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ABSTRACT: Biological assembly processes offer inspiration for
ordering building blocks across multiple length scales into
advanced functional materials. Such bioinspired strategies are
attractive for assembling supported catalysts, where shaping and
structuring across length scales are essential for their performance
but still remain tremendously difficult to achieve. Here, we present
a simple bioinspired route toward supported catalysts with tunable
activity and selectivity. We coprecipitate shape-controlled nano-
composites with large specific surface areas of barium carbonate
nanocrystals that are uniformly embedded in a silica support.
Subsequently, we exchange the barium carbonate to cobalt while preserving the nanoscopic layout and microscopic shape, and
demonstrate their catalytic performances in the Fischer−Tropsch synthesis as a case study. Control over the crystal size between 10
and 17 nm offers tunable activity and selectivity for shorter (C5−C11) and longer (C20+) hydrocarbons, respectively. Hence, these
results open simple, versatile, and scalable routes to tunable and highly reactive bioinspired catalysts.

1. INTRODUCTION

The exquisite complexity and hierarchical structuring of
biominerals offer an inexhaustible source of inspiration for
the assembly of new materials with advanced functionalities.1−5

In particular, bioinspired self-assembly can be exploited for
hierarchical ordering of amorphous and crystalline substances
in functional nanocomposites, while the inherent autonomous
character of self-assembly is advantageous for straightforward
upscaling.6−26 Consequently, bioinspired nanocomposites have
already been applied in fields such as robotics, sensing, and
optics,14,27−29 yet the full potential of self-assembly for
advanced materials remains untapped.
Specifically, such bioinspired strategies could potentially be

exploited in the field of catalysis, where shaping and structuring
across length scales is essential for catalytic performance.30−35

Of particular interest are supported catalysts consisting of
metallic nanosized crystals dispersed on the surface of a porous
(typically ceramic) support. Ideally, supported catalysts have
the following properties: (i) a large macroscale surface and
nanoscale porosity for maximum accessibility of the reagents
and products; (ii) high metal loadings for high reactivity; (iii)
well-controlled nanocrystal size and size distributions for
optimal catalytic activity and selectivity; and (iv) uniform
dispersion of the nanocrystals on the surface of the support to
prevent undesirable agglomeration of the nanocrystals, which
may impede both the activity and selectivity of the catalyst
over time. Despite tremendous progress in nanoparticle
fabrication and catalyst preparation methods,32−40 ceding

control over all but the starting materials, leaves little
opportunity to fine-tune crystal sizes, let alone uniformly
distribute nanocrystals in shape-controlled supported catalysts.
An attractive system to overcome this limitation is the

bioinspired coprecipitation of barium carbonate (BaCO3)
nanocrystals and amorphous silica (SiO2).

15−20 Here, the
crystallization of BaCO3 is steered by the precipitation of SiO2
through an acid-regulated feedback mechanism, resulting in
intricate and controllable microshapes (Figure 1).15−18 This
system inherently produces the desired material properties for
supported catalysts: (i) programmable microshapesinclud-
ing coral-like geometries that maximize the surface area; (ii) a
nanocomposite layout with a high metal-to-silica molar ratio of
4:1; (iii) nanocrystals of ca. 20 nm that are (iv) uniformly
dispersed in a silica support. Moreover, inspired by naturally
occurring fossilization processes and nanocrystal fabrica-
tion,21,22,41−43 the chemical composition of the nanocrystals
can be completely overhauled using ion-exchange reactions
while preserving the microscopic shape and submicron features
of the original nanocomposite.23,24 These insights highlight an
enormous potential for the assembly of bioinspired functional
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materials and suggest the possibility to integrate desirable
catalytic properties into these materials by fine-tuning the
assembly/exchange processes.
Here, we demonstrate this potential by converting BaCO3/

