
Buffer sizes reduction for memory-efficient CNN inference on mobile
and embedded devices
Minakova, S.; Stefanov, T.P.

Citation
Minakova, S., & Stefanov, T. P. (2020). Buffer sizes reduction for memory-efficient CNN
inference on mobile and embedded devices. 2020 23Rd Euromicro Conference On Digital
System Design (Dsd), 133-140. doi:10.1109/DSD51259.2020.00031

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3279992

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3279992

Buffer Sizes Reduction for Memory-efficient CNN
Inference on Mobile and Embedded Devices

Svetlana Minakova, Todor Stefanov
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

s.minakova@liacs.leidenuniv.nl, t.p.stefanov@liacs.leidenuniv.nl

Abstract—Nowadays, convolutional neural networks
(CNNs) are the core of many intelligent systems, including
those that run on mobile and embedded devices. However,
the execution of computationally demanding and memory-
hungry CNNs on resource-limited mobile and embedded
devices is quite challenging. One of the main problems,
when running CNNs on such devices, is the limited amount
of memory available. Thus, reduction of the CNN memory
footprint is crucial for the CNN inference on mobile and
embedded devices. The CNN memory footprint is determined
by the amount of memory required to store CNN parameters
(weights and biases) and intermediate data, exchanged
between CNN operators. The most common approaches,
utilized to reduce the CNN memory footprint, such as
pruning and quantization, reduce the memory required
to store the CNN parameters. However, these approaches
decrease the CNN accuracy. Moreover, with the increasing
depth of the state-of-the-art CNNs, the intermediate data
exchanged between CNN operators takes even more space
than the CNN parameters. Therefore, in this paper, we
propose a novel approach, which allows to reduce the
memory, required to store intermediate data, exchanged
between CNN operators. Unlike pruning and quantization
approaches, our proposed approach preserves the CNN
accuracy and reduces the CNN memory footprint at the cost
of decreasing the CNN throughput. Thus, our approach is
orthogonal to the pruning and quantization approaches, and
can be combined with these approaches for further CNN
memory footprint reduction.

Keywords-Convolutional Neural Networks, Dataflow mod-
els, CSDF, memory efficiency, buffer size reduction

I. Introduction

Convolutional Neural Networks (CNNs) are biologically

inspired graph computational models, represented as directed

acyclic graphs with nodes, associated with CNN operators

such as Convolution or Softmax, and edges, representing

dependencies between the CNN operators [11]. Due to their

ability to handle large, unstructured data, CNNs are widely

used to perform tasks such as image classification, object

detection, segmentation, and others [13]. The CNN design,

i.e., the selection of the CNN graph topology and operators, is

a complex task, which does not have strict rules and typically

requires substantial knowledge in the field of deep learning

(DL) [13]. Once the CNN is designed, it is deployed on

hardware platforms to perform training and inference phases.

At the training phase, the optimal CNN parameters (weights

and biases) are established. At the inference phase, a trained

CNN is applied to the actual data and performs the task for

which the CNN is designed. Due to the high computational

and memory requirements of state-of-the-art CNNs, their

training and inference phases are usually performed by

high-performance platforms and provided as cloud services.

However, there is an increasing number of applications, that

require execution of the CNN inference phase on mobile

and embedded devices. Examples of such applications are

self-driving cars [15], which cannot tolerate high latencies,

occurring in cloud services due to communication with a

server, or Structural Health Monitoring Systems [5], which

require local data storage to ensure the data privacy.

Execution of computationally demanding and memory

hungry CNNs on resource-limited mobile and embedded

devices is quite challenging. One of the main problems, when

running CNNs on such devices, is the limited amount of

memory available, especially because not all the memory can

be used for the CNN deployment. For example, the basic

version of the Raspberry Pie 4 [4] embedded device has 1

GB of memory, while the inference of the state-of-the-art

VGG-19 CNN [13], requires about 700 MB of memory for

its deployment. If deployed on the Raspberry Pie 4, VGG-19

would occupy almost all memory available on the device. This

leaves insufficient memory space for the operating system

running on the device, libraries required to execute the CNN

inference, storage of the CNN input and output data, etc.

Thus, reduction of the CNNs memory footprint is crucial

for the execution of the CNN inference on resource-limited

mobile and embedded devices.

When a CNN is deployed on a hardware platform, it

requires sufficient amounts of memory to store its param-

eters (weights and biases) and intermediate computational

results, exchanged between its operators [11]. A number of

approaches have been introduced to reduce the CNN memory

footprint. The most common of these approaches, namely

pruning and quantization [17], reduce the memory required

to store the CNN parameters. However, these approaches

decrease the CNN accuracy, while high accuracy is very

important for most CNN-based applications [13]. Moreover,

with the increasing depth of the state-of-the-art CNNs [13],

the intermediate data exchanged between CNN operators

takes even more space than the CNN parameters. For ex-

ample, for the MobileNet [12] and DenseNet [8] CNNs, the

intermediate data comprises up to 63% and 80% of the total

CNN memory requirement, respectively.

Therefore, in this paper, we propose an approach which

133

2020 23rd Euromicro Conference on Digital System Design (DSD)

978-1-7281-9535-3/20/$31.00 ©2020 IEEE
DOI 10.1109/DSD51259.2020.00031

reduces the amount of memory, required to store the in-

termediate data, exchanged between CNN operators. Our

proposed approach is based on the ability of CNN operators

to process data by parts [13]. It specifies the execution of

every CNN operator in several phases, such that at each

phase, the CNN operator processes only a part of its input

data. To represent the execution of a CNN with phases over

several input data parts, we propose and utilize an automated

conversion of the CNN into a functionally equivalent Cyclo-

Static Dataflow model (CSDF) [7] (see Section V). We use the

automatically generated CSDF model and existing embedded

system design tools such as SDF3 [14] to find the execution

order of the phases of CNN operators which reduces the

memory footprint.

