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ABSTRACT
Optimal Lens Design constitutes a fundamental, long-standing real-
world optimization challenge. Potentially large number of optima,
rich variety of critical points, as well as solid understanding of
certain optimal designs per simple problem instances, provide al-
together the motivation to address it as a niching challenge. This
study applies established Niching-CMA-ES heuristic to tackle this
design problem (6-dimensional Cooke triplet) in a simulation-based
fashion. The outcome of employing Niching-CMA-ES ‘out-of-the-
box’ proves successful, and yet it performs best when assisted by
a local searcher which accurately drives the search into optima.
The obtained search-points are corroborated based upon concrete
knowledge of this problem-instance, accompanied by gradient and
Hessian calculations for validation. We extensively report on this
computational campaign, which overall resulted in (i) the location
of 19 out of 21 known minima within a single run, (ii) the discov-
ery of 540 new optima. These are new minima similar in shape
to 21 theoretical solutions, but some of them have better merit
function value (unknown heretofore), (iii) the identification of nu-
merous infeasibility pockets throughout the domain (also unknown
heretofore). We conclude that niching mechanism is well-suited
to address this problem domain, and hypothesize on the apparent
multidimensional structures formed by the attained new solutions.
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1 INTRODUCTION
The domain of Optical Lens Design [7] offers a variety of highly
complex optimization problem instances: the solution spaces are
very rugged, and the extensive mathematical techniques are of
limited use in most of the cases. The conventional approach fol-
lowed in designing lenses is to create a few designs using one’s
own experience, then let commercial packages (e.g., Code V [4] and
OpicStudio [19]) to optimize these designs using gradient-based
local search. Different techniques have been used to determine lens
designs. For example, [26] gives an overview of classical and Evo-
lutionary Algorithms (EAs) for the optimization of optical systems,
[12] compares different global optimization algorithms on freeform
optical designs, [11] reviews the use of genetic algorithms for lens
design, and different mathematical techniques are employed to
locate the minima of specific lens designs in [2, 25].

Generally speaking, most of the approaches aim to locate the
global optima, whereas only a few are designed to find local op-
tima (see, e.g., [25]). As mentioned earlier, because many factors
(manufacturability, cost, etc,) are unknown a-priori, and have the
potential to influence the choice of the final design, it makes sense
to come up with methodologies searching for as many local optima
as possible having some key performance indicator (KPI) values
below/above given thresholds1.

In this study we propose a novel approach for the challenge of
locating as many local minima as possible in the domain of optical
lens system designs (i.e., optical systems). Our proposed approach
is based on the application of a niching algorithm that relies on a
variant of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [23], combined with local search.

1The so-called Second Toyota Paradox, which is often reviewed in management studies,
promotes the consideration of multiple candidate solutions during the car production
process [5]:

"Delaying decisions, communicating ambiguously, and pursuing an
excessive number of prototypes, can produce better cars faster and
cheaper."
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Figure 1: Depiction of a simple lens designwhere the central
ray hits the center of the focal plane and an off-center ray
hits the focal plane with a displacement from the desired
center position.

Lens designs are subject to input and output constraints: the
type of light the optical system has to deal with, the magnifica-
tion/reduction factor the optical system must achieve, the focal
length the optical system must have, the occupied volume and man-
ufacturability tolerances, and the maximum cost of the system. The
KPIs of a lens design can be many and they are related to aber-
rations, i.e., imperfections in image formation. These aberrations
are computed with a ray tracing algorithm which models how the
optical design affects the light passing through it.

2 PROBLEM FORMULATION
2.1 Optical perspective
Optical lenses are well-known physical objects that focus or diverge
light. The path of rays of light hitting the lens in its different parts
differs, as illustrated in Figure 1 which shows a simple lens design
with one lens and paths taken by two rays. The central ray (shown
as a dashed black line) of an on-axis object point passes through the
middle of the lens and hits the focal plane in the center. Another,
off-center, ray (shown with a red line) is deflected by the lens and
hits the focal plane center with a 𝑥 and 𝑦 displacement. The area
on the focal plane reached by all the considered rays is called the
spot. It is the size of this spot that characterises a lens (design).