SiO2 nanocomposites to cobalt oxide/silica (Co3O4/SiO2)
nanocomposites that, upon reductive treatment to Co/SiO2,
become catalysts with tunable activity. In this work, the
Fischer−Tropsch synthesis (FTS)42a chemical conversion
that receives wide attention for its unique ability to produce
high-value hydrocarbons (CxH2x+2) from cheap feedstocks of
hydrogen (H2) and carbon monoxide (CO)43−48is used as a
model reaction to assess the catalytic activity of the bioinspired
nanocomposites. Typical FTS catalysts are composed of
nanoparticles of Fe or Co immobilized on porous supports
like SiO2 or Al2O3,

49 with the Co nanoparticle size being a key
parameter that affects the activity and selectivity of the
reaction.50 Thus, this sensitivity of product distribution on
nanocrystal sizes makes the FTS an ideal case study for
probing the tunable selectivity of bioinspired nanocomposite
catalysts.

2. EXPERIMENTAL SECTION
2.1. Growth of BaCO3/SiO2 Nanocomposites. A solution of

BaCl2 (7.4 g, 30 mM) in 300 mL of water was added to a solution of
Na2SiO3 (1.6 g, 13 mM) in 1200 mL of water. This solution was
poured in a metal tray (30 × 50 × 10 cm3) while keeping at least 1 cm
of depth to the solution. The solution was left for 1.5 h with the tray
covered with a perforated cardboard lid. The resulting nano-
composites were separated from the solution via vacuum filtration.
2.2. Exchange to Co(CO3)x(OH)2−2x. Cobalt nitrate hexahydrate

(Co(NO3)2) (11.6 g, 40 mM) was dissolved in 200 mL of
demineralized water. BaCO3/SiO2 nanocomposites were placed in
this solution using a spatula while gently stirring the solution to
spread the nanocomposites. Afterward, the resulting purple nano-
composites were separated from the solution using vacuum filtration
and washed with demineralized water followed by acetone.
2.3. Exchange to Co3O4. An alumina boat containing Co-

(CO3)x(OH)2−2x/SiO2 nanocomposites was placed in an open single
zone tube furnace and heated to 530, 560, 590, 620, or 650 °C for 4 h.
Afterward, the resulting black nanocomposites were retrieved by
passively cooling the furnace to room temperature and retrieving the
alumina boat.
2.4. Catalytic Analysis. The catalysts were tested for the FTS at

20 bar, 220 °C, H2/CO = 2/1 and gas hourly space velocity (GHSV)
= 320 mL gcat

−1 min−1. The nanocomposite catalysts (160 mg) were
diluted with SiC (1:6) and located in a 10 mm diameter Hastelloy
reactor. Above the catalysts and next to the reactor inlet, a bed of SiC
was placed to ensure that the gases were preheated. The reactor was

placed in an oven (Carbolite Gero), and the temperature was
measured with a thermocouple at the reactor exit and one
thermocouple inserted in the SiC bed. The liquid products were
collected in a hot-trap at the reactor exit, while the gases flowed
through a heated line at 250 °C, toward the gas chromatograph (see
Section S12 for details).

3. RESULTS AND DISCUSSION

Our strategy comprises three steps (Figure 1): (1) the
nanocomposite is assembled via coprecipitation of BaCO3

and SiO2; (ii) BaCO3 is replaced with cobalt via cation
exchange, and (iii) the cobalt is decomposed to yield the
desired cobalt oxide (Co3O4) catalyst precursor material while
preserving the nanoscale organization and microscopic shape
of the original nanocomposite. To demonstrate the shape-
preservation, we analyze the same architecture throughout the
entire procedure and perform complementary analysis on bulk
samples.
In the first step, we program the desired microscopic shape.