As with all existing approaches used to reduce the CNN

memory footprint, our approach involves a trade-off [17].

However, while the pruning and quantization approaches re-

duce the CNN memory footprint at the cost of decreasing the

CNN accuracy, our approach preserves the CNN accuracy and

reduces the CNN memory footprint at the cost of decreasing

the CNN throughput. Thus, our approach is orthogonal to the

pruning and quantization approaches, and can be combined

with these approaches for further CNN memory footprint

reduction. Moreover, based on current trends where the

computational power of mobile and embedded devices is

rapidly increasing [19], allowing high CNN throughput,

while CNNs accuracy is increasing slowly [13], we believe

that introducing a small CNN throughput loss is preferred

over introducing CNN accuracy loss.

Paper contributions

We propose a novel automated and systematic approach,

which reduces the CNN memory footprint at the cost of

the CNN throughput decrease. Our proposed approach is

based on the ability of CNN operators to process data by

parts [13]. It specifies the execution of every CNN operator

in several phases, such that: 1) at each phase, the CNN

operator processes only a part of its input data; 2) phases are

executed in a specific order. To represent the execution of a

CNN with phases, we propose and utilize a novel automated

approach to convert the CNN into a functionally equivalent

Cyclo-Static Dataflow model (CSDF) [7] (see Section V). To

find the proper execution order of the phases, we use the

automatically generated CSDF model and existing embedded

system design tools such as SDF3 [14]. To the best of our

knowledge such memory reduction approach has not been

proposed before. In Section VI, we provide an experiment

where we apply our approach to real-world state-of-the-art

CNNs. We show, that our memory reduction approach allows

to reduce the CNN memory footprint by 17% to 64% at the

cost of 3% to 54% decrease of the CNN throughput.

II. Related work

The most common approaches used to reduce the CNNs

memory footprint are pruning, quantization, and Knowledge

Distillation, reviewed in surveys [17], [19]. The pruning and

quantization approaches reduce the number or size of CNN

parameters, thereby, reducing the memory required for the

CNN inference. However, these approaches decrease the CNN

accuracy, while high accuracy is very important for most

CNN-based applications [13]. In contrast, our memory reduc-

tion approach does not change the CNN model parameters,

and therefore, does not decrease the CNN accuracy.

The Knowledge Distillation (KD) approaches try to shift

knowledge from an initial CNN into another CNN, with

smaller size but with the same accuracy. However, KD ap-

proaches involve training from scratch and do not guarantee

that the accuracy of the initial CNN can be preserved.

Moreover, KD approaches can only be applied to CNNs

designed to perform classification [17], while many CNNs

are designed to perform other tasks, such as object detection

or segmentation [13]. In contrast, our memory reduction

approach is a general systematic approach, which always

guarantees preservation of the CNN accuracy, and is not

limited to CNNs designed to perform classification tasks.

The dynamic memory allocation approach, utilized in the

TensorFlow DL framework [10], allocates memory between

the CNN operators at run-time as soon as this memory is

needed. This approach allows to significantly reduce the total

memory cost of the CNN inference. However, the dynamic

memory allocation leads to large performance overheads. In

contrast, in our approach, the memory required to store inter-

mediate data exchanged between CNN operators is allocated

before the CNN inference execution and does not involve

memory allocation overheads at the CNN inference run-time.

The approaches, proposed in [18], reduce the CNN mem-

ory footprint by sharing memory between CNN operators,

executed at different computational steps. However, these

approaches are not very efficient for CNNs with residual

connections, such as ResNets [9] and DenseNets [8], because

the intermediate data associated with residual connections

has to be stored for many computational steps. In contrast,

our approach effectively reduces the memory footprint for

both residual and non-residual connections, and therefore is

applicable to a wider range of state-of-the-art CNNs.

III. Preliminaries

In this section, we provide a brief overview of the CNN

and the CSDF computational models, and the CNN inference

on mobile and embedded devices. This overview is essential

for understanding the proposed memory reduction approach.

A. CNN computational model

A Convolutional Neural Network (CNN) is a computational

model [11], commonly represented as a directed acyclic

computational graph CNN(N,E) with a set of nodes N ,

also called layers, and a set of edges E. An example of

a CNN model CNN(N,E) is given in Figure 1(a), where

N = {n1, n2, n3, n4, n5}, E = {e12, e23, e34, e45}.
Each layer ni ∈ N accepts input data Xi and provides

output data Yi. To obtain the output data Yi from the input

data Xi, layer ni moves along Xi with sliding window Θi

134

(a) CNN model (b) CSDF model

Fig. 1: CNN and CSDF computational models

and stride si, applying operator opi to an area of Xi, covered

by Θi. The areas, covered by Θi can overlap. If input data Xi

cannot be covered by sliding window Θi integer number of

times, layer ni crops or extends Xi with padding [13] padi
and processes cropped/extended input data X ′

i , which can be

covered by sliding window Θi integer number of times. The

layers input and output data is stored in multidimensional

arrays, called tensors. In this paper, each tensor T has the

format T [HT ,WT ,CT], where HT is the tensor height, WT is

the tensor width, CT is the number of channels. We define

a layer as a tuple ni = (Xi, Yi,Θi, opi, si, padi), where

• X
[HXi ,WXi ,CXi]
i is the input data of ni;

• Y
[HYi ,WYi ,CYi]
i is the output data of ni;

• Θ
[HΘi ,WΘi ,CΘi]
i is the sliding window of ni, C

Θ
i = CX

i ;

• si is the stride, with which ni moves over Xi;

• opi is the operator of ni;

• padi is the padding of ni;

Where padi is an array of four integer elements,

padi[k], k ∈ [0, 3], and for every ni ∈ N HX′
i = padi[1] +

HXi + padi[3] and WX′
i = padi[0] + WXi + padi[2];

padi = [0, 0, 0, 0], if not specified otherwise. The performed

operator opi and the relationships between the layer at-

tributes are restricted with the layer type. The most common

layer types [13] and their operators are listed in Column 1 in

Table I. Column 2 in Table I lists the relationships between

the attributes of the layers.