2.1.1 Statement of the problem. A lens collects light emitted or
reflected by an object and focuses it in the image plane. In the case
of an ideal lens an exact scaled image of the object will appear.
However, the image of a real lens will be deformed and blurred to
some extent due to geometrical aberrations. Diffraction effects will
be ignored in this paper as the geometrical errors are dominating.

A Cooke triplet is an optical system that consists of 3 lens
elements placed consecutively. The design problem associated
with the Cooke Triplet consists of adjusting six lens curvatures
c “ p𝑐1, . . . , 𝑐6q (i.e., two surfaces per lens, see Figure 2) in order
to obtain the optical system with the best imaging properties (an
optical system is imaging if it focuses part of the light emitted by
points on a plane in the object space into a point on a plane in the
image space). This lens system is well known and used in optical
design theory as it has just enough free parameters to correct all
primary aberrations. In this work the lens and air gap thicknesses

Figure 2: Example of Cooke triplet with the indication of the
surface numbers.

are not varied as these have only small contributions to the lens
performance. Next to this the glass material is not varied to reduce
the complexity of the design problem as was done in reference [25].

The imaging properties of a system can be quantifiedas the root
mean square (RMS) of the spot size:

𝑆1pcq “

g

f

f

e

1
𝑛

𝑛
ÿ

𝑖“1
pΔ𝑖pcqq2 Ñ min (1)

where c the vector of lens curvatures of the given optical system
and Δ𝑖pcq “ Δ𝑥𝑖pcq ` Δ𝑦𝑖pcq are the displacements in 𝑥- and 𝑦-
coordinates

Typically, to compute the spot size of a given system, a limited
number of rays originating from a small number of object heights2
in this system needs to be simulated and traced. Such approach
has been taken here: tracing 126 rays originating from 3 different
object heights. Then, the distance of the point of incidence on the
image plane to the geometrical center of the spot was calculated
for each of these rays and added to the merit function.

2.1.2 Optics simulators. Tracing of rays of light passing through an
optical system can be done with several optical simulators, with sub-
tle differences. Commonly used commercial simulators are CODE
V [4] and OpticStudio [19]. OpticStudio has been chosen here be-
cause of the availability of code to interact with MATLAB [18]. A
small difference between the two simulators, however, needed to be
addressed. OpticStudio does not allow setting optimisers in front of
the optical stop as was used in [25]. A workaround is that after the
new curvature parameters are set and before the KPI is computed
a MATLAB script sets the object distance such that the lens system
has a magnification of value of ´1.

2.1.3 Typical approach to solve lens design problem taken by optical
designers. One of the approaches often taken by experienced optical
designers is to start with a known design and improve upon it by
manually adding or removing lens elements or even groups of
elements with a known optical ‘function’. After each alteration the
system parameters are optimized with a merit function containing

2A line can be drawn through center of the lens (see the dotted line in Figure 2) extents
from the object to the image. The object height is then the distance of a point to that
axis.
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the key KPI’s, typically with a local optimizer such as the Damped
Least Square method. Time need for a design and the final lens
performance largely depend on the experience of the designer. At
the same time, since the employed optimisers are operating locally
there is a high probability that good designs are missed.

Therefore, strictly speaking, no directly competitive computational
approaches exist in the field of optics for the methodology proposed
in this paper.

2.1.4 Infeasible lens designs. Clearly, some lens designs can re-
sult in rays falling outside the focal plane or reflecting internally.
For such designs, ray tracing simulators return a predefined large
numerical value.

