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Abstract

Machine learning (ML) has become essential to a vast range of applications, while ML
experts are in short supply. To alleviate this problem, AutoML aims to make ML easier
and more efficient to use. Even so, it is not clear to which extent AutoML techniques
are actually adopted in an engineering context, nor what facilitates or inhibits adoption.
To study this, we define AutoML engineering practices, measure their adoption through
surveys, and distil first insights into factors influencing adoption from two initial interviews.
Depending on the practice, results show around 20 to 30% of the respondents have not
adopted it at all and many more only partially, leaving substantial room for increases in
adoption. The interviews indicate adoption may in part be inhibited by usability issues
with AutoML frameworks and the increased computational resources needed for adoption.

1. Introduction

Recent advances in machine learning (ML) have resulted in increasingly widespread use of
ML methods in a wide range of applications. AutoML promises to decrease development
time to enable adoption of ML on a larger scale and also to empower developers less expe-
rienced with ML. By automating key stages in creating ML tools and pipelines, AutoML
trades human time and experience for compute time. However, it is not yet clear to which
extent developers adopt AutoML techniques, and what factors influence their decisions.

To measure adoption we formulate practices based on a selection of AutoML techniques.
For the three AutoML practices we consider, the results from two surveys with a combined
total of over 360 development teams are presented. Moreover, we present preliminary results
from interviewing ML practitioners, which add depth to our survey results.

We investigate the adoption of AutoML practices in the broader context of software
engineering for ML (SE for ML), where AutoML practices automate different stages of
the software development life cycle for ML. Automation is known to bring multiple ben-
efits in traditional software development. However, its impact on the development of ML
systems is still unknown. Along with other results, we previously collected data about au-
tomatic hyperparameter optimisation from over 300 developers (Serban et al., 2020). With
an extended survey, additionally covering trustworthy ML, and also including additional
practices on automatic feature generation and model configuration, we gathered more than
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60 responses so far (Serban et al., 2021). Here, we analyse the AutoML data from these
quantitative studies to obtain a fine-grained view of AutoML practices and initiate quali-
tative interviews with practitioners to situate the survey results. Overall, we observe the
adoption of AutoML practices is relatively low, and the preliminary interviews suggest this
may in part be motivated by usability issues with AutoML frameworks and the increase in
computational resources required by AutoML approaches.

To position this study, Section 2 covers related work. Next, Section 3 describes the Au-
toML practices considered in our work, and discusses the survey design and interview setup.
Section 4 analyses the AutoML results from Serban et al. (2020) and from the extended sur-
vey from Serban et al. (2021), and relates them to observations from the interviews. Lastly,
in Section 5, we briefly summarise our main findings and discuss directions for future work.

2. Related Work

Best practices have been defined for research and for benchmarking of AutoML techniques
and frameworks. For instance, Eggensperger et al. (2019) define best practices for the
use of automatic algorithm configuration. Similar work exists for other techniques, such as
neural architecture search (Lindauer and Hutter, 2020). Best practices to compare AutoML
frameworks have also been proposed, e.g. by Gijsbers et al. (2019) combined with a set of
benchmark problems. However, none of this prior work considers the practical application
of AutoML, or AutoML practices used by developers of applications with ML components.

In the field of human computer interaction, there is recent work with a focus on the
adoption and accessibility of AutoML. Wang et al. (2019) postulate that users may not
adopt AutoML, because they distrust AutoML systems – for instance, because they do not
know whether the system was run sufficiently long. To tackle this problem, they introduce
a system to visualise and analyse results to help the user understand what the system
does, and to guide it. Lee et al. (2019) suggest that AutoML adoption may be low due to
usability issues rather than a lack of awareness, but do not indicate any evidence for this.
They propose a mixed-initiative ML framework with the aim of improving the usability
which should, among other things, result in a more transparent framework that users are
more likely to trust. Drozdal et al. (2020) investigate which features are important to
gain the trust of AutoML users, and found that visualising the process and providing
performance metrics are the most important. While these works aim to improve usability
or trustworthiness in order to facilitate increased adoption, they do not actually establish
that adoption is low, or that these are the primary factors limiting adoption.