TABLE I: Most common CNN layer types

type (opi) relationships between attributes

convolutional (conv) HΘi ≤ HXi ; WΘi ≤ WXi ;

pooling({maxpool, avgpool,
globalmaxpool, globalavgpool)

HΘi ≤ HXi ; WΘi ≤ WXi ;
typically HΘi = WΘi = si;

nonlinear/activation
(relu, thn, sigm)

HΘi = WΘi = si = 1

data (input, output)
FC (dot, loss) HΘi = HXi ; WΘi = WXi ;

si = 1normalization (BN,LRN)

An example of layer n3 = (X
[16,16,4]
3 , Y

[4,4,3]
3 , Θ

[5,5,4]
3 ,

conv, 3, [−1,−1,−1,−1]) is given in Figure 1(a). Layer n3

is a convolutional layer, which performs operator conv with a

sliding window Θ
[5,5,4]
3 , moving over the input dataX

[16,16,4]
3

with stride s3 = 3. Padding pad3 crops input data X
[16,16,4]
3

to X ′
3
[−1+16+(−1),−1+16+(−1),4]

= X ′
3
[14,14,4]

.

Each CNN edge eij ∈ E, represents a data dependency

between layers ni and nj , such that Yi ⊆ Xj . We define

a CNN edge as a tuple eij = (ni, nj). An example of a

CNN edge e12 = (n1, n2) is given in Figure 1(a). Edge e12
represents the data dependency between layers n1 and n2,

such that Y1 = X2.

B. CSDF model of computation

The CSDF model [7] is a well-known dataflow model of

computation, widely used for model-based design in the

embedded systems community. An application modeled as a

CSDF is a directed graph G(A,C) with set of nodes A, also
called actors, communicating with each other through a set of

communication FIFO channels C . Figure 1(b) shows an exam-
ple of a CSDF graph G(A,C), where A = {a1, a2, a3, a4, a5}
and C = {c12, c22, c23, c33, c34, c45}. Every actor ai ∈ A
represents a certain functionality of the application, modeled

as a CSDF graph, and performs an execution sequence

Fi = [fi(1), fi(2), · · ·, fi(Pi)] of length Pi, where p ∈ [1, Pi]
is called a phase of actor ai. At every phase actor ai executes
function fi(((p− 1)modPi)+ 1). An example of CSDF actor
a3 is shown in Figure 1(b). Actor a3 performs execution

sequence F3 = [conv, conv, conv, conv], shortly written as

[4∗conv], meaning actor a3 has P3 = 4 phases and performs
function f3(p) = conv at each of its phases p ∈ [1, 4].
Every FIFO communication channel cij ∈ C represents

data dependency and transfers data in tokens between its

source actor ai and its sink actor aj . Every cij ∈ C has

production sequence Uij and consumption sequence Vij .

Production sequence Uij : [uij(1), uij(2), · · ·, uij(Pi)] of
length Pi specifies the production of data tokens into channel

cij by its source actor ai. Analogously, consumption sequence
Vij : [vij(1), vij(2), · · ·, vij(Pj)] of length Pj specifies the

consumption of data tokens from channel cij by its sink

actor aj . An example of communication channel c33 is

shown in Figure 1(b). For communication channel c33, actor
a3 is a source and a sink actor. The production sequence

U33 : [128, 128, 128, 0], shortly written as U33 : [3∗128, 1∗0]
specifies, that during the phases p ∈ [1, 3] actor a3 produces
128 tokens to channel c33, and at phase p = 4 actor a3 pro-
duces 0 tokens to channel c33. Analogously, the consumption
sequence V33 : [1∗0, 3∗128], specifies that during phase p = 1
actor a3 consumes 0 tokens from channel c33, and during

phases p ∈ [2, 4] a3 consumes 128 tokens from channel c33.

C. Memory and throughput of CNN inference on mobile and

embedded devices

The CNN memory footprint m is computed as:

m = mpar +mbuf (1)

where mpar is the memory, required to store CNN param-

eters, typically computed as the total number of the CNN

model parameters, multiplied by the size of one parameter;

mbuf is the memory, required to store CNN intermediate

135

TABLE II: Execution of CNN inference with phases

Ex.
Layer phases

Phases execution order
Buffer sizes (Bytes) Thr.

(fps)