2.2 Computational perspective
The lens design problem described in the previous section con-
stitutes a (reasonably) low-dimensional continuous problem set
within a simple hypercube domain whose objective function3 𝑓 pcq
is based on a number of outputs obtained from an optics simulator4
𝑆 :

𝑓 pcq “ 𝑤1𝑆1p𝒄q (2)
`𝑤2p𝑆EFFLp𝒄q ´ EFFLtargetq2

`𝑤3p𝑆PMAGp𝒄q ´ PMAGtargetq
2 Ñ min ,

where c “ p𝑐1, . . . , 𝑐6q P r´0.25, 0.25s6 are lens curvatures,
𝑆1p𝒄q is the spot size merit function component defined in Sec-
tion 2.1.1, 𝑆EFFLp𝒄q is the effective focal length component, and
𝑆PMAGp𝒄q is the paraxial magnification, all three being computed
by the simulator 𝑆 . The target values of the latter two are set as
EFFLtarget “ 30rmms and PMAGtarget “ ´1, respectively, and the
weights are chosen as 𝑤𝑖 “ 1. Minimisation problem specified in
eq. (2) is solved in this paper.

2.2.1 Analysis of known optima. The Cooke triplet lens design
problem has been intensively studied in the past. To date, the most
detailed analysis of the problem [25] yields curvature values which
represent 21 locally optimal designs. This analysis is a mixture
of numerical simulation and physics-based theoretical reasoning
about the properties of a simplified objective function. The authors
suggest a methodology of constructing triplet minima from known
duplet minima (and, potentially for higher orders, incrementally)
and build a classification of locally optimal designs according to
their morphology.

Their results, however, do not exclude the possibility of existence
of other local optima. The approach taken in this paper is to study
how close a specialised evolutionary algorithm can get to the known
optima in a purely numerical fashion, without utilizing any optics
knowledge.

2.2.2 Discrepancies between simulators. It should be mentioned
that results in [25] have been obtained using the Code V simulator.
Meanwhile, in this study the OpticsStudio simulator has been em-
ployed. To assure the compatibility of the two simulators, a study
has been carried out where 21 known optima have been evaluated
in both simulators - results coincide up to the 5th decimal digit.

3Referred to as KPI in the previous sections
4The objective function used here is the same as in [25].

2.2.3 Nature of Critical Points. As described above, previous inves-
tigation of this optimization domain, and particularly of this triplet
problem-instance, concluded that the underlying search landscape
possesses a rich variety of critical points [25]. Since we study the
application of randomized search heuristics in a black-box fash-
ion, an assessment of the attained solution-points is much needed
in order to validate their nature as optima. To this end, we con-
sider finite-differences calculations of the gradient vector and the
Hessian matrix [20], relying on the short evaluation times of the
simulator’s objective function calls. Explicitly, a critical point of
an objective function 𝑓 is where its gradient vector vanishes, i.e.,
p∇𝑓 q𝑖 :“ B𝑓

B𝑥𝑖
“ 0 @𝑖 . The Hessian of 𝑓 ,

`

H𝑓

˘

𝑖 𝑗
:“ B2 𝑓

B𝑥𝑖B𝑥 𝑗
may

provide the diagnosis of the critical points by examination of its
eigenvalues (which are guaranteed to be real due to its symmetry):
a positive (negative) spectrum indicates a minimum (maximum),
whereas a spectrum with mixed signs indicates a saddle point; the
existence of a zero eigenvalue suggests flatness and may require
higher-order derivatives for assessment.

In practice, gradients and Hessian spectra of the 21 known
theoretical solutions were approximated using finite-differences’
calculations, and by utilizing a variety of infinitesimal perturba-
tion values (delta steps) to validate the approximation (𝛿𝑥 :“
10´4, 10´5, . . . , 10´12). The obtained gradients indeed reflect the
critical point nature of these solutions. Furthermore, we analyzed
the attained Hessian spectra. Evidently, the majority of the eigen-
values vanish — indicating some flatness, but formally suggesting
lack of conclusive statements. All spectra are dominated by a single
direction – which has been corroborated as a meaningful design by
the human experts – exhibiting high condition numbers at these
basins of attraction. Notably, two optima appear to be saddle points
(i.e., possess negative eigenvalues). This odd observation may be
explained by the discrepancies between the two simulators, sug-
gesting that these critical-points’ locations (verified on Code-V)
undergo a shift on OpticStudio.