In addition to the usability of AutoML frameworks themselves, there is also work on
making AutoML frameworks more usable by simplifying the interaction with them, or to
extend the automation to earlier or later steps than handled by the current frameworks.
For instance, Cambronero et al. (2020) introduce a tool to help define the search space
for AutoML frameworks. With another tool, Narkar et al. (2021) aim to help users with
the analysis of results and to let them choose a final model based on more than just a
performance metric optimised by the AutoML framework.

As far as actual AutoML adoption goes, Lee et al. (2019) observe, based on preliminary
results, that fewer than 2% of the workflows available on OpenML (Vanschoren et al., 2013)
adopt AutoML. However, since OpenML is primarily a research platform, this may not
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be a very good indicator for adoption in a wider context; in addition, it gives no detailed
view of adoption of the various AutoML stages. Xin et al. (2021) study for which parts of
the ML process AutoML adopters apply the automated methods and which they prefer to
do manually. Their findings also cover the benefits and shortcomings the users see in the
current AutoML frameworks. For the steps where AutoML is used most (hyperparameter
tuning, model- and feature selection), however, they go into the least detail, merely stating
that these are the most used; insights into what drives or holds back adoption of these steps
are not reported. In a similar study Crisan and Fiore-Gartland (2021) look more closely
at the use and adoption of visualisation techniques for AutoML, and how desirable users
actually find them. Both Xin et al. (2021) and Crisan and Fiore-Gartland (2021) gather
qualitative data from interviews and suggest that human experts (currently) demand a place
in the loop because AutoML does not sufficiently address all their needs.

3. AutoML Practices

Practice mining. To extract the practices, we followed a similar process to Serban et al.
(2020), resulting in three AutoML practices, which overlap with the pre-processing and
modelling tasks from Xin et al. (2021) that are well established in academia. These practices
were derived from grey literature as follows. Dean (2019), Tunguz (2020) and ZelrosAI
(2019) all consider various AutoML stages, which can be categorised as revolving around
(a) feature engineering and selection, (b) hyperparameter optimisation (HPO) and model
or algorithm selection, and (c) the configuration of algorithms or model structures and
architectures. This categorisation resulted in the following practices: 1

1. Automate feature generation or selection.

2. Automate model selection and hyperparameter optimisation.

3. Automate configuration of algorithms or model structure (e.g., NAS).

Practice adoption. To measure the adoption of these AutoML practices, we ran two sur-
veys in the general context of software engineering for ML, i.e., the surveys contained both
questions about software engineering for ML and AutoML. The questionnaire was designed
following the recommendations from Kitchenham and Pfleeger (2002) as a cross-sectional
observational study, asking participants at the moment of filling the questionnaire if they
adopted the practices. Several preliminary questions provided the basis for assigning par-
ticipants to pre-defined groups. Participants were instructed to answer from the perspective
of their team, rather than based on their individual practices.

The questions (see Appendix A) used standard answers on a Likert scale with four
possible answers reflecting degrees of adoption rather than levels of agreement. This allowed
the practices to be expressed impartially and avoided the null-point bias strategy. The four
possible answers were “Not at all”, “Partially”, “Mostly” and “Completely”.

The first survey covered only the second AutoML practice mentioned above, while the
second survey was specifically designed to cover all practices. Details on how the survey was
distributed and a demographic analysis to identify possible biases can be found in Serban
et al. (2020). Other SE for ML practices are also available there and in Serban et al. (2021).