Ideally, the microscopic shape of the eventual catalyst has a
large surface that is well accessible for the reactants and
products. To achieve this, we steer the coprecipitation of the
original BaCO3/SiO2 nanocomposite toward coral-like shapes
with many extrusions to maximize the surface area of the
architecture (for details, see Section S1).16 Scanning electron
microscopy (SEM) confirms the coral-like shape of the
resulting nanocomposites (Figure 2A). Consistent with
previous reports,15,16,18 energy-dispersive X-ray spectroscopy
(EDS) shows that the nanocomposite has a barium/silicon
molar ratio of 4:1 (Figure 2B), with barium crystallizing as

Figure 1. Preparation of catalytic nanocomposites. (A) Coprecipita-
tion of nanocomposites containing BaCO3 nanocrystals and
amorphous SiO2. (B) Nanocrystals of the composites are converted
by replacing the Ba2+ with Co2+ followed by decomposition to Co3O4,
which serves as the precursor of the Fischer−Tropsch catalyst.42

Figure 2. Shape-preserving conversion of BaCO3/SiO2 to Co3O4/
SiO2 nanocomposites. (A) SEM images of self-assembled nano-
composites before exchange (left, BaCO3/SiO2), after cation
exchange (middle, Co(CO3)x(OH)2−2x/SiO2), and after decomposi-
tion (right, Co3O4/SiO2). (B) EDS analysis showing the presence of
barium and silica in the initial BaCO3/SiO2 nanocomposite (top), the
replacement of Ba2+ for Co2+ after the cation exchange (middle), and
the preservation of the metal-to-silicon ratio after decomposition
(bottom). (C) XRD data of the initial BaCO3 (top, orthorhombic),
intermediate Co(CO3)x(OH)2−2x (middle, amorphous), and Co3O4
(bottom, cubic). Reference lines in red show peaks measured in
literature (COD 1000033, COD 1548825, and ICSD 27498
respectively, see Sections S1−S5 for details). (D) High-resolution
SEM image of the Co3O4/SiO2 nanocomposite surface (top), with
corresponding EDS overlay showing the distribution of cobalt (cyan,
middle) and silicon (brown, bottom).
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orthorhombic barium carbonate (witherite) according to X-ray
diffraction (XRD) (Figure 2C).
In the second step, the desired cobalt ion is introduced by

immersing the nanocomposites in a solution of 5.0 mM
Co(NO3)2 for 50 min (for details, see Sections S3 and S4).
EDS confirms the complete exchange of Ba2+ with Co2+

(Figure 2B). The absence of diffraction peaks in the XRD
analysis suggests formation of basic amorphous cobalt
carbonate (Co(CO3)x(OH)2−2x), which is supported by the
presence of the carbonate fingerprint peak in IR measurements
(Figure 2C and Section S13).
Comparing SEM images of the same coral shapes before and

after conversion shows that the overall shape shrinks by ca.
60%, which may partially be attributed to the decrease in ionic
radius from the exchange of Ba2+ (149 pm) to Co2+ (80 pm).51

Despite this dramatic shrinking, the microscopic form and fine
details are well-preserved after the conversion (Figure 2A).
This demonstrates the potential of the nanocomposite layout
for shape-preserving conversion reactions: the nanocrystals
offer high chemical reactivity, while the silica matrix provides
mechanical stability.24

In the third step, the resulting cobalt carbonate phase is
thermally decomposed into Co3O4 by heating the nano-
composites to 650 °C for 4 h (for details see Section S5). XRD
and EDS confirm complete conversion toward the cubic
crystalline phase of Co3O4 with preservation of the 4:1
metal:silicon molar ratio (Figure 2B,C). Furthermore, high-
resolution SEM and EDS mapping (Figure 2D) reveals that the
nanocomposite surface is highly porous, with a uniformly
dispersed elemental distribution of cobalt and silicon (Figure
2D and Section S6). During the overall conversion of BaCO3
to Co3O4, the volume of the crystal lattice shrinks by more
than 70%. Indeed, comparing the microshape before and after
the conversion shows a shrinking of ca. 80% (Figure 2A, see
Section S9 for details). The nanocomposite layout thus
translates the volume changes at the atomic scale to the
microscopic shrinking. Consequently, despite dramatic shrink-
ing at atomic length scales, the final Co3O4/SiO2 microshape is
geometrically indistinguishable from the original BaCO3/SiO2
form, and even sub-micrometer details and the nanocomposite
layout remain preserved.
We quantify the available surface for catalysis by determining

the BET surface area (SBET) and pore distribution of the
Co3O4/SiO2 nanocomposite using a Micromeritics Tristar II.
We find a SBET of 36.3 m