2.2.4 Known Optima Locations. As amply demonstrated in the
field of computational intelligence [3, 6, 13–15], location of optima
within the domain can influence the performance of heuristic opti-
misation algorithms. Therefore, here we investigate how 21 known
optima [25] are distributed within the problem domain and look
for additional insights into the structure of the problem.

As described above, the domain corresponding to the Cooke
Triplet problem is a hypercube in six dimensions, of real-valued pa-
rameters. Instead of searching for efficient visualisations of two- or
three-dimensional projections and complex multidimensional rea-
soning, we opt for a study of the distribution of pairwise distances
between know optima5 – see Figure 3 and its caption containing a
detailed explanation of the figure. Careful inspection of this figure
allows the following conclusions:

‚ pairwise distances between theoretical solutions vary in the
range r0.08, 0.62s; most pairwise distances lie in the range
r0.2, 0.5s;

‚ the global optimum (solution number 14) is located overall
further away from other good solutions; at the same time, all

5Euclidean distance is chosen here as in this relatively low dimensionality, it still
allows good distinction between distances [1]. Switching to Manhattan distance yields
very similar results.
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Figure 3: Distribution of pairwise Euclidean distances
among the known 21 theoretical solutions (6-dimensional
real-valued decision vectors that are associated with 6 lens
curvatures), as identified in [25], having the solutions’ num-
bering preserved. Orange dashes indicate the distribution
of all 21ˆ20

2 pairwise distances among 21 theoretical solu-
tions, i.e. they are projections of all rhombi onto the left
vertical axis. The objective function value of each theoreti-
cal solution is depicted as a black circle, with values marked
on the right vertical axis. Solution number 14 is the global
minimum. The rhombi symbols are colored according to the
number of times a theoretical solution has been precisely lo-
cated in a series of 5 independent runs of the final configu-
ration of the proposed method shown in Algorithm 1.

other solutions lie at similar distances to the global solution;
similar distribution can be observed for the worst performing
optimum (solution 1);

‚ other better solutions (17, 12, 9, 10) are also located further
away from other remaining solutions;

‚ no direct correlation between the distribution of distances for
similar performing solutions can be observed (e.g., solutions
5 vs 18 or 6 vs 16);

‚ in a series of 5 independent runs of the final configuration
of the proposed method discussed in Section 3:
‹ all solutions have been found at least once; in total, 18 to
19 out of 21 solutions have been found in every single run;

‹ the least found solution (solution 18, found 1 time out of
5) is located further away from all other solutions;

‹ the second least found solution (solution 11, found 2 times
out of 5) is not drastically different from other solutions.

3 METHODOLOGY AND SETUP
In this section we elaborate on the computational approach taken,
the preliminary planning, and the experimentation setup. We first
present the background of nichingmethods and specify the concrete
methodology that we employ in this research.

3.1 Niching CMA-ES
Standard Evolutionary Algorithms (EAs) tend to lose their popu-
lation diversity and converge into a single solution [21]. Niching
methods constitute the extension of EAs to finding multiple optima
in relevant search-landscapes within one population [21]. They
address this issue by maintaining the diversity of certain properties
within the population, and thereby aim at obtaining parallel con-
vergence into multiple basins of attraction in the landscape within
a single run. Research on niching methods started in Genetic Algo-
rithms [17], followed by work in Evolution Strategies [23, 24], and
broadened to the entire field of nature-inspired heuristics yielding
altogether a sheer volume of potent techniques (see [16] for a recent
review).