n1 n2 n3 n4 n5 b12 b23 b34 b45 Total

Ex1 X1k = ∅,
Y

[32,32,1]
1k
φ1 = 1

X
[32,32,1]
2k ,

Y
[16,16,4]
2k
φ2 = 1

X
[16,16,4]
3k ,

Y
[4,4,3]
3k

φ3 = 1

X
[4,4,3]
4k ,

Y
[1,1,2]
4k

φ4 = 1

X
[1,1,2]
5k ,

Y5k = ∅
φ5 = 1

n11, n21, n31, n41, n51 1024 1024 48 2 2098 334

Ex2 X1k = ∅,
Y

[24,32,1]
1k
φ1 = 2

X
[24,32,1]
2k ,

Y
[8,16,4]
2k
φ2 = 2

X
[16,16,4]
3k ,

Y
[4,4,3]
3k

φ3 = 1

X
[4,4,3]
4k ,

Y
[1,1,2]
4k

φ4 = 1

X
[1,1,2]
5k ,

Y5k = ∅
φ5 = 1

n11, n21, n12, n22, n31,
n41, n51

768 1024 48 2 1842 333

Ex3 X1k = ∅,
Y

[1,32,1]
1k

φ1 = 32

X
[17,32,1]
2k ,

Y
[1,16,4]
2k

φ2 = 16

X
[16,16,4]
3k ,

Y
[4,4,3]
3k

φ3 = 1

X
[4,4,3]
4k ,

Y
[1,1,2]
4k

φ4 = 1

X
[1,1,2]
5k ,

Y5k = ∅
φ5 = 1

n1(1−17), n21,
[n1(18−21), n2(2−16)],

n31, n41, n51

544 1024 48 2 1618 310

Ex4 X1k = ∅,
Y

[1,32,1]
1k

φ1 = 32

X
[17,32,1]
2k ,

Y
[1,16,4]
2k

φ2 = 16

X
[6,16,4]
31 ,

X
[5,16,4]
32 ,

X
[5,16,4]
33 ,

X
[6,16,4]
34 ,

Y
[1,4,3]
3k

φ3 = 4

X
[4,4,3]
4k ,

Y
[1,1,2]
4k

φ4 = 1

X
[1,1,2]
5k ,

Y5k = ∅
φ5 = 1

n1(1−17), n21,
[n1(18−22), n2(2−6)], n31,
[n1(23−25), n2(7−9)], n32,
[n1(26−28), n2(10−12)], n33,
[n1(29−32), n2(13−16)], n34,

n41, n51

544 384 48 2 978 308

computational results. The CNN intermediate computational

results are stored in CNN buffers [18]. Every CNN buffer

bij is associated with CNN edge eij and stores data Yi,

exchanged between CNN layers ni and nj during CNN

inference. The size of buffer bij is computed as the number of
elements in data Yi multiplied by the size of one element in

Yi. Allocation of the memory for CNN parameters and buffers

and the access to this memory during the CNN execution are

determined by the platform memory structure [16].

The CNN throughput is typically measured in frames per

second (fps) and computed as the number of CNN input

frames [17], divided by the time, required to perform the

CNN inference for all the input frames. During the CNN

inference, every CNN layer is executed on processors, such

as CPUs, GPUs and/or FPGAs [17], available in the platform.

If a platform has GPUs or FPGAs, computations within the

layer are represented as one or multiple kernels [17], and

offloaded on the GPUs and FPGAs by the CPUs. Otherwise,

these computations are performed on the CPUs. The time

τi, required to execute CNN layer ni on a mobile/embedded

device is computed as:

τi = τaccessi + τkerneli + τopi
(2)

where τaccessi is the time, required to access the CNN

parameters and intermediate computational results, stored

in the device memory. This time is negligible for CPU-

based devices or devices with unified memory structure [16];

τkerneli is the time, required to launch kernels on devices

with GPUs or FPGAs; τopi
is the time, required to perform

the CNN operator on a processor in the platform where the

processor could be CPU or GPU or FPGA.

IV. Motivational example

CNN layers do not process their input data at once. As

explained in Section III-A, CNN layers move along the input

data with a sliding window and apply operators to input data

parts. In this section, we show how processing input data by

parts can be utilized to reduce the CNN memory footprint.

We define the processing of an input data part by a CNN

layer as a phase. If a layer has one phase, it processes its

input data as one part. If a layer has two phases, it processes

its input data in two parts, etc.

In Table II, we give four examples (Ex1, Ex2, Ex3, Ex4) of

inference of the CNN, shown in Figure 1(a) and explained in

Section III-A. In each of these examples the CNN inference is

executed on a platform with a few CPUs and one GPU, and

every CNN layer is executed in one or several phases. For

every layer ni, Columns 2 to 6 of Table II list: 1) the number

of phases φi; 2) part Xik of the input data Xi, processed by

layer ni at its k-th phase, k ∈ [1, φi]; 3) part Yik of the output

data Yi, produced by layer ni at its k-th phase, k ∈ [1, φi]. All
phases are executed in a specific order, given in Column 7,

where nik denotes the execution of the k-th phase of layer

ni. The execution order ensures functional equivalence of

all examples, given in Table II, and allows to reduce the

CNN buffer sizes as explained below. Columns 8 to 12 in

Table II show the sizes of the CNN buffers bij , explained in
Section III-C. For simplicity of these examples, the buffer sizes

are computed with the assumption that one element in any

CNN data tensor requires 1 byte of memory for its storage.

Column 13 in Table II shows the CNN inference throughput,

explained in Section III-C.

Example Ex1, given in Row 3 of Table II, describes the

CNN inference typically performed by the state-of-the-art

DL frameworks, such as TensorFlow, Keras, Caffe2, and

other [6]. In Ex1, every layer has one phase. The CNN

inference is performed in 5 computational steps. At every

i-th computational step, i ∈ [1, 5], the single phase of layer
ni is executed. During its single phase, layer ni processes its

whole input data. Figure 2(a) shows how layer n2 processes

its input data in Ex1. Layer n2 processes its whole input data

X2 as a single data part X21 = X2. Data X21 is provided

to layer n2 by layer n1 and stored in buffer b12. To store

136

(a) Ex1 (b) Ex2 (c) Ex3, Ex4

Fig. 2: Input data processing by layer n2

data X
[32,32,1]
21 buffer b12 occupies 32 * 32 * 1 = 1024 bytes

of memory.

Example Ex2, given in Row 4 of Table II, shows how

processing data by parts, combined with specific execution

order of the phases, allows to reduce the CNN buffer sizes at

the cost of decreasing the CNN throughput. In Ex2, CNN

layer n2 processes its input data X2 in two overlapping

parts, X21 and X22, as shown in Figure 2(b). Data parts X21

and X22 are provided to layer n2 by layer n1 and stored in

buffer b12 during the CNN inference. The CNN inference is

performed in 7 computational steps. At step 1, phase n11 is

executed and data Y11 = X21 is produced in b12. At step 2,
phase n21 is executed and data X21 is processed by layer n2.

After being processed, data X21 is not needed anymore and

is removed from b12. At step 3, phase n12 is executed and

data Y12 = X22 is produced in b12. At step 4, phase n21 is

executed and data X22 is processed by layer n2. Steps 1 to

4 in Ex2 are functionally equivalent to steps 1 to 2 in Ex1.