2/g and an average pore size of 6.6 nm
(Section S12). This material presents a moderate internal
surface area and large mesoporosity, and is thus adequate for

catalysis. We explore the functionality potential of this shape-
preserving conversion route by testing the catalytic perform-
ance of Co3O4/SiO2 nanocomposites for FTS, forming
hydrocarbons with various carbon chain lengths (CxH2x+2)
from hydrogen (H2) and carbon monoxide (CO) (Figure
3A).45−47,50 The ideal hydrocarbon chain length (Cx) varies
based on its intended application: shorter chains are favored
for naphtha and gasoline (x = 5−11),46 while longer chains are
ideal for waxes and lubricant oils (x > 20).47 Since the chain
length depends on the size of the cobalt crystals,50 it is highly
desirable to control the crystal size of the Co3O4 crystals within
the catalyst.
We tune the crystal size within the Co3O4/SiO2 nano-

composites by inducing sintering of the crystals during the
decomposition in step (iii) of our assembly scheme (Figure
1B). To this aim, we perform decomposition processes at
different temperatures and determine the crystal size from X-
ray powder diffractograms using the Scherrer equation (see
Supporting Information). Consistent with previously observed
sintering,52,53 we observe an almost linear increase in crystal
sizes from ca. 10 nm (Co3O4 (10 nm)/SiO2) to ca. 17 nm
(Co3O4 (17 nm)/SiO2) for temperatures ranging from 530 to
650 °C (Figure 3B). Remarkably, the microscopic geometry of
the nanocomposites remains preserved, while the nanoscopic
crystal size can be tailored precisely over a wide range of sizes.
We scale up the fabrication of the nanocomposites to test

the catalytic performance (Section S2). To this end, we take
advantage of the autonomous nature of our bottom-up
assembly process to scale the nanocomposite assembly by
>500-fold from a few micrograms of architectures on a
substrate up to multiple grams of bulk materials. Specifically,
we use commercial kitchen trays to increase the reaction
volume and maximize the air−liquid interface for CO2 uptake
(see Sections S2 and S11 for details). XRD, EDS, and SEM
analyses confirm complete conversion to Co3O4 with
preservation of the nanocomposite layout and tunable
nanoparticle size in these scaled-up reactions (Section S11).
We perform the Fischer−Tropsch synthesis with Co3O4 (17

nm)/SiO2 nanocomposites. The nanocomposites are placed in
a gas flow reactor and are reduced to the active metal cobalt
catalyst with H2 (10% in N2 flow rate of 50 mL min−1) at 400
°C. Then, the reactor is cooled down to the reaction
temperature of 200 °C. FTS is initiated by flowing H2, CO,
and N2 (with a ratio of 6:3:1) into the reactor at 20 bar and a
gas hourly space velocity (GHSV) of 320 mL gcat−1 min−1.
The reaction progress is followed using real-time online gas
chromatography. We observe an initial conversion of 13% and