Here, given the optimization problem at hand, we choose to
employ the established, radius-based Niching CMA-ES technique
[23] using a p1, 𝜆q kernel. The targeted number of niches is denoted
by 𝑞. In short, following the evaluation of the population, niches are
spatially constructed around peak individuals, in a greedy manner,
based upon the prescribed niche radius 𝜌 . Resources are uniformly
partitioned per niche, thus each peak individual is sampled 𝜆 times
in the following generation6.

3.2 Parameter Settings
We employ the niching within a p1, 𝜆q-CMA-ES algorithm, and
specify in what follows its parameters’ settings by adhering to
the notation in [23]. We target 𝑞 “ 20 niches per each run, yet
allocate further 𝑝 “ 5 dynamic peaks (i.e., 25 D-sets are formed).
Regarding population sizing, we follow the recommendation and
set 𝜆 “ 10 – yielding altogether 250 individuals that undergo
evaluation in each iteration. Importantly, setting the niche radius
valuemay have a critical impact on the behavior of a niching routine
that features a fixed radius, often referred to as the niche radius
problem [24]. Here, rather than approximating the search volume
and partitioning it among the niches [24], we are in a position
to capitalize on the known theoretical solutions. We assume that
their spatial distribution is indicative of the general distribution
of solution points within the feasible space, and set accordingly
the niche radius to half of the mean pairwise distances (see Figure
3): 𝜌 “ 0.18. Otherwise, the cycle of non-peak reset is set to 𝜅 “

20 iterations, and the initial global step-size is set to 𝜎0 “ 0.05.
Solutions generated outside the domain are corrected by placing
them on the boundary [13].

3.3 Local Search Utilization
The so-called Dampened Least Squares (DLS) [9, 26] (also known
as the Levenberg-Marquardt algorithm) constitutes a modification
of the well-known Newton-Raphson method [20]. It is traditionally
employed in lens design, and it became a built-in option in the
OpticsStudio simulator. This local search method on its own, being
dependent upon ‘good’ initial points, is unlikely to locate all the
optima of the problem. We thus utilised it for validation purposes,

6In socio-biological terms, the peak individual is associated with an alpha-male,
which wins the local competition and gets all the sexual resources of its ecological
niche. The algorithm as a whole can be thus considered as a competition between alpha-
males, each of which is fighting for one of the available 𝑞 “computational resources”,
after winning its local competition at the “ecological optimum” site.
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as explained in Section 2.2.3. At the same time, preliminary experi-
ments suggested that minor improvements are often achieved when
this local searchmethod is applied to the solution-points attained by
the niching algorithm, regardless of the niching configuration and
its parameters’ setting. We explain these observed improvements
by the landscape’s rich variety of critical points, including saddle
points, which seemingly render the convergence attempts by the
CMA-ES challenging. We therefore devised a hybrid approach, as
outlined in Algorithm 1.

Algorithm 1 The Proposed Niching-p1, 𝜆q-CMA-ES + DLS Hybrid
Approach
1: 𝑖 Ð 1
2: 𝑎 Ð H Ź initialise solution archive
3: 𝑜 Ð H Ź initialise optima archive
4: 𝑑 Ð 10 Ź set archive search depth
5: 𝑝r𝑖s Ð initialise niching p1, 𝜆q-CMA-ES Ź see Section 3.2
6: while fitness evaluation budget permits do
7: 𝑝r𝑖 ` 1s Ð 𝑖𝑡ℎ generation of niching p1, 𝜆q-CMA-ES Ź [23]
8: 𝑎r𝑖s Ð 𝑝r𝑖s Ź update solution archive
9: 𝑖 Ð 𝑖 ` 1
10: end while
11: for 𝑗 “ 𝑖 ´ 𝑑 Ñ 𝑖 ´ 1 do Ź take last 𝑑 generations
12: while 𝑎r 𝑗s is not empty do
13: 𝑠 Ð fetch next element of 𝑎r 𝑗s