However, in Ex2 at every computational step, buffer b12 has

to store only a part of the input data (X
[24,32,1]
21 for steps 1 to

2 and X
[24,32,1]
22 for steps 3 to 4, respectively). Therefore, in

Ex2, b12 occupies 24 * 32 * 1 = 786 bytes of memory, instead
of 1024 bytes, as in Ex1. Compared to Ex1, Ex2 reduces the

total buffer sizes by 12% at the cost of only 0.3% throughput

decrease due to the increased number of CNN computational

steps in Ex2, compared to Ex1.

Example Ex3, given in Row 5 of Table II, demonstrates

one more way of executing layers n1 and n2 with phases,

shown in Figure 2(c). In Ex3, layer n1 has 32 phases and

layer n2 has 16 phases. The CNN inference is performed in

51 computational step. During the first 17 steps, phases n11,

n12, …, n117, shortly written as n1(1−17), are executed. At

every phase, layer n1 produces data Y
[1,32,1]
1k ⊂ X21 in buffer

b12, until sufficient data X
[17,32,1]
21 is accumulated. Then, at

step 18, phase n21 is executed. To execute phase n22, data

X
[17,32,1]
22 should be accumulated in b12. However, some of

this data is already in b12. As explained in Section III-A,

data between subsequent execution steps of layer n2 is

overlapping. If the overlapping part is stored in buffer b12,
only new (non-overlapping) data should be produced in b12
to enable the execution of phase n22. This new data can be

produced by execution of one phase of layer n1. Thus, phases

18-32 of layer n1 and phases 2-16 of layer n2 are executed in

order [n1(18−32), n2(2−16)], meaning, that a phase of layer n1

is followed by a phase of layer n2, e.g., phase n118 is followed

by phase n22, and this pattern repeats, until all phases of

layers n1 and n2 are executed. The maximum amount of

data, stored between layers n1 and n2 per computational

step corresponds to data part X
[17,32,1]
2k , accumulated in b12.

Thus, in Ex3, buffer b12 occupies 17 * 32 * 1 = 544 bytes of

memory. Compared to Ex1, Ex3 reduces the total buffer sizes

by 23% at the cost of 7% throughput decrease.

Fig. 3: Input data processing by layer n3, Ex4

Example Ex4, given in Row 6 of Table II, demonstrates how

several Convolutional layers in one CNN can be executed

with phases, and how data padding is processed with phases.

In Ex4, the CNN inference is executed in 54 computational

steps. Layers n1 and n2 have 32 and 16 phases, respectively,

as in Ex3. Additionally, layer n3 has 4 phases, i.e., processes

its input data in four parts. As explained in Section III-A,

layer n3 has padding pad3, which crops its input data. With

data processing by parts, the data crop is also performed by

parts, as shown in Figure 3. At phases n31 and n34, layer

n3 accepts data X
[6,16,4]
3k and crops it to data X

′[5,14,4]
3k . At

phases n32 and n33, it accepts data X
[5,16,4]
3k and crops it to

data X
′[5,14,4]
3k . The maximum amount of data to be stored in

b23 is X
[6,16,4]
3k . Thus, buffer b23 occupies 6 * 16 * 4 = 384

bytes of memory. Compared to Ex1, Ex4 reduces the total

buffer sizes by 53% at the cost of 12.7% throughput decrease.

As can be seen from Column 12 of Table II, Ex4 is the most

memory-efficient example among all presented examples.

The examples, provided in this section, demonstrate that

there are many possible ways to execute the CNN inference

with phases. Obtaining the most memory-efficient way is

not trivial even for our small example CNN, shown in

Figure 1(a), let alone for real-world state-of-the-art CNNs

that are much larger and much more complex. Therefore,

a systematic and automated approach for finding the CNN

inference execution with phases, which ensures minimum

buffer sizes, is required. In this paper, we propose such an

approach. Our approach consists of two steps. In the first

step, presented in Section V, we automatically convert a CNN

model into a functionally equivalent CSDF model because the

CNN model does not have means for explicit specification of

the CNN execution with phases, whereas the CSDF model has

such means. By doing this automated conversion, we specify

the execution of every CNN layer in one or several phases,

such that at each phase, a minimum part of the layer input

data is processed, thereby ensuring minimum buffer sizes to

exchange data between the layers. Moreover, the CSDF model

is accepted as an input by many existing embedded systems

design tools for automated performance/memory analysis,

transformations and optimizations. So, in the second step,

we use such existing embedded design tools, e.g., SDF3 [14],

137

to find a proper execution order of the phases with the

minimum buffer sizes, specified in the first step. Thus, in our

2-step approach, we combine processing data by parts with

specific execution order of the phases to ensure the CNN

inference with minimum buffer sizes.

V. CNN-to-CSDF model conversion

The automated conversion of a CNN into a functionally

equivalent CSDF model, utilized in our memory reduction

approach, is given in Algorithm 1. Algorithm 1 accepts

as input a CNN description, for example in the ONNX

format [3], and returns as output CSDF model G(A,C). The

first step in our approach is the construction of a CNN

model CNN(N,E) from the CNN description - Line 1 of

Algorithm 1. It includes the extraction of the topology of

the CNN model (CNN layers and edges) and the parameters

of the CNN model (e.g. CNN layers operators), which is a

straightforward automated action. An example of the con-

structed model CNN(N,E) is given in Figure 1(a), explained
in Section III-A. In Lines 2-21, explained in Section V-A, Algo-

rithm 1 generates the topology of the CSDF model G(A,C).
In Lines 22-42, explained in Section V-B, Algorithm 1 derives

the production/consumption sequences for every channel in

G(A,C). Finally, in Line 43, Algorithm 1 returns G(A,C),
which is functionally equivalent to the input CNN(N,E)
model. An example of the CNN-to-CSDF conversion is shown

in Figure 1, where the CNN model CNN(N,E), shown
in Figure 1(a), explained in Section III-A, is converted into

the functionally equivalent CSDF model G(A,C), shown in

Figure 1(b), explained in Section III-B. The examples, provided

in this section for Algorithm 1, are referring to the CNN-to-

CSDF conversion, shown in Figure 1.