1. More detailed descriptions are available in our practice catalogue: https://se-ml.github.io/practices/
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Interviews. To complement our survey results, but also to validate that the practices we
identified are indeed relevant for practitioners and developers of AutoML frameworks, we
conducted interviews. The interview protocol was designed using the guidelines from Hove
and Anda (2005) and consisted of 15 questions designed to support a natural conversation.

The interviews were structured as follows. First, we described the goals and background
of our research. Next, we asked participants to share information about their background
and demographics. We then asked participants about the way they use AutoML and about
the challenges faced by them in adopting AutoML, the perceived benefits and the risks
associated with the use of AutoML tools and techniques. Finally, we asked participants
open-ended questions designed to elicit additional thoughts and feedback from them.

We recruited participants using purposeful sampling (Palinkas et al., 2015), by contact-
ing practitioners which we knew were using or interested in using AutoML techniques. We
present results from two interviews. Participant P1 works on applications with ML com-
ponents at a European technology company, while participant P2 works on AutoML at a
European university (not our own). Both have five or more years of experience with ML.

4. Results

Since the two surveys were open during separate time frames, and adoption may have
changed, we also analyse their results separately. Furthermore, we discuss the interviews
in relation to the survey results whenever there is a clear connection, followed by further
observations from the interviews. Additional survey results are available in the appendices.

Survey 1. The initial survey resulted in a total of 307 valid responses2 to the question on
model selection and hyperparameter optimisation. Out of these respondents, 8% reported
to have completely adopted these AutoML techniques, 26% mostly, 35% partially, and 31%
not at all (see Table 1 in Appendix B). Evidently, although these techniques appear to be
widely known, there is still significant room to increase adoption. Adoption levels between
geographic regions (Figure 3a, Appendix C) are quite similar, with only South America
showing higher rates of adoption, which are likely the result of the comparatively small size
of this particular sample (6% of the respondents).

Figure 1a breaks down adoption by organisation type. Adoption is highest for research
laboratories, followed closely by technology companies. Non-tech companies as well as
governmental organisations show substantially lower adoption. Part of the explanation
for this difference may be the proximity of research and tech organisations to the latest
technological developments. However, it seems unlikely that this is the only factor. Non-tech
companies and governmental organisations may work with sensitive data more frequently,
which could make them more cautious about adopting AutoML techniques. Usability issues
are another factor that could play a role, as also postulated by Lee et al. (2019), and these
may be easier to overcome for people with a strong technical background.

There appears to be a positive correlation between experience and adoption (Figure 1b).
Specifically, a substantial change in adoption appears after two years of experience. Having
more than five years of experience does not seem to result in an additional increase in adop-

2. Note that numbers in analysis may be slightly lower due to respondents that did not answer all questions.
Data, questions, and code from this survey are available at: https://doi.org/10.5281/zenodo.3946453
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Figure 1: Model selection and hyperparameter optimisation.

tion. These results are somewhat at odds with the notion that AutoML may democratise
ML by making it more accessible to users with less ML expertise. A comment by interview
participant P2 (academic) could provide part of the explanation why more experienced
teams may have higher adoption. They indicated that it is difficult to judge how long
AutoML frameworks should be allowed to run to get good results while avoiding overfit-
ting, something that might be learned with experience. This was echoed by P1 (tech), who
indicated being more concerned about overfitting as a result of using AutoML techniques
compared to using a manual approach based on domain knowledge. The respondents who
just started using ML appear to be outside the perceived trend, but since they represent a
relatively small group of the answers (7%), this result may be statistically less reliable.

Survey 2. So far, the second survey resulted in 67 valid responses3 to the AutoML ques-
tions. Although the number of responses is much lower than in our first survey, the break-
down into three questions concerning AutoML already allows us to gain additional insights.
In Figure 2, the adoption per practice is shown. Automated configuration of algorithms
and the structure of models is clearly less adopted than the other two practices. For feature
generation and selection, it is interesting to note that more than 20% of the cases do this
implicitly – for instance, by using deep learning. The number of respondents that adopted
model selection and hyperparameter optimisation at least partially is higher than in the first
survey, leaving only around 20% that do not adopt this practice at all. Due to the lower
number of responses from our second survey, it is still difficult to draw meaningful conclu-
sions regarding adoption differences between organisation types and other demographics.