14: 𝑜 Ð 𝑜 Y 𝐷𝐿𝑆p𝑠) Ź via OpticsStudio7
15: end while
16: end for
17: return filterp𝑜q Ź remove duplicates, return optima archive

3.4 Setup and Experimental Planning
Our niching implementation follows the publicly available source
code [22]. The niching algorithm was run using the configuration
from Section 3.2 for up to 25000 objective function evaluations,
with the variation operator being adjusted within the predefined
6-dimensional boundaries. An approximate duration of a single
objective function call is within the range of 2 sec. All the experi-
ments were run using MATLAB and executed on Windows Intel(R)
Core(R)i5 CPU 8350 @ 1.90GHz with 4 processing units. The fi-
nal Niching-p1, 𝜆q-CMA-ES configuration has been run 5 times,
meanwhile overall, we conducted 60 runs with various settings.

4 RESULTS AND ANALYSES
Our proposed approach located altogether 540 optima within this
domain. Furthermore, during the reported experimentation, all the
evaluated candidate solution-points (i.e., lens designs) visited by
the aforementioned approach have been recorded. Upon filtering
out duplicate points, 185200 unique feasible candidate solution-
points were altogether located, versus 245880 infeasible candidate
solution-points. Next, we elaborate on these observations and offer
insights into the landscape.

7Apply DLS implementation from OpticStudio until the internal termination criteria
is not hit: no significant improvement in the value of the objective function.
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Figure 4: Distances between each theoretical and all new so-
lutions, overlaid with fitness values of theoretical solutions
shown in filled black circles with values on the right verti-
cal axis. Moreover, distributions of distances for solutions
are shown with 540 ˆ 21 dashes in orange.

4.1 Distribution of Known and Novel Optima
The aforementioned experimentation has consistently indicated
the existence of new locally optimal solutions. Overall, 540 new
solutions have been identified and further investigated for local
optimality based on critical-points’ analyses (Section 2.2.3). In par-
ticular, their gradients were approximated, and were shown to
reflect their critical-point nature.

Finally, similarly to what has been reported in Section 2.2.4, we
study the distribution of pairwise Euclidean distances among 84
(out of 540, selected best in terms of attained objective function
values) newly identified solutions (Figure 5) and among the same
84 new solutions and 21 known theoretical solutions discussed
in Section 2.2 (Figure 4). Based on these two Figures, we are in a
position to articulate the following conclusions:

‚ (see Figure 4) pairwise distances among new solutions
densely vary in the range r0, 0.77s; (see Figure 5) pairwise dis-
tances among all new and known theoretical solutions vary
in the similar range r0, 0.76s; i.e. in general new solutions
lie at similar distances to each other as to the theoretical
solutions;

‚ (see Figure 4) some of the new solutions lie close to theoreti-
cal solutions 2, 5, 8, 13, 14 (global minimum) and 17; majority
of new solutions lie far away from known theoretical so-
lutions; new solutions lie furthest away from theoretical
solution 11;

‚ (see Figure 5) no new global optimum is found, but 20 new
solutions outperform the second-best theoretical solution
(“first runner-up”);

‚ (see Figure 5) objective function values of the 540 new so-
lutions smoothly fill the range r0.0024, 0.00293s, except for
some ‘jumps’ (e.g., between the 20th and the 21st best new
solutions).
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Figure 5: Distribution of pairwise Euclidean distances between new solutions (6 lens curvatures or 6-dimensional real-valued
vectors) is shown as 539 grey pluses for each of the 84 best performing solutions out of total 540 new solutions found. Overlaid
on top are (as empty pink circles, with values on the right vertical axis) fitness values of these 84 solutions and (as black line,
with values on the left vertical axis) distances to the next best solution. Left and right vertical axes also show, respectively,
distributions of distances for all 84 new solutions (with 539ˆ 84 dashes in orange; these are projections of all grey pluses onto
this axis) and fitness values of these solutions (with 84 empty circles in violet; these are projections of pink circles onto this
axis). Moreover, for comparison, fitness values of 4 best performing theoretical solutions are shown with filled black circles
on the right vertical axis. New solutions are sorted according to their fitness.