A. CSDF model topology generation

The CSDF model topology generation is performed in

Lines 2-21 of Algorithm 1. In Line 2, Algorithm 1 generates

a new CSDF model G(A,C) with an empty set of actors

A and an empty set of communication channels C . In
Lines 4-15 Algorithm 1 converts every layer ni of the CNN

model CNN(N,E) into a functionally equivalent CSDF

actor ai ∈ A. As explained in Section IV, in our approach,

every CNN layer ni is obtaining the layer output data Yi

from the layer input data Xi by applying operator opi to
the minimum parts of Xi, until all the Xi is processed. To

reproduce this functionality, every actor ai ∈ A performs

execution sequence Fi = {fi(p)}, p ∈ [1, Pi], where every
function fi(p) ∈ Fi is specified as fi(p) = opi (Lines 13-15
of Algorithm 1). On each phase p ∈ [1, Pi], actor ai applies

operator opi to the part of input data X
[HΘi ,WXi ,CXi]
ip of the

layer ni and produces a part of output data Y
[1,WYi ,CYi]
ip .

The number of phases Pi of actor ai is computed in Lines

9-12 of Algorithm 1. If in layer ni no overlapping (s ≥ HΘ

in Line 9 of Algorithm 1) and no padding (hpad = 0 in

Line 9 of Algorithm 1) occurs, or the whole Xi should be

processed at once (HΘ = HX in Line 9 of Algorithm 1), then

the number of phases is set to 1 in Line 10 of Algorithm 1.

Algorithm 1: CNN-to-CSDF conversion

Input: CNN description
Result: G(A,C)

1 construct CNN(N,E) from CNN description;
2 A,C ← ∅; G(A,C)← CSDF model (A,C) ;
3 foreach ni ∈ N do
4 Fi ← ∅;
5 ai ← actor (Fi);
6 A← A+ ai;
7 (X,Y,Θ, op, s, pad)← ni;
8 hpad = pad[1] + pad[3];
9 if (s ≥ HΘ ∧ hpad = 0) ∨HΘ = HX then
10 Pi = 1;

11 else
12 Pi = (HX + hpad−max(HΘ, s))/s +1;

13 for p ∈ [1, Pi] do
14 fi(p) = op;
15 Fi = Fi + fi(p);

16 if s < HΘ then
17 cii ← channel(ai, ai);
18 C ← C + cii;

19 foreach eij ∈ E do
20 cij ← channel(ai, aj);
21 C ← C + cij ;

22 foreach cij ∈ C do
23 if i = j then
24 (X,Y,Θ, op, s, pad)← ni;
25 for p ∈ [1, Pi] do

26 uij(p) =

{
0 if p = Pi

(HΘ − s) ∗WX ∗ CX otherwise

27 vij(p) =

{
0 if p = 1
(HΘ − s) ∗WX ∗ CX otherwise

28 else
29 (X,Y,Θ, op, s, pad)← ni;
30 for p ∈ [1, Pi] do
31 uij(p) = WY ∗ CY ;

32 (X,Y,Θ, op, s, pad)← nj ;
33 vij(1) = (HΘ − pad[1]) ∗WX ∗ CX ;

34 hpad =

{
pad[1] + pad[3] if Pj = 1
pad[3] otherwise

;

35 if �cjj ∨ Pj = 1 then
36 for p ∈ [2, Pj − 1] do
37 vij(p) = HΘ ∗WX ∗ CX ;

38 vij(Pj) = (HΘ − hpad) ∗WX ∗ CX ;

39 else
40 for p ∈ [2, Pj − 1] do
41 vij(p) = s ∗WX ∗ CX ;

42 vij(Pj) = (s− hpad) ∗WX ∗ CX ;

43 return G(A,C)

Otherwise, in Line 12 of Algorithm 1, the number of phases

is set to the number of steps, required for actor ai to process
input data Xi by parts Tin. For example, actor a3 performs
execution sequence F3 = [P3 ∗ op3] = [4 ∗ conv], where
op3 = conv is the operator, performed by layer n3. As for

layer n3 the condition in Line 9 of Algorithm 1 is not met

(hpad = −2 < 0 ∧ HΘ3 = 5 < HX3 = 16), the number of
phases P3 of actor a3 is computed in Line 12 of Algorithm 1

as P3 = (16 + (−2)−max(5, 3))/3 + 1 = 4.

138

In Lines 16-18 Algorithm 1 models overlapping data reuse,

explained in Ex3 in Section IV. In Line 16, Algorithm 1

checks, if the data overlapping occurs in layer ni ∈ N . If data

overlapping occurs in layer ni, in Lines 17-18 Algorithm 1

models data overlapping for corresponding actor ai. Since
the CSDF model does not allow internal state specification

in actors, the data overlapping/reuse is modeled as self-loop

FIFO channels cii, that store and reuse the overlapping data
between subsequent firings of actor ai. For example, the data
overlapping occurs in layer n3 (s3 = 3 < HΘ3 = 5). There-

fore, in Lines 17-18, Algorithm 1 creates self-loop channel

c33, which stores the overlapping/reuse data for actor a3.
Finally, in Lines 19-21, Algorithm 1 converts every input

CNN model edge eij ∈ E, representing a data dependency

between layers ni ∈ N and nj ∈ N , into communication

FIFO channel cij ∈ C , representing data dependency between
actors ai ∈ A and aj ∈ A.