Interviews. In addition to the factors influencing AutoML adoption mentioned so far,
the interviewees also raised some other interesting points. Specific to automated feature
selection, P1 (tech) saw few issues, raising that they can look back at what the selected
features mean and whether the selection makes sense. P1 also indicated that the initial
required investment to adopt new AutoML techniques is high, and at odds with short

3. Data form this survey will be made available at a later stage. See Appendix A for the AutoML questions.
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Figure 2: Adoption per practice. The first bar shows adoption of the feature practice
including ‘Implicit, e.g. deep learning’ answers, while in the second bar they are excluded.

production times to ship to customers. However, P1 did see potential benefits in the long
run, where AutoML might provide savings in the time spent by human experts. Since with
deep learning, explainability is already an issue, P1 was not too concerned about possible
explainability issues stemming from AutoML use in this context.

P2 (academic) mentioned that in cases where AutoML frameworks don’t work, it is
generally difficult to find out why it is not working. In which component is the issue?
Is it a problem with the dataset or a bug? For P1, neural architecture search on the full
search space would be too expensive, making the manual design with expert knowledge more
practical. P1 further indicated that the use of ML (without AutoML) often already led to
improvements for their customers; in combination with limited production time, in their
view, that left relatively little opportunity and motivation for using AutoML techniques to
possibly achieve improved performance.

5. Conclusion

Aiming to measure AutoML adoption by practitioners working on applications with ML
components, we identified three engineering practices for AutoML, and measured their adop-
tion through surveys. In addition, a preliminary set of interviews was held to gain insight
into the factors driving and inhibiting adoption. Our findings indicate that there is sub-
stantial room to increase adoption across the board. Based on the preliminary interviews,
the relatively low adoption might result from usability issues with AutoML frameworks and
the substantial computational resources required for AutoML.

In the near future, we plan to conduct additional interviews. So far, our two interviews
only provided first insights into possible reasons for limited adoption of AutoML practices.
It would be of particular interest to interview people that have not yet adopted AutoML,
since both the interviews we present here and those by Xin et al. (2021) targeted users
with at least partial adoption. We expect that this will help us in testing and refining our
preliminary ideas regarding the reasons why some ML practitioners refrain from adopting
AutoML tools and techniques.
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Appendix A. Survey Questions about AutoML

A.1 Survey 1

1. We can perform model selection and hyper-parameter optimization in an automated
way.

A.2 Survey 2

1. We use automated methods to generate or select features from input data.

2. We perform model selection and hyper-parameter optimisation in an automated way.

3. We use automated methods to configure our algorithms or the structure of our models.

Appendix B. Survey 1 – Overall Model Selection or Hyperparameter
Optimisation

Answer Number Percentage

Not at all 96 31%
Partially 106 35%
Mostly 80 26%
Completely 25 8%

Table 1: Overall adoption

Appendix C. Survey 1 – Model Selection or Hyperparameter
Optimisation by Demographic
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Figure 3: Model selection or hyperparameter optimisation.
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Appendix D. Survey 2 – Mean Adoption by Demographic
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Figure 4: Mean over all three AutoML practices, excluding responses that answered ‘Im-
plicit, e.g. DL’ to feature generation/selection.
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Appendix E. Survey 2 – Feature Generation/Selection by Demographic
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Figure 5: Feature generation/selection.
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Appendix F. Survey 2 – Model Selection or Hyperparameter
Optimisation by Demographic
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Figure 6: Model selection or hyperparameter optimisation.
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Appendix G. Survey 2 – Algorithm/Model Configuration by
Demographic
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Figure 7: Algorithm/model configuration.
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