‚ (see Figure 5) with a few exceptions, similarly-performing
new solutions lie at similar distances to all new solutions
(e.g. solutions 5–11 or 44–49);

‚ (see Figure 5) relatively few new solutions are ‘clustered’
together in terms of distance – no new solution exhibits
predominance of zero distances;

‚ (see Figure 5) almost no new better performing solutions lie
at the distance of about 0.12 from each other; other similar
‘exclusion zones’ can be observed at larger distances;

‚ (see Figure 5) many new solutions lie at the distance of about
0.3 from each other; other similar ‘density zones’ can be
observed at larger distances;

‚ (see Figure 5) 3 out of the 84 solutions shown here lie further
away from some new solutions (solutions 31, 52 and 78);

these solutions do not differ in terms of objective function
values when compared to the rest;

‚ (see Figure 5) when sorted by their objective function values,
each subsequent new solution on average equally either lies
at distance of nearly 0.0 or at some distance in the range
r0.25, 0.4s;

4.2 Infeasibility Map of the Landscape
Given the proportion of located infeasible points, we are in a posi-
tion to state that this problem domain has inner infeasibility pockets,
wherein the objective function cannot be computed – the simulator
exhausts its computational budget and returns a predefined high
value. Such infeasibility pockets are uniformly distributed within
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245880 sampled solutions

109328 infeasible inside domain « 6 ˆ 109 p/w distances

500 subsampled infeasible |100
𝑖“1

1𝑠𝑡min|100
𝑖“1

... 10𝑡ℎmin|100
𝑖“1

« 1.2 ˆ 105 p/w distances |100
𝑖“1

5000 subsamples |100
𝑖“1

Shapiro-Wilk p-values |100
𝑖“1Figure 7

Figure 6: A schematic explanation for samples of 10 low-
est distances and Shapiro-Wilk p-values calculation that are
shown in Figure 7; ‘p/w’ stands for ‘pairwise’ and |100

𝑖“1 de-
notes the number of repetitions.

the domain: 109328 out of the 245880 sampled solutions were lo-
cated strictly within the domain boundaries. Their existence, and
particularly their large volume8, constitute a new observation in
the field of optical design, where such pockets have not been noted
heretofore.

How large are these infeasibility pockets? Clearly, their true
size can only be estimated based on a limited albeit large sample
of 109328 unique evaluated solutions. It is not practical to study
pairwise distances between all these solutions. Instead, we sys-
tematically (see Figure 6 for explanation) down-sample 100 times
500 infeasible solutions9 from 109328 points in the inner part of
domain, compute 10 minimum values10 of pairwise Euclidean dis-
tances within each such sample11, plot them and report 𝑝-values
from the normality test on distances within one sample (based on
a subsample of 5000 distance values12). From the results presented
in Figure 7, we are able to clearly state the following:

‚ Infeasibility pockets predominantly consist of individual so-
lutions. This can be seen from only a small number of points
with zero/low 1st minimal distance and steadily increasing
values of 2nd, ... , 10th minimal distances. However, the possi-
bility of existence of infeasibility pockets of nonzero measure
is not excluded due to a very small sample size (in propor-
tion) and the fact that the increase of subsequent minimal
distances (see Figure 7) takes place very slowly.

‚ According to the Shapiro-Wilk normality tests with𝛼 “ 0.05,
subsampled pairwise distances among infeasible points are
normally distributed in 62% samples of size 500013.

‚ The values shown in Figure 7 are rather volatile, i.e., they
vary over multiple runs of the aforementioned procedure.
This happens due to small sample sizes (in proportion) sub-
sampled from all 0.5ˆ 109328ˆ 109327 « 6ˆ 109 distances
among infeasible solutions, see Figure 6.