B. Production/consumption sequences derivation

The production sequence Uij = {uij(p)}, p ∈ [1, Pi]
and the consumption sequence Vij = {vij(p)}, p ∈ [1, Pj]
are derived for every channel cij ∈ C of CSDF graph

G(A,C) in Lines 22-42 of Algorithm 1. For every data reuse

channel cij ∈ C, i = j, storing the overlapping/reuse data

between subsequent firings of actor ai, the elements of the
production/consumption sequences are computed in Lines

24-27 of Algorithm 1. Since at the last phase Pi of actor

ai there is no need to produce data to be reused, the last

element of the production sequence uij(Pi) is set to 0 in

Line 26 of Algorithm 1. Since at the first phase actor ai has
not yet produced data in the data reuse channel cij , the first
element of the consumption sequence vij(1) is set to 0 in

Line 27 of Algorithm 1. For all other phases of actor ai
the elements of the production/consumption sequences are

computed in Lines 26-27 of Algorithm 1 as the number of

tokens in a tensor of shape (HΘ − s) ∗WX ∗ CX , reused

between the subsequent firings of actor ai. For example, data
reuse channel c33 has production sequence U33 : [3∗128, 1∗0]
and consumption sequence V33 : [1 ∗ 0, 3 ∗ 128].
For CSDF channels cij , that are not data reuse channels, i.e.

i �= j, the elements of the production/consumption sequences
are computed in Lines 29-42 of Algorithm 1. Every element

of the production sequences uij(p), p ∈ [1, Pi] is computed
in Lines 30-31 of Algorithm 1 as the number of elements

in tensor Yip, produced by actor ai at its phase p. For
example, actor a3 at its every phase p ∈ [1, 4] produces data

Y
[1,4,3]
3p , p ∈ [1, 4], to channel c34. Therefore, the elements of

production rate of channel c34 are computed in Lines 30-31

of Algorithm 1 as u34(p) = 1 ∗ 4 ∗ 3 = 12.
Every element of the consumption sequences vij(p), p ∈

[1, Pj] is computed in Lines 32-42 of Algorithm 1 as the

number of elements in data tensor, consumed by actor

aj from non-overlapping channel cij on the actors phase

p ∈ [1, Pj] in order to produce data Yjp. The first element of

the consumption sequences vij(1) is computed in Line 33 of
Algorithm 1. If no padding occurs at the first phase of actor

aj (pad[1] = 0 in Line 33 of Algorithm 1), actor aj consumes

from cij data X
[HΘi ,WXi ,CXi]
jp . If actor aj crops data at the

first phase (pad[1] < 0 in Line 33 of Algorithm 1), actor aj
consumes from cij data Xjp and data to be cropped. If actor

aj extends data at the first phase (pad[1] > 0 in Line 33 of

Algorithm 1), actor aj consumes from cij part of data Xjp,

which is not provided by padding.

The computation of consumption sequence elements

vij(p), p ∈ [2, Pj] is divided in two different cases, deter-

mined by the presence of data overlapping in the channel

sink actor aj , corresponding to layer nj . If data overlapping

is not presented in actor aj (Lines 35-38 of Algorithm 1), actor

aj consumes all input data from its non-overlapping input

channel cij . If data overlapping/reuse is presented in actor aj
(Lines 39-42 of Algorithm 1), actor aj consumes from channel

cij only non-overlapping data. The overlapping/reuse data is

consumed by actor aj from its self-loop channel cjj . In total,
actor aj consumes data Xjp at phases p ∈ [2, Pj − 1] (Lines
36-37, 40-41 of Algorithm 1), and all the remaining data at

phase p = Pj (Lines 38,42 of Algorithm 1). Consumption of

all the remaining data from CSDF channels allows to empty

the FIFO buffers and ensure the CSDF model consistency [7].

For example, communication channel c23 has consumption
sequence V23 : [1∗384, 2∗192, 1∗256]. The first element of the

consumption sequence is computed in Line 33 of Algorithm 1

as v23(1) = (5− (−1)) ∗ 16 ∗ 4 = 384, where 5 ∗ 16 ∗ 4 = 320

elements are elements of input data tensor X
[5,16,4]
3p , p ∈

[1, 4], used by actor a3 to produce data Y3p, and 1∗16∗4 = 64
elements are cropped by actor a3 according to the padding

pad3. As data overlapping/reuse is presented for a3 (∃c33),
v23(p), p ∈ [2, 4] are computed in Lines 40-42 of Algorithm 1.

At phases p ∈ [2, 4− 1] actor a3 consumes non-overlapping
data 3∗16∗4 = 192 from channel c23, i.e., v23(p) = 192, p ∈
[2, 3]. At the last phase actor a3 consumes the remaining data
(3−(−1))∗16∗4 = 256 from channel c23, i.e. v23(4) = 256.

VI. Evaluation

In this section, we evaluate our memory reduction ap-

proach in terms of achieved memory footprint reduction

as well as we show the cost of this memory footprint

reduction in terms of decreased CNN inference throughput.

To this end, we take real-world CNNs from the ONNX

models Zoo [2] and obtain their memory footprint and

inference throughput when these CNNs are executed using

our approach. Then, we compare the obtained memory foot-

print and inference throughput with the memory footprint

and inference throughput obtained when these CNNs are

executed as in the state-of-the-art DL frameworks, such as

TensorFlow, Keras, Caffe2, and other, reviewed in survey [6].

Recall that, during the CNN inference execution in the state-

of-the-art DL frameworks, every CNN layer has one phase

at which it processes its whole input data, whereas in our

approach every CNN layer has one or several phases and at

each phase it processes a minimum part of its input data.

We obtain the CNN memory footprint and inference

throughput in two steps. At the first step, we represent the

139

CNN inference with phases as a CSDF model by performing

a CNN-to-CSDF model conversion. In our approach, the

CNN-to-CSDF conversion is performed using Algorithm 1,

presented in Section V. To represent the CNN inference, per-

formed by the state-of-the-art DL frameworks, and explained

in Ex1 in Section IV, as a CSDF model, we perform a one-

to-one CNN-to-CSDF conversion, where every CNN layer is

converted into a CSDF actor with one phase and every CNN

edge is converted into a CSDF channel.