Figure 3. Self-assembled Co3O4/SiO2 nanocomposites for tunable catalysis of the Fischer−Tropsch synthesis. (A) FTS reaction on Co3O4/SiO2
that is reduced to Co/SiO2 in the reactor. The hydrocarbon chain length Cx is determined by the Co3O4 crystal size. (B) Modifying the
decomposition temperature in step (iii) (Figure 1B) enables customization of the Co3O4 nanocrystal size (C) FTS reaction products for Co3O4
crystal sizes of 10 and 17 nm, showing a preferred formation of C5−11 and C20+, respectively.
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a steady-state conversion rate of 5% with a turnover frequency
(TOF) of 6.2 × 10−3 s−1 (see Section S12 for details), a
performance which is comparable with traditionally-prepared
state-of-the-art catalysts.50,54,55 Remarkably, the reaction
predominantly produces long carbon chains, with 40% of the
products having a chain length of C20+, which is a desired
attribute in FTS catalysts, commonly associated with large and
uniformly distributed nanocrystals.47,50 Hence, these findings
demonstrate the functionality potential of these self-assembled
nanocomposites for selectively catalyzing FTS.
According to the current understanding of FTS cobalt

catalysts, smaller nanocrystals catalyze the formation of shorter
hydrocarbon chains with respect to larger crystals, while the
effects of crystal size on reaction rate (TOF) depend on the
size range.45,46,50 Most studies agree that TOF increases with
the crystal size up to ca. 6−10 nm and remains nearly invariant
with larger crystals, while others report a negative effect of
TOF for even larger crystals of ca. 10−15 nm.50 Thus, to
further assess the functionality potential of the self-assembled
nanocomposites, we tune the catalytic selectivity and activity of
the FTS reaction by tailoring the nanocrystal size within the
nanocomposite. To this aim, we decrease the crystal size of the
Co3O4/SiO2 nanocomposites from 17 to 10 nm by performing
the decomposition in step (iii) at 530 °C (Figure 3B), and
perform the FTS under identical conditions. Consistent with
previous reports,50 the decrease in crystal size (above 10 nm)
results in an increase of the initial conversion from 13 to 25%,
a steady-state conversion rate from 5 to 15%, and a TOF
increase from 6.2 × 10−3 to 9.8 × 10−3 s−1. Furthermore, as
expected, the decrease of the nanocrystal size shifts the
selectivity of these catalysts to form predominately shorter
carbon chains, with 27% of the products as C5−11 while only
17% of the products have a chain length of C20+ (Figure 3C).
Thus, our self-assembly scheme enables customization of the
nanoscopic crystal size within the composites for straightfor-
wardly tuning of the catalytic activity of the FTS.

4. CONCLUSIONS AND OUTLOOK
Here, we introduce a scalable bioinspired strategy for
assembling supported catalysts with well-distributed nano-
crystals and independently tunable nanocrystal size. We
program the microscopic shape of the catalyst during the
coprecipitation of BaCO3/SiO2, which also automatically
distributes the BaCO3 nanocrystals uniformly in the silica
matrix with a high metal loading. Subsequently, we fine-tune
the nanoscale crystal size by modulating the reaction
conditions during the conversion of BaCO3 into the desired
cobalt oxide (Co3O4) catalyst precursor, while preserving the
nanocomposite layout and microscopic shape. We further
prove the versatility and application potential of these self-
assembled nanocomposites with tunable catalytic activity.
Our assembly/conversion strategy enables further custom-

ization of the catalysts. We focused on converting the complete
interior of the composites. However, since only the outer parts
participate in the catalysis, it may be favorable to perform
partial conversion to reduce the metal loading while preserving
the catalytic activity. Moreover, selective conversion may
enable the spatial positioning of multiple catalytic materials for
cascade reactions.56 We foresee that our conversion reaction
scheme can straightforwardly be extended to calcium
carbonate as a starting material, thus gaining access to the
vast catalogue of biological calcium carbonate architectures to
leverage nature’s exquisite morphogenesis strategies with state-

of-the-art artificial catalytic performance. Hence, bioinspired
self-assembly strategies may offer previously unimaginable
control and tunability for shaping and structuring catalysts for
a myriad of catalytic reactions.
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■ ABBREVIATIONS

XRD, X-ray diffraction; EDS, energy-dispersive X-ray spec-
troscopy; SEM, scanning electron microscopy; IR, infrared
spectroscopy
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