therefore the network expects all the

images to have assault rifles in as well. This network can act

as a part of a pipeline where the network extracts the interest

areas of a assault rifle similar to [12].

Another interesting fact about the model is that even though

we are mostly accurate in localizing the object there are

disconnected and isolated smaller pixels in the area around the

detected region. A post processing stage is inevitable in a case

like this, because for the system to count the number of objects

there should not be isolated objects predicted incorrectly. We

could obviously use some image processing techniques to

remove these.

The best model can process an average of 9 images per

second, depending on the size of the image the speed of

processing changes. There are instances where the model

processed 16 images per second. Comparing with a human

annotator this is a rather significant increase in speed.

VI. CONCLUSIONS

The initial problem statement was to create a seamless

system to localize assault rifles in images. We have proven

that even though not as accurate as a human annotator, we

can localize assault rifles with a substantial accuracy rate. Our

method is also reasonably fast, with a rate of 9 images per

second. To this end we need to have another model which can

classify an image as an image with a assault rifle or not. But

by generalizing the model it would be possible to remove the

redundant model. In order to do this we must train the model

with more classes, ultimately generalizing the model to all the

classes.
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