At the second step, we take the CSDF models, obtained

at the first step above, and use the SDF3 embedded systems

design, analysis and optimization tool [14] to evaluate the

CNN memory footprint and inference throughput. The SDF3

tool accepts as an input the CNN inference, modeled as

a CSDF graph, and computes: 1) the execution order of

the phases in the CSDF model, required to perform the

CNN inference with minimum buffer sizes; 2) the guaranteed

maximum throughput, achievable by the CNN inference,

executed with the minimum buffer sizes.

The evaluation results are given in Table III. Columns 2

and 3 in Table III show the memory footprint of the CNNs,

computed by Equation 1, given in Section III-C, such that:

1) the total buffer sizes mbuf are computed using the SDF3

tool; 2) memory mpar is computed as the total number

of the CNN model parameters, provided for every CNN

model in the ONNX models Zoo, multiplied by the amount

of memory, occupied by a CNN parameter; 3) Every CNN

parameter or intermediate data element is stored in floating-

point precision and occupies 4 bytes of memory. Column 4 in

Table III shows the CNN memory reduction, achieved by our

approach in comparison to the approach used in the state-

of-the-art DL frameworks [6]. The reduction is computed as

(mDL −mour)/mDL ∗ 100%, where values mDL and mour

are given in Column 2 and Column 3, respectively. Column 4

indicates that our systematic and automated memory reduc-

tion approach allows to reduce the CNN memory footprint

by 17% to 64%, depending on the CNN. Columns 5 and 6 in

Table III show the throughput τ of the CNN inference, when

executed as in the state-of-the-art DL frameworks, and as in

our approach, respectively. In order to allow the SDF3 tool

to evaluate the CNN inference throughput, every actor in

the corresponding CSDF model should be annotated with an

execution time number per phase. The execution time per

phase for a CSDF actor, representing the functionality of a

corresponding CNN layer, is computed by Equation 2, given

in Section III-C. The times τaccessi , τkerneli , and τopi
, required

for Equation 2, are obtained by real measurements, performed

on the NVIDIA Jetson TX2 embedded device [1]. Column 7

in Table III shows the CNN throughput decrease, introduced

by our approach, when compared to the execution approach

used in the state-of-the-art DL frameworks [6]. The decrease

is computed as (τDL− τour)/τDL ∗ 100%, where values τDL

and τour are given in Column 5 and Column 6, respectively.
Column 7 indicates that our approach introduces 3% to 54%

decrease in the CNN throughput, depending on the CNN.

Columns 4 and 7 in Table III show that, overall, our memory

TABLE III: Evaluation of our memory reduction approach

CNN
Memory (MB) Throughput (fps)

mDL mour reduction τDL τour decrease
resnet18 84 52 38% 46 36 22%
googlenet 86 50 41% 60 42 30%
tiny yolo v2 142 66 54% 26 21 22%
inception v1 81 48 41% 66 46 31%
VGG 19 700 579 17% 3.97 3.87 3%
densenet121 327 119 64% 36 19 47%
squeezenet 34 12 64% 272 125 54%

reduction approach is efficient because the percentage of

achieved CNN memory reduction exceeds the percentage of

introduced CNN throughput decrease.

Conclusions

We propose a novel CNN memory footprint reduction

approach. Our proposed approach is based on the ability

of CNN operators to process data by parts, and allows to

reduce the CNN memory footprint at the cost of decreasing

the CNN throughput. The key feature of our approach is

the execution of CNN operators in phases, achieved by

our proposed novel algorithm which converts a CNN to a

functionally equivalent CSDF model. The evaluation results

show that our memory reduction approach allows to reduce

the CNN memory footprint by 17% to 64% at the cost of 3%

to 54% decrease of the CNN throughput.

Acknowledgement

This work has received funding from the European Unions

Horizon 2020 Research and Innovation project under grant

agreement No. 780788.

References

[1] Nvidia jetson embedded mpsoc. //https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-tx2.

[2] Onnx models zoo. https://github.com/onnx/models.
[3] Open neural network exchange format (onnx). https://onnx.ai.
[4] Rpi 4 basic kit. https://www.canakit.com/raspberry-pi-4-basic-kit.html.
[5] A. Monteiro et al. Embedded application of convolutional neural

networks on raspberry pi for shm. Electronics Letters, 2018.
[6] A. Parvat et al. A survey of deep-learning frameworks. In ICISC, 2017.
[7] G. Bilsen et al. Cyclo-static dataflow. In IEEE TSP, 1996.
[8] G. Huang et al. Densely connected convolutional networks. In CVPR,

2017.
[9] K. He et al. Deep residual learning for image recognition. CVPR, 2016.
[10] M. Abadi et al. Tensorflow: Large-scale machine learning on hetero-

geneous systems. http://tensorflow.org/, 2015.
[11] M. Abadi et. al. A computational model for tensorflow: An introduction.

In MAPL. ACM, 2017.
[12] M. Sandler et al. Mobilenetv2: Inverted residuals and linear bottlenecks.

In CVPR.
[13] Md. Z. Alom et al. The history began from alexnet: A comprehensive

survey on deep learning approaches. CoRR, 2018.
[14] S. Stuijk et al. Sdf3: Sdf for free. In ACSD, 2006.
[15] T. Do et al. Real-time self-driving car navigation using deep neural

network. In GTSD, pages 7–12, 2018.
[16] W. Li et al. An evaluation of unified memory technology on nvidia

gpus. In CCGRID, 2015.
[17] Yu Cheng et al. A survey of model compression and acceleration for

deep neural networks. IEEE Signal Processing Magazine, 2018.
[18] Y. Pisarchyk and J. Lee. Efficient memory manegement for deep neural

net inference. In MLSys, 2020.
[19] M. Vestias. A survey of convolutional neural networks on edge with

reconfigurable computing. Algorithms, 2019.

140