8following filtering and removal of duplicate solutions, 57% of the evaluated designs
turned out to be infeasible.
9i.e., on average 500

109328 « 0.46% of the infeasible solutions fall in each such sample
10the lowest, the second lowest, up to the 10th lowest
11i.e., on average 10ˆ2

500ˆ499 « 0.008% of computed distances are examined per sample
12i.e., the test per sample is run for 5000ˆ2

500ˆ499 «0.4% of computed distances
13see Figure 7, 100%-38%.
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Figure 7: Distribution of lowest values of pairwise Euclidean
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calculation.

Furthermore, we have constructed a binary ‘feasible/infeasible’
classifier for the standardised data based on the Support Vector
Machine algorithm [10], featuring a polynomial kernel and 5-fold
cross-validation – which attains 85% accuracy. However, details of
this Machine Learning approach fall outside the scope of this paper.

4.3 Optical Perspective of the Novel Optima
New solutions identified by the proposed approach have been in-
vestigated from the point of view of optics. At the first glance, all
of them fall within the ‘morphological classes’ specified in [25]
(i.e., they have the same sequence of the signs of the lens surface
curvatures). However, within such class, their exact performance
differs - Cooke triplets with curvatures specified by new solutions
deliver numerically different aberrations [8] per lens, see Figure 8
for an example. Further detailed analysis of the new solutions from
the optics point of view is outside the scope of this paper.

Most of new solutions deliver not only low sum but also low
individual (per lens) aberrations and, therefore, potentially can be
used in industrial production and satisfy the aforementioned man-
ufacturability constraints. Analysis of these individual aberrations
has made it clear that within the approach proposed in this pa-
per additional constraints, additional objective or penalty terms
in the existing objective function can be imposed to control such
individual aberrations. This requires further study.

5 CONCLUSIONS
In this work we studied a basic instance of the Optical Lens Design
problem in light of the multiplicity of its solutions, and investi-
gated the application of an existing niching approach to it. Our
study unveiled a fascinating real-world application as a testbed for
randomized search heuristics (and particularly black-box continu-
ous solvers that operate on multimodal domains), and at the same
time, provided insights on the search landscape of this application
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Figure 8: Seidel Diagram [8] from OpticStudio [19] indicat-
ing themain aberrations of twoCooke triplet systems: based
on new solutions 1 and 84 - above and below, respectively
(numbering of solutions is taken from Figure 5). Columns
labeled 1, 2 and 4-7 correspond to the six lens surfaces; for
each such surface the spherical, coma, astigmatism, field
curvature, distortion, axial and lateral color aberrations are
shown with different colours. The height of each coloured
bar shows the strength of the corresponding aberration.
Maximum aberration scale is 0.5[mm], horizontal grid line
spacing is 0.05[mm]. Rightmost column labeled SUM shows
the total aberrations of the system. Obviously, the two so-
lutions lead to a different behaviour of the system (different
amount of aberrations in each lens). Both solutions are good
as indicated by low sum aberrations.

domain. Evidently, this low-dimensional optimization problem pos-
sesses an underlying rough landscape, which is likely to get worse
if larger lens design problems are to be considered. Altogether, this
problem-instance is significantly more complex than previously
thought. Therefore, to address those challenges, specialized search
heuristics are much needed to be devised.

The employed niching approach, which was utilized ‘out-of-the-
box’ using its defaults configuration, proved successful for this
type of problem. During the current computational campaign, this
approach typically obtained the majority of the known, theoretical

solutions, and furthermore identified a few hundreds of new critical
points. When compared to a commonly-utilized approach in this
application domain, namely the saddle-point construction method,
the niching approach is advantageous since it does not require a null
(reference lens) element that does not change the merit function.
This makes the method applicable to most optical design problems.